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Βig data that overwhelm smart grid (SG) are susceptible to errors that 
can further affect business analytics and related human decisions. In [1], 
the impact of measurement differences that follow various distributions 
has been examined via initial Statistical Hybrid Model (iSHM) footprints 
while the mitigation impact of piecewise monotonic data approximations 
has been qualitatively assessed via corresponding iSHM footprints in [2]. 
In this companion paper, the potential of applying piecewise monotonic 
data approximations in the intrinsic procedure of iSHM rather than its 
inputs and the quantitative mitigation analysis of piecewise monotonic 
data approximations against measurement differences via iSHM 
footprints are proposed for the overhead low-voltage broadband over 
power lines (OV LV BPL) topologies.  
 
 

Keywords: Smart Grid; Broadband over Power Lines (BPL) networks; Power Line Communications 

(PLC); Distribution and Transmission Power Grids; Capacity, Statistics; Business Analytics; IT; Modeling 

 

 

  



 

Peer-Reviewed Article   Trends in Renewable Energy, 6 

 

 

Tr Ren Energy, 2020, Vol.6, No.2, 214-233. doi: 10.17737/tre.2020.6.2.00119 215 

 

Nomenclature 

APDmd Average Percent Distance computation of 

the Measurement Differences 

APDna Average Percent Distance computation of 

the New Aspect  

APDta Average Percent Distance computation of 

the Traditional Aspect  

BPL Broadband over Power Lines 

BPMN Business Process Model and Notation 

CASD Channel Attenuation Statistical 

Distribution 

CUD Continuous Uniform Distribution 

DHM deterministic hybrid model 

EMI ElectroMagnetic Interference 

IP  Internet Protocol 

IT Information Technology 

iSHM initial Statistical Hybrid Model 

LOS Line-of-Sight 

LV Low Voltage 

L1PMA L1 Piecewise Monotonic Approximation 

L2WPMA L2 Weighted Piecewise Monotonic 

Approximation 

MLE Maximum Likelihood Estimator 

MTL Multiconductor Transmission Line 

ND Normal Distribution 

OV Overhead 

SG Smart Grid 

TL Transmission Line 

WtG Wire-to-Ground 
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1. Introduction 
 

BPL technology is among the communications proposals that are going to 

transform the vintage power grid into an advanced IP-based communications network 

enhanced with a plethora of broadband applications and business analytics, the so called 

SG [1]-[8]. The main advantage of SG is the reception of a plethora of data concerning 

the metering, monitoring and controlling of its infrastructure and equipment thus 

allowing the authorized personnel and customers to take decisions that further affect the 

SG operation. It is evident that right decisions urge reliable data and towards that 

direction piecewise monotonic data approximations contribute to the restoration of the 

contaminated data by measurement differences in OV LV BPL networks [1], [7],  

[9]-[11]. 

In this paper, it is already known that measurement differences are observed 

between the experimental and theoretical results during the transfer function 

determination of OV LV BPL topologies and are due to a number of practical reasons 

and “real-life” difficulties. Actually, coupling scheme transfer function determination 

occurs in the well-validated DHM that is the introductory core element of the recently 

proposed and here applied iSHM that is deployed for the statistical broadband channel 

description of OV LV BPL topologies [12]-[20]. Business analytics of SG exploit a 

plethora of related broadband iSHM tools, such as the definition procedure, the class 

maps and the iSHM footprints whose results are critically affected by the coupling 

scheme transfer function data of DHM. More specifically, it has been shown in [1] that 

the behavior of iSHM footprints due to the measurement differences of the OV LV BPL 

networks may be sensitive even to low intensities of measurement differences.  

In accordance with [1], when high measurement differences occur the broadband iSHM 

tools, such as the topology identification technique and the energy theft detection via 

iSHM footprint, can be totally jammed thus influencing the quality of business analytics 

of the SG and the supported human decisions. To enhance the reliability of SG data, 

piecewise monotonic data approximations, such as L1PMA and L2WPMA, have been 

deployed against the measurement differences while their qualitative evaluation was done 

via the respective L1PMA and L2WPMA iSHM footprints in [2]. Indeed, L1PMA and 

L2WPMA can achieve significant measurement difference restoration concerning the 

extent and the distance of iSHM footprints from the theoretical Weibull CASD MLEs of 

the real indicative OV LV BPL urban case A. Note that the qualitative methodology of 

[2] examined the degree of shrinkage and stress of the iSHM footprints due to 

measurement differences by the applied piecewise monotonic data approximations 

towards the theoretical Weibull CASD MLEs of the real indicative OV LV BPL urban 

case A. 

