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Polyacene(PAS)/carbon and acetylene black(AB)/carbon coated lithium 
cobalt phosphate composites were synthesized via the solid state 
reaction method using co-precipitated Co3(PO4)2·8H2O and Li3PO4 
mixture as its precursor. X-ray powder diffraction (XRD) was performed 
to investigate the structure and phase of all the samples. The 
transmission electron microscopy (TEM) shows that the double carbon 
layers coated on the surface of LiCoPO4 successfully. The LiCoPO4/C, 
LiCoPO4/PAS and LiCoPO4/AB delivered a capacity of T 120.92, 121.07 

and 138.06 mAhg-1 at 0.1C, respectively. The double carbon coated 
LiCoPO4 electrode delivered an initial discharge capacity of 147.12, 

143.51 mAhg-1 after AB/glucose, PAS/glucose coating, which 
maintained at 59.5% and 61.7% after 15 cycles at the 0.1C rate, 
respectively.  

 
Keywords:  Double carbon coated LiCoPO4 nano composite; High-performance cathode; Lithium ion 

battery 

 

 
Introduction  
  

As renewable energy usage increases and price falls, energy storage becomes 

more and more important. The development of lithium-ion battery technology has opened 

the door to opportunities for the future of energy storage. For decades, scientists have 

been actively searching for new electrode materials and electrolytes that can produce a 

new generation of lithium-ion batteries which can provide greater energy storage, longer 

life, lower cost, and greater safety.  

Olivine type LiMPO4 (M = Fe, Mn, Co, Ni) cathode materials is one of the most 

promising positive electrode materials for next-generation lithium-ion batteries (LIBs) 

owing to the strong P-O covalent bond and the resulting stability [1]. Among LiMPO4 

materials, LiFePO4 is widely applicated in the field of electric and hybrid electric vehicles 

(HEVs) [2, 3], because of its low cost, environmental benignity, excellent thermal 

stability and outstanding cyclability [4]. However, the energy density of LiFePO4 (586 

WhKg-1) limits its further development due to the low discharge potential (3.4 V vs. 

Li+/Li). LiCoPO4 presents the Li+ extraction/insertion behaviour at potentials around 4.8 

V (vs. Li+/Li), which is highly beneficial to its energy density (801 WhKg-1). But its poor 

electronic conductivity (~10-9 Scm-1) [5] and ion conductivity (8.8 10-8
 Scm-1

 at 27℃) 

[6] make it difficult to exhibit Li+ insertion/extraction. On the other hand, there is no 

suitable 5 V electrolyte matching with its high operating voltage, which is the essential 
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reason for the fast capacity fading. Both causes lead to poor electrochemical performance 

and short service life of the pristine LiCoPO4. In order to optimize the performance of 

LiCoPO4, particle size reduction [7, 8], carbon coating [9-12] and cation doping on the 

Co site [13, 14] have been adopted to improve the initial discharge capacity and rate 

capability. The addition of conductive compounds or polymers can shrink the transport 

path length of Li ion, increase the electronic conductivity and modify the surface of pure 

LiCoPO4 [15]. Moreover, a uniform and compact carbon network layer which can prevent 

direct contact between the active mass and HF in the electrolyte is critical for the cathode 

material. 

In this paper, a novel double carbon layers coated LiCoPO4 is designed, where 

carbon is the first layer to make the conductive carbon adhere tightly on the surface of 

LiCoPO4, the polyacene (PAS) or acetylene black (AB) is the second layer coating on the 

inner carbon layer to enhance the electronic conductivity of LiCoPO4. In addition, the 

outer carbon layer can prevent the spalling of the first carbon layer and avoid partial 

irreversible structure changes during its charging and discharging process, thus extending 

the cycle life.  