In this paper, first, a new aspect concerning the location of the application of 

piecewise monotonic data approximations inside the iSHM operation flowchart is 

proposed. Until now, piecewise monotonic data approximations have been applied right 

after the application of DHM to the coupling scheme transfer function data of the 

examined OV LV BPL topologies in order to suppress the measurement difference 

contamination at that location [7], [9], [21]-[28]. Since the result of the multipath 

aggravation of OV LV BPL topologies can be treated as a superposition of spectral 

notches of various depths and extents onto the coupling scheme transfer function of the 

OV LV BPL “LOS” case [14], [17], [29], piecewise monotonic data approximations can 

alternatively focus on the output results of the coupling scheme channel attenuation 
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difference module Δ of iSHM that is anyway an internal iSHM procedure;  

the coupling scheme channel attenuation difference module Δ of iSHM gives as output 

the coupling scheme channel attenuation difference between each examined OV LV BPL 

topology and the OV LV BPL “LOS” case thus providing more uncorrelated data in 

comparison with the ones of the traditional aspect. The unbiased data of the coupling 

scheme channel attenuation difference module Δ of iSHM can be proven valuable for a 

more efficient application of piecewise monotonic data approximations under certain 

conditions [30]-[33].  

Second, a quantitative methodology is proposed in this paper so that the 

assessment of the mitigation efficiency of piecewise monotonic data approximations 

against measurement differences can be feasible on the basis of the iSHM footprints of 

[2]. During the qualitative evaluation of L1PMA and L2WPMA in [2], it was clear that 

the critical intrinsic parameters of piecewise monotonic data approximations, such as 

L1PMA monotonic sections and L2WPMA sign changes, mainly affect the performance 

of piecewise monotonic data approximations against the measurement differences.  

The selection of the optimal numbers of L1PMA monotonic sections and L2WPMA sign 

changes has been made on the basis of the visual proximity of the respective L1PMA and 

L2WPMA iSHM footprints to the theoretical Weibull CASD MLEs for given real 

indicative OV LV BPL topology (say, real indicative OV LV BPL urban case A in [2]). 

Here, the evolution of the qualitative evaluation of the proximity is the proposal of a 

quantitative methodology that can compute the average distances of the piecewise 

monotonic data approximation iSHM footprints and iSHM footprints due to measurement 

differences and hence defines the critical intrinsic parameters of the piecewise monotonic 

data approximations by comparing and by sorting the gathered distances. Also, the new 

aspect, which is proposed in this paper, concerning the application of piecewise 

monotonic data approximations to the results of the coupling scheme channel attenuation 

difference module Δ of iSHM is also benchmarked through the new quantitative 

methodology. 

 The rest of this paper is organized as follows: Section II presents the mathematics 

of the new aspect regarding the application of piecewise monotonic data approximations 

to the results of the coupling scheme channel attenuation difference module Δ of iSHM. 

In Section III, the new quantitative methodology concerning the assessment of the 

mitigation efficiency of piecewise monotonic data approximations against measurement 

differences via iSHM footprints is presented. Section IV presents numerical results 

related with the application of the quantitative methodology and the new aspect of 

piecewise monotonic data approximation application location. Section V concludes this 

paper.  

 

 

2. New Aspect of Application for the Piecewise Monotonic Data 
Approximations against Measurement Differences 
 

 With reference to the BPMN diagram of iSHM [34], iSHM consists of six Phases 

(i.e., Phase A-F) while each Phase is clearly described by its procedure as well as its 

inputs and outputs. With reference to this BPMN diagram, Phase A consists of DHM that 

takes as inputs the examined real indicative OV LV BPL topology, the respective 

distribution MTL configuration and the applied coupling scheme while DHM results are 

the output of Phase A that is the theoretical coupling scheme transfer function 
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𝐻OVLV,𝐶 (𝑓𝑞), q=1,…,Q when measurement differences are not assumed where  C  denotes 

the applied coupling scheme, 𝑓𝑞 is the flat-fading subchannel start frequency and 𝑄 is the 

number of subchannels in the examined frequency range. When measurement differences 

are assumed during the preparation of iSHM footprints as in [1], [2], the measurement 

differences are treated as distributions; say, CUD of variable maximum value aCUD. After 

the measurement difference consideration, the output of Phase A, which is afterwards 

exploited by the iSHM footprints, is the measured coupling scheme transfer function that 

is given by [1], [5], [35] 

𝐻𝑑1,𝑑2,𝑖
OVLV,𝐶,𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑓𝑞) = 𝐻OVLV,𝐶(𝑓𝑞) + 𝑒𝑑1,𝑑2,𝑖

𝐷 (𝑓𝑞), q=1,…,Q, 𝑖 = 1, … , 𝐼                (1) 

where [∙]𝐷  denotes the applied measurement difference distribution –i.e., CUD of this 

paper in accordance with [2]–, d1 is the first parameter of the applied measurement 

difference distribution (i.e., the minimum value −𝑎CUD  of CUD), d2 is the second 

parameter of the applied measurement difference distribution (i.e., the maximum value 

𝑎CUD  of CUD), 𝑒𝑑1,𝑑2,𝑖
𝐷 (𝑓𝑞)  is the measurement difference at frequency 𝑓𝑞  for given 

measurement difference distribution and I is the number of different 1 × 𝑄 line vectors of 

measurement differences per applied measurement difference distribution, first and 

second parameter. Until now and during the preparation of iSHM footprints of [1], [2], 

piecewise monotonic data approximations are applied to the measured coupling scheme 

transfer function of eq. (1) having as a result the approximated coupling scheme transfer 

function that is given by 

𝐻𝑑1,𝑑2,𝑖
OVLV,𝐶,𝐷,𝑃̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿(𝑓𝑞) = 𝑃{𝐻𝑑1,𝑑2,𝑖

OVLV,𝐶,𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑓𝑞)}, q=1,…,Q, 𝑖 = 1, … , 𝐼          (2) 

where  P
  denotes the applied piecewise monotonic data approximation, say L1PMA or 

L2WPMA in this paper, and 𝑃{∙}  synopsizes the procedure of the applied piecewise 

monotonic data approximation. Therefore, the application of piecewise monotonic data 

approximations is concentrated in the Phase A of the BPMN diagram of iSHM while the 

results of the remaining Phases, which are illustrated as I L1PMA cyan squares or I 

L2WPMA magenta triangles on iSHM footprints of [2], are based on the approximated 

coupling scheme transfer function data.  

 In this paper, an application aspect of piecewise monotonic data approximations is 

proposed that has to do with the location of the application of piecewise monotonic data 

approximations across the Phases of the BPMN diagram of iSHM [34]. Conversely to the 

traditional case where piecewise monotonic data approximations are applied to the output 

results of the Phase A (say, the results of DHM), the new aspect of application suggests 

that the piecewise monotonic data approximations should be applied to the results of 

Phase B of the BPMN diagram of iSHM during the preparation of the iSHM footprints. 

More specifically, Phase B of the BPMN diagram should receive as input the output of 

the Phase A that is the measured coupling scheme transfer function 𝐻𝑑1,𝑑2,𝑖
OVLV,𝐶,𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑓𝑞) given by 

eq. (1). Phase B consists of the coupling scheme channel attenuation difference module Δ 

that computes the measured channel attenuation difference ΔΑ𝑖
G,C̅̅ ̅̅ ̅̅ ̅ (𝑓𝑞)  between the 

measured coupling scheme transfer function of the examined real indicative OV LV BPL 

topology, say, the real indicative OV LV BPL urban case A in this paper, and the 

theoretical coupling scheme transfer function of the OV LV BPL “LOS” case, namely 

ΔΑ𝑖
G,C̅̅ ̅̅ ̅̅ ̅ (𝑓𝑞)  = − [𝐻𝑑1,𝑑2,𝑖

OVLV,𝐶,𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(𝑓𝑞) − 𝐻"LOS" case

OVLV,𝐶 (𝑓𝑞)], q=1,…,Q, 𝑖 = 1, … , 𝐼               (3) 

Note that the coupling scheme channel attenuation difference of eq. (3) always remains 

greater or equal to zero [34]. During the preparation of similar iSHM footprints of [1], [2] 
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with the new aspect, piecewise monotonic data approximations are applied to the 

measured channel attenuation difference of eq. (3) having as a result the approximated 

channel attenuation difference given by 

ΔΑ𝑖
G,C̿̿ ̿̿ ̿̿ (𝑓𝑞) = 𝑃{ΔΑ𝑖

G,C̅̅ ̅̅ ̅̅ (𝑓𝑞)}, q=1,…,Q, 𝑖 = 1, … , 𝐼             (4) 