 
 
Experimental 
 

LiCoPO4 samples were prepared by the solid-state sintering method, in which the 

precursors (Li3PO4 and Co3(PO4)2·8H2O) were prepared via a co-precipitation route using 

a micro reactor followed by stirring at 60 ℃ for 1 h. The processing procedure of the 

precursor (Li3PO4 and Co3(PO4)2) and bare LiCoPO4 (LCP) were described in our 

previous paper [16]. 

  For single carbon coated samples, the precursor LC-1 (nLi:nCo = 2:1 in the 

reactant) was mixed with 3 wt% acetylene black, 5 wt% phenol–formaldehyde resins or 

10 wt% glucose using a planetary milling machine. The obtained mixture was calcined at 

650 ℃ for 10h in an Ar/H2 (5%) atmosphere to generate materials LCP/C, labelled as 

LCP/AB, LCP/PAS and LCP/C, respectively. 

  In order to get the double carbon coated LiCoPO4 composites, the dried precursor 

was ball-milled with 10 wt% glucose for 5 h in ethanol. Then the samples were dried to 

evaporate ethanol and heated at 350 ℃ for 5 h to synthesize the glucose coated 

composites. The obtained composite was ball-milled with 1 wt% acetylene black for 5 h. 

Then the above mixture was calcined at 650 ℃ for 10 h in Ar/H2 (5%) to generate 

LCP/C@AB. In the similar procedure, the LCP/C@PAS composites are obtained by 

substituting acetylene black with 3 wt% phenol–formaldehyde resin. 

  The crystal structure of synthesized materials was evaluated by powder X-ray 

diffraction (XRD, Model X’TRA, Thermo Electron, USA). The morphology and 

microstructure features were studied by using a field emission scanning electron 

microscope (FESEM, JSM-6700F, JEOL, Japan) and a transmission electron microscope 

(TEM, JEM-1010, JEOL, Japan). 

  For electrochemical performance testing, the cathode was prepared by coating a 

slurry of 7 active material, carbon black and PVDF with 75:15:10 wt% on aluminium 

foil, using N-methylpyrrolidone (NMP) as solvent, followed by vacuum-dried at 120℃ 

for 12h. The cathode electrode was characterized with CR2032 coin cells assembled in an 

argon-filled glove box. An electrochemical 2032 coin cell consisted of an active material 

as the cathode, lithium foil as the counter electrode, 1 M LiPF6 in a 1:1 (by vol) mixture 
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of dimethyl carbonate (DMC) and ethylene carbonate (EC) as the electrolyte, and celgard 

2400 as the separator. The galvanostatic cycling profiles of the cells were recorded at 

different current densities between 3.0 V-5.0 V under room temperature. The 

electrochemical impedance spectroscopy of these cells was also tested with an 

electrochemical workstation (CHI650D, Shanghai Chenhua Instrument Co., Ltd., China) 

in the frequency ranging from 0.1 Hz to 1 M Hz. 

 

 
Results and Discussion 
 

 Fig.1 shows the XRD patterns of the LCP samples synthesized by using LC-1 as 

the precursor. Like LCP-1 in the previous study, the characteristic peaks of carbon and 

Li3PO4 were not detected in LCP/C, LCP/C@PAS and LCP/C@AB composite, all peaks 

were consistent with LiCoPO4 [JCPDS#32-0552]. The refined lattice parameters and 

crystallite sizes for the as-obtained products are summarized in Table 1. The estimated 

crystallite size of LCP-1 is much larger than those of carbon coated samples, indicating 

that the carbon can prevent the growth of LiCoPO4 particles efficiently. In addition, the 

parameters of LCP/C@PAS and LCP/C@AB are smaller than those of LCP/C, 

demonstrating that the growth of LiCoPO4 crystallite is highly inhibited by residual 

carbon particles degraded from double carbon sources. 
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Fig. 1. XRD patterns of LiCoPO4 composite samples 
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Table 1. The refined lattice parameters and crystallite sizes of LCP, LCP/C, 