Therefore, the application of piecewise monotonic data approximations during the new 

aspect leaves the results of the Phase A untouched whereas it focuses on the Phase Β of 

the BPMN diagram of iSHM. Similarly to the traditional aspect, the results of the 

remaining Phases, which are based on the approximated channel attenuation difference 

data, are going to be illustrated as I L1PMA cyan squares or I L2WPMA magenta 

triangles on similar iSHM footprints to the ones of [2]. 

 

 

3. New Quantitative Methodology for Assessing the Mitigation Efficiency of 
Piecewise Monotonic Data Approximations against Measurement 
Differences via iSHM Footprints 
 

 In accordance with the BPMN diagram of iSHM [18] and during the preparation 

of iSHM footprints, Phase C computes all the related iSHM Weibull CASD MLEs of the 

examined real indicative OV LV BPL topology, namely either for the theoretical 

coupling scheme channel attenuation difference (i.e, 𝑎̂MLE,theor
Weibull  and 𝛽̂MLE,theor

Weibull ) or the 

measured coupling scheme channel attenuation difference per measurement difference 

line vector i of eq. (3) (i.e, 𝑎̂MLE,meas,𝑖
Weibull  and 𝛽̂MLE,meas,𝑖

Weibull ) or the approximated coupling 

scheme channel attenuation difference per measurement difference line vector i via the 

traditional aspect for given number of monotonic sections (or sign changes) (i.e, 

𝑎̂MLE,approx,trad,𝑖
Weibull  and 𝛽̂MLE,approx,trad,𝑖

Weibull ) or the approximated coupling scheme channel 

attenuation difference per measurement difference line vector i via the new aspect of eq. 

(4) for given number of L1PMA monotonic sections (or L2WPMA sign changes) (i.e, 

𝑎̂MLE,approx,new,𝑖
Weibull  and 𝛽̂MLE,approx,new,𝑖

Weibull ). In accordance with [36]-[38], the iSHM class 

map of OV LV BPL topologies, which acts as the graphical basis for the demonstration 

of all the kinds of iSHM footprints, is plotted in Fig. 1 of [2] with respect to 𝑎̂MLE
Weibull, 

𝛽̂MLE
Weibull  and the average capacity of each OV LV BPL topology subclass when the 

default operation settings of [1], [34] and the modified BPL frequency range settings of 

[2] are assumed. Through the prism of iSHM footprints, the effect of measurement 

differences and the countermeasures of piecewise monotonic data approximations against 

the measurement differences have been illustrated in Figs. 2-7 of [2]. The qualitative 

assessment of piecewise monotonic data approximations via iSHM footprints has 

revealed their strong potential against measurement differences while the selection of the 

critical parameters of the numbers of L1PMA monotonic sections or L2WPMA sign 

changes can be made by visually assessing the proximity of the I Weibull CASD MLEs 

of their approximated coupling scheme transfer function data with respect to the 

theoretical Weibull CASD MLEs for given real indicative OV LV BPL topology. 

 In this paper, a quantitative methodology is proposed that benchmarks the 

measurement difference mitigation efficiency of piecewise monotonic data 

approximations in terms of the average percent distance of the I Weibull CASD MLEs of 

the approximated coupling scheme transfer function data with respect to the theoretical 

Weibull CASD MLEs for given real indicative OV LV BPL topology. To apply the new 
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quantitative methodology with respect to iSHM footprints and to finally select the critical 

intrinsic parameters of the piecewise monotonic data approximations (i.e., the number of 

L1PMA monotonic sections and L2WPMA sign changes) that perform the best 

measurement difference mitigation, the following steps should be followed, namely: 

1. APDmd: Given the real indicative OV LV BPL topology and I measurement 

difference line vectors of the same intensity (i.e., of the same maximum value 

𝑎CUD in this paper), the average percent distance of the measurement differences 

from the theoretical Weibull CASD MLEs is given by: 

𝐴𝑃𝐷𝑚𝑑 = 100% ∙

∑ √(
𝑎̂MLE,meas,𝑖

Weibull −𝑎̂MLE,theor
Weibull

𝑎̂MLE,theor
Weibull

)

2

+(
𝛽̂MLE,meas,𝑖

Weibull −𝛽̂MLE,theor
Weibull

𝛽̂MLE,theor
Weibull

)

2

𝐼
𝑖=1

𝐼
             (5) 

This step is necessary because it evaluates the initial condition and defines the 

goal of all the iSHM footprints of the applied piecewise monotonic data 

approximations. Any countermeasures implemented should present average 

percent distances lower than the average percent distance of the measurement 

differences of eq. (5) so that these countermeasures are considered effective. 

2. APDta: Given the real indicative OV LV BPL topology, I measurement difference 

line vectors of the same intensity and the number of L1PMA monotonic sections 

(or L2WPMA sign changes), the average percent distance of the approximated 

data of the traditional aspect from the theoretical Weibull CASD MLEs is given 

by: 

𝐴𝑃𝐷𝑡𝑎 = 100% ∙

∑ √(
𝑎̂MLE,approx,trad,𝑖

Weibull −𝑎̂MLE,theor
Weibull

𝑎̂MLE,theor
Weibull )

2

+(
𝛽̂MLE,approx,trad,𝑖

Weibull −𝛽̂MLE,theor
Weibull

𝛽̂MLE,theor
Weibull )

2

𝐼
𝑖=1

𝐼
     (6) 

3. APDna: Similarly to APDta, given the real indicative OV LV BPL topology,  

I measurement difference line vectors of the same intensity and the number of 

L1PMA monotonic sections (or L2WPMA sign changes), the average percent 

distance between the approximated data of the new aspect and the theoretical 

Weibull CASD MLEs is given by: 

𝐴𝑃𝐷𝑛𝑎 = 100% ∙

∑ √(
𝑎̂MLE,approx,new,𝑖

Weibull −𝑎̂MLE,theor
Weibull

𝑎̂MLE,theor
Weibull )

2

+(
𝛽̂MLE,approx,new,𝑖

Weibull −𝛽̂MLE,theor
Weibull

𝛽̂MLE,theor
Weibull )

2

𝐼
𝑖=1

𝐼
     (7) 

With reference to eqs. (5)-(7), it is obvious that interesting quantitative findings 

are going to be deduced in Sec. 4 where average percent distance comparisons can reveal: 

(i) the contamination degree due to the increasing measurement differences;  

(ii) the mitigation efficiency of the traditional aspect of the application of piecewise 

monotonic data approximations; (iii) the mitigation efficiency of the new aspect of the 

application of piecewise monotonic data approximations; and (iv) a benchmark 

comparison between the traditional aspect and the new one.  

 

 

4. Numerical Results and Discussion 
 

 In this Section, numerical results that quantitatively assess the mitigation 

efficiency of piecewise monotonic data approximations against measurement differences 

on iSHM footprints of OV LV BPL topologies are first presented. On the basis of the 
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proposed quantitative assessment, the new methodology of the average percent distance 

is going to be tested while this new methodology will assess L1PMA and L2WPMA for 

both aspects of application (i.e., either the traditional aspect or the new one). Similarly to 

[2], the countermeasures effect of L1PMA and L2WPMA of the traditional and new 

aspects is quantitatively benchmarked for given intensity of the measurement difference 

CUD while the impact of the number of L1PMA monotonic sections and the L2WPMA 

sign changes is here quantitatively assessed with respect to the mitigation of 

measurement differences. Similarly to [2], only the real indicative OV LV BPL urban 

case A is examined and 100 measurement difference line vector (i.e., I=100) are applied. 

 

4.1 iSHM Footprints due to Measurement Differences and the Countermeasures 
of Piecewise Monotonic Data Approximations (Traditional Aspect vs New Aspect) 
 As already been mentioned, the iSHM class map of OV LV BPL topologies, 

which is depicted in [36]-[38], acts as the graphical basis for the demonstration of the 

various iSHM footprints and is shown in Fig. 1. Similarly to [2], the iSHM footprint due 

to measurement differences of the arbitrary 5dB maximum value 𝑎CUD  for the real 

indicative OV LV BPL urban case A is also depicted in Fig. 1 as superimposed white 

circles on the iSHM class map as well as the iSHM footprint due to the application of 