LCP/G@PAS and LCP/G@AB 

Sample name A(Å) b(Å) c(Å) V(Å) Crystal size(nm) 

LCP-1 5.9235 10.2132 4.7003 284.35 50.8796 

LCP/C 10.2132 5.9235 4.7003 284.3582 49.8796 

LCP/PAS 5.9235 10.2027 4.6992 283.99 48.8717 

LCP/AB 10.2015 5.9131 4.6991 283.4614 47.9743 

LCP/C@PAS 5.9274 10.1856 4.6220 279.05 41.3464 

LCP/C@AB 5.9124 10.2026 4.6873 282.75 40.9086 

 

 

Fig. 2. SEM and TEM images of LCP/G, LCP/PAS and LCP/AB 
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The SEM and TEM images in Fig. 2 show the size, morphologies and carbon 

layer distribution of LCP/AB, LCP/C and LCP/PAS. The diameter scattering of LCP/G 

and LCP/PAS particles with slight agglomeration was uniform, in the range of 100-150 

nm. The carbon pyrolyzed from organic glucose and phenol formaldehyde resin were 

different. For LCP/C, the carbon layer was coated on the LiCoPO4 particles more tightly. 

The conductive polymer PAS layer had an increased thickness and presented a loose 

layer. Larger particles around 150 μm in size were formed in LCP/AB, and the floc-like 

pyrolytic products of acetylene black were dispersed among LCP particles, which may 

promote electronic conduction. 
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Fig. 3. Charge and discharge curves (a) and cycle performances of single carbon coated 
LiCoPO4 composites at 0.1C (b) 
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Fig. 3 presents the electrical performance of single carbon coated LiCoPO4 

composites at 0.1C rate. Fig. 3a shows that the LiCoPO4/C, LiCoPO4/PAS, LiCoPO4/AB 

owned a reversible capacity of 120.92, 121.07 and 138.06 mAh g-1, respectively. 

Although LCP/AB presents the highest initial capacity, its capacity fading was very 

pronounced with a progressive decrease to 21.9 mAhg-1
 in the 30th cycle. A better 

performance was achieved by glucose and phenol–formaldehyde resins pyrolytic 

carbonization. The LCP/G and LCP/PAS composites showed a similar capacity and 

capacity retention, which were 120.9 mAhg-1, 3.7% and 121.1 mAhg-1, 33.2%, 

respectively. The capacity curve of sample LCP/C dropped more sharply in the first 10 

cycles. The carbon layer produced from pyrolysis of organic glucose and phenol–

formaldehyde resins was more homogeneous and coated on the entire particle surface. 

The carbon decomposed by organic carbon, especially organic polymers was dispersed at 

the atomic level in the reaction system, which realized the uniform coating on the 

synthesized products and formed an interconnected conductive carbon film enhancing the 

structural stability, resulting in better cyclic performance. 

Fig. 4 presents the TEM images of double carbon coated LiCoPO4 samples. It is 

worth noting that the particle size of double carbon coated LiCoPO4 was about 150 nm, 

which is smaller than those of LCP/C (200 nm on average). In the TEM photographs, it is 

found that the LiCoPO4 particles were wrapped by two carbon layers. And the TEM 

images also exhibited the thickness and the boundary of the carbon layer on the surface 

of LiCoPO4. The distribution of the carbon layer was related to the carbon source 

additives. In the case of LCP/C@PAS, the TEM images exhibited visually the LiCoPO4 

with hierarchical conductive architecture which consisted of 1.59 nm inner residual 

carbon layer and 1 nm outer polyacene polymer layer. But the outer polyacene layer 

distributeed unevenly. The sample LCP/C@AB presented a ~2 nm thick inner residual 

carbon layer and a 2.41 nm thick acetylene black outer layer. Although the carbon layer 

of LCP/C@AB was thicker than LCP/C@PAS, the outer layer was well-distributed. 
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Fig. 4. TEM images of LCP/C@AB (a, b, c) and LCP/C@PAS (d,e,f) 