L1PMA of the traditional aspect against the aforementioned measurement differences is 

shown as superimposed cyan squares when 4 monotonic sections are assumed. In Fig. 2, 

similar figure with Fig. 1 is plotted but for the case of L2WPMA of the traditional aspect 

when 4 sign changes are applied and superimposed magenta triangles are shown instead 

of cyan squares. Note that Figs. 1 and 2 are the same with Figs. 2 and 3 of [2] for:  

(i) comparison reasons between the traditional and the new aspect; and  

(ii) the demonstration of the proposed quantitative analysis. In Figs. 3 and 4, same plots 

with the respective Figs. 1 and 2 but for the new aspect. Here, it should be reminded that 

an iSHM footprint due to zero measurement differences consists of I white circles that all 

circles coincide at the theoretical values 𝑎̂MLE,theor
Weibull  and 𝛽̂MLE,theor

Weibull  of the real indicative 

OV LV BPL urban case A that is the optimum case and the iSHM footprint goal of the 

application of piecewise monotonic data approximations.  

By comparing iSHM footprints of Figs 1-4, each iSHM footprint due to 

measurement differences consists of 100 white circles forming a segmented white region 

that starts from the theoretical values 𝑎̂MLE,theor
Weibull  and 𝛽̂MLE,theor

Weibull  of the real indicative OV 

LV BPL urban case A where each white circle corresponds to one measurement 

difference line vector. Regardless of the applied aspect, each cyan square and  

each magenta triangle is the graphical approximation result on the iSHM footprint for 

each white circle when L1PMA and L2WPMA are applied, respectively.  

In accordance with [2], the qualitative approximation success of L1PMA and 

L2WPMA has been evaluated by the upper right shift of the respective iSHM footprints 

towards the theoretical values 𝑎̂MLE,theor
Weibull  and 𝛽̂MLE,theor

Weibull  of the real indicative OV LV 

BPL urban case A. Although the mitigation of measurement differences is clear after the 

application of the piecewise monotonic data approximations of both aspects,  

the qualitative assessment is not enough to recognize which of the iSHM footprints 

achieves the best mitigation. The quantitative methodology of Sec.3 can offer the 

required metrics to carefully benchmark the iSHM footprints after the application of 

piecewise monotonic data approximations and aspects of Figs. 1-4. The benchmark 

results of L1PMA and L2WPMA when traditional and new aspects are applied are 
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reported in Table 1 after the application of the quantitative methodology of Sec. 3 to  

Figs. 1-4.  

 

 

 
Fig. 1.  iSHM footprints of the real indicative OV LV BPL urban case A when 3-30MHz frequency band, 

1MHz frequency subchannel spacing, WtG1 coupling scheme, FCC Part 15, CUD measurement differences 

of maximum value aCUD = 5dB (white circles) are assumed and L1PMA of the traditional aspect of  

4 monotonic sections (cyan squares) is applied [2].  

 

 
Fig. 2.  Same plot with Fig. 1 but for L2WPMA of the traditional aspect of 4 sign changes (magenta 

triangles) [2].  

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 6 

 

 

Tr Ren Energy, 2020, Vol.6, No.2, 214-233. doi: 10.17737/tre.2020.6.2.00119 223 

 

 
Fig. 3.  Same plot with Fig. 1 but for L1PMA of the new aspect of 4 monotonic sections (cyan squares).  

 

 
Fig. 4.  Same plot with Fig. 2 but for L2WPMA of the new aspect of 4 sign changes (magenta triangles).  
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Table 1 

Quantitative methodology benchmark results for L1PMA and L2WPMA when Traditional and  

New Aspects are Applied  

Number of  

L1PMA Monotonic Sections / 

L2WPMA Sign Changes 

 

 

Measurement 

Differences 

 

(maximum 

value 

𝒂𝐂𝐔𝐃=5dB) 

Traditional Aspect New Aspect 

 

 

L1PMA 

 

 

L2WPMA 

 

 

L1PMA 

 

 

L2WPMA 

𝑨𝑷𝑫𝒎𝒅 

(%) 

𝑨𝑷𝑫𝒕𝒂 

(%) 

𝑨𝑷𝑫𝒕𝒂 

(%) 

𝑨𝑷𝑫𝒏𝒂 

(%) 

𝑨𝑷𝑫𝒏𝒂 

(%) 

4 61.22 53.90 38.67 51.98 36.09 

 

 

 By comparing the benchmark results of Table 1 with Figs. 1-4, it is evident that 

L1PMA and L2WPMA achieve to mitigate the measurement differences regardless of the 

aspect applied. Both piecewise monotonic data approximations of this paper shift their 

iSHM footprints up right in comparison with the iSHM footprint due to measurement 

differences. Note that the approximated iSHM footprints now lie closer to the theoretical 

values 𝑎̂MLE,theor
Weibull  and 𝛽̂MLE,theor

Weibull  of the real indicative OV LV BPL urban case A in 

comparison with the iSHM footprints due to measurement differences. Numerically, 

APDmd of the assumed measurement differences is equal to 61.22% whilst the worst 

performance of piecewise monotonic data approximations is achieved by L1PMA of the 

traditional aspect with APDta that is equal to 53.90%. 

 As the traditional and new aspects are here benchmarked, it is clear that the 

piecewise monotonic data approximations of the new aspect better mitigate the 

measurement differences in comparison with the respective ones of the traditional aspect. 

Numerically, L1PMA of the traditional aspect presents higher APDta, which is equal to 

53.90%, in comparison with the APDna of L1PMA of the new aspect that is equal to 

51.98%. Similarly, L2WPMA of the traditional aspect presents higher APDta, which is 

equal to 38.67%, in comparison with the APDna of L2WPMA of the new aspect that is 

equal to 36.09%. Anyway, the previous numerical results can also be observed in the 

previous Figs. 1-4. Piecewise monotonic data approximations of the new aspect handle 

more unbiased data in comparison with ones of the traditional aspect since the coupling 

scheme transfer function of the OV LV BPL “LOS” case acts as a background noise for 

the coupling scheme transfer function of the other OV LV BPL topologies. When 4 

monotonic sections or sign changes are assumed, the best mitigation performance against 

measurement differences is achieved by L2WPMA of the new aspect.  

 From the previous analysis, it is evident that during the quantitative methodology 

there is no need for visually comparing the iSHM footprints due to the measurement 

differences and the iSHM footprints after the application of piecewise monotonic data 

approximations since APD metrics can securely allow the selection of the most suitable 

piecewise monotonic data approximation as well as its critical parameters for both 

aspects (i.e., L1PMA monotonic sections or L2WPMA sign changes). Since the 

qualitative analysis has been fulfilled in [2], only tables of APD metrics are presented 

hereafter in order to assess the performance of the various versions of the piecewise 

monotonic data approximations. In the following subsection, the selection of the 
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aforementioned critical parameters of piecewise monotonic data approximations is 

justified by the APD metrics and visually verified by Figs. 4(a)-(i) and 5(a)-(i) of [2]. 

 

4.2 The Quantitative Methodology for Defining the Number of L1PMA Monotonic 
Sections and L2WPMA Sign Changes 

 Already been identified in [2], [10], [26], [39], [40], the selection of the numbers 

of L1PMA monotonic sections and of L2WPMA sign changes has a significant impact on 

the mitigation performance of measurement differences. Also, this selection of the critical 

parameters of the piecewise monotonic data approximations can remain untouchable 

despite the different intensities of measurement differences applied with satisfactory 

performance unless adaptive techniques such those presented in [10], [11], [26], [39], 

[40] should be applied.  

 With reference to Figs. 4(a)-(i) and 5(a)-(i) of [2] as well as the proposed 

quantitative methodology of Sec. 3, APD metrics of: (i) the applied measurement 

differences of the arbitrary 6dB maximum value 𝑎CUD for the real indicative OV LV BPL 

urban case A; and (ii) the piecewise monotonic data approximations of both the aspects; 

are here reported in Table 2 when the numbers of L1PMA monotonic sections and 

L2WPMA sign changes range from 1 to 9. 

 From Table 2, several interesting remarks that agree with the visual findings of 

Figs. 4(a)-(i) and 5(a)-(i) of [2], can be pointed out, namely: 

• Depending on the number of L1PMA monotonic sections and  

L2WPMA sign changes, different mitigation performances can be observed 

among the available piecewise monotonic data approximations.  

The aforementioned result that is proven by the APD metrics of Table 2 has also 

been verified by the visual analysis of Figs. 4(a)-(i) and 5(a)-(i) of [2]. 

• As the application of L1PMA of the traditional aspect is concerned, its best 

mitigation performance with APDta of 38.48% is observed when one monotonic 

section is adopted. This APDta result is the best one among all the cases 

examined. Anyway, the same number of L1PMA monotonic sections has been 

verified for its mitigation performance by the visual examination of Figs. 4(a)-(i). 

As the number of monotonic sections increases so does APDta thus indicating that 

the relatively high intensity of measurement differences that is adopted in this 

subsection (i.e., maximum value 𝑎CUD of 6dB) requires the rough approximation 

provided by the assumption of 1 monotonic section. The overapproximation, 

which is defined in [2], occurs when the number of L1PMA monotonic sections 

of the traditional aspect is greater than 5 (i.e., black background cells of the third 

and fourth columns of Table 2). 

• As the application of L2WPMA of the traditional aspect is regarded, its best 

mitigation performance with APDta of 39.54% is observed when four or five sign 

changes are adopted. With reference to Fig. 5(e) of [2], the same number of 

L2WPMA sign changes has been validated for its mitigation performance by the 

visual examination. As the number of sign changes increases APDta first presents 

significant high values that are even higher than the respective APDmds (i.e., 

black background cells of the fifth and sixth columns of Table 2), second starts to 

decrease till 39.54% of four or five sign changes and then increases tending to  
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Table 2 

Quantitative methodology benchmark results for L1PMA and L2WPMA when Traditional and  

New Aspects are Applied for various Numbers of L1PMA Monotonic Sections and  

L2WPMA Sign Changes 

Number of  

L1PMA Monotonic Sections / 

L2WPMA Sign Changes 

 

 

Measurement 

Differences 

 

(maximum 

value 

𝒂𝐂𝐔𝐃=6dB) 

Traditional Aspect New Aspect 

 

 

L1PMA 

 

 

L2WPMA 

 

 

L1PMA 

 

 

L2WPMA 

𝑨𝑷𝑫𝒎𝒅 

(%) 

𝑨𝑷𝑫𝒕𝒂 

(%) 

Reference 

Figure of 

[2] 

𝑨𝑷𝑫𝒕𝒂 

(%) 

Reference 

Figure of 

[2] 

𝑨𝑷𝑫𝒏𝒂 

(%) 

𝑨𝑷𝑫𝒏𝒂 

(%) 

1  

 

 

 

 

68.63 

38.48 Fig. 4(a) 111.58 Fig. 5(a) 40.19 118.94 

2 45.98 Fig. 4(b) 99.64 Fig. 5(b) 44.01 106.67 

3 57.67 Fig. 4(c) 51.58 Fig. 5(c) 55.63 45.94 

4 58.17 Fig. 4(d) 39.54 Fig. 5(d) 55.95 39.37 

5 62.04 Fig. 4(e) 39.54 Fig. 5(e) 59.57 39.37 

6 69.46 Fig. 4(f) 46.25 Fig. 5(f) 68.06 39.69 

7 69.51 Fig. 4(g) 46.25 Fig. 5(g) 68.11 39.69 

8 71.46 Fig. 4(h) 55.15 Fig. 5(h) 70.94 46.72 

9 71.46 Fig. 4(i) 55.15 Fig. 5(i) 70.94 46.72 

 

 

a state of overapproximation. In contrast with L1PMA of the traditional aspect, 

L2WPMA tends to approximate the spectral notches of the coupling scheme 

transfer function data by avoiding the rough approximation of  

1 monotonic section of L1PMA. 

• As the application of L1PMA of the new aspect is concerned, its APDna behavior 

presents similarities with APDta of the L1PMA of the traditional aspect with 

respect to the number of monotonic sections. Indeed, the best APDna of the 

L1PMA of the new aspect is equal to 40.19% when one monotonic section is 

adopted. In all the numbers of monotonic sections examined, L1PMA of the new 

aspect presents better APDna than APDta of the L1PMA of the traditional aspect 

except the case of the one monotonic section. Anyway, L1PMA of the new aspect 

achieves to mitigate measurement differences of the maximum value 𝑎CUD of 6dB 

even if 7 monotonic sections are assumed. Above 7 monotonic sections,  

its APDna exceeds APDmd (i.e., black background cells of the seventh column of 

Table 2). 

• As the application of L2WPMA of the new aspect is regarded, its best mitigation 

performance with APDna of 39.37% is observed when four or five sign changes 

are adopted that is the same number of sign changes of L2WPMA of the 

traditional aspect. Below 3 monotonic sections, its APDna exceeds APDmd