 
  The first charge and discharge curves of LCP/C@AB and LCP/C@PAS at 0.1C 

rate in the voltage of 3.0-5.0 V at room temperature are shown in Fig. 5. The second 

discharge capacity of LCP/C@PAS and LCP/C@AB were 134.79 and 138.78 mAhg-1, 

respectively, which were higher than previous samples except LCP-3. All the charge 

curves displayed two obvious charge plateaus (one at about 4.8 V and the other at about 

4.9 V) in the aspect of discharge profiles, and the quite different discharge behavior 

(shape of curve and evolution of voltage plateau) should be noted. A discharge plateau at 

~4.8 V was obvious for LCP/C@PAS, while the LCP/C@AB showed a discharge plateau 

at 4.6 V. The discharge voltage of the active material fell sharply to the cut-off voltage 

(3.0 V), indicating a greater polarization. The LCP/C@AB exhibited a reversible specific 

capacity of 147.12 mAhg-1 which was down to 59.5% and 11.9% after 15 cycles and 50 

cycles, respectively. The LCP/C@PAS exhibited a reversible specific capacity of 

143.51mAhg-1 which was down to 61.7% after 15 cycles and remained up to 21.6% after 

50 cycles. Compared with the samples of LCP/G, LCP/AB, LCP/PAS and LCP/G@AB, 

LCP/G@PAS showed a much better cyclability, which are mainly attributed to the 

synergistic effect of double carbon. On the one hand, the double carbon can more 

uniformly and finely refine the crystal particles, thereby shortening the length of the 

lithium ion transmission path, increasing the conductivity and modifying the surface of 

LiCoPO4. On the other hand, the outer carbon layer can make the inner carbon layer more 

closely contact the active material, prevent the active material from directly contacting 

HF in the electrolyte, and prevent the inner layer from spalling during the charge and 

discharge process. 
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Fig. 5. Charge and discharge curves of double carbon coated LiCoPO4 composite (a); Cycle 
performances of double carbon coated LiCoPO4 composite at 0.1C (b) 
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Fig. 6. Nyquist plots of the cells using LiCoPO4 samples synthetized with different carbon 
sources. 

 

Fig.6 presents the EIS impedance curves of the LCP and LCP/AB and double 

carbon coated samples LiCoPO4/G@PAS and LiCoPO4/G@AB at fully charged state 

after one cycle. The total impedance of the sample was mainly induced by the charge-

transfer impedance between the electrolyte and the electrode interface, which could be 

assigned by the diameter of the semicircle in the curve. The diameter of the semicircle of 

the double carbon coated LiCoPO4 was significantly smaller than that of pure LCP and 

single carbon coated LCP, and the impedance of the sample LCP/G@AB is the smallest. 

The small charge-transfer impedance of LCP/G@AB is attributed to the finer particles 

and the more stable architecture of double conducting layers, which benefits to its 

electrochemistry property distinctly, in accordance with its larger capacity. 

 

 
CONCLUSIONS 
 

 In summary, the pyrolytic carbon coated LiCoPO4 composites were synthesized 

by a micro-reactor assisted co-precipitation and then through a single/double carbon 

source coating route. LiCoPO4/AB presented the largest initial discharge capacity of 

138.06 mAhg-1 among all single carbon coated LiCoPO4 samples which could ascribe to 

the floc-like acetylene distributed in the LCP particles, thereby ameliorating the 

conductivity. And the discharge capacity and cyclability were further improved by 

glucose/AB and glucose/PAS coating, with initial capacities of 147.12 and 143.51 

mAhg-1, respectively. The longer cycle life of the LiCoPO4/G@PAS sample can be 

ascribed to the finer particles and the more stable architecture of double conducting 

layers. The facile routine reported herein may be extended to prolong the cycle life of 

other electrode materials.  
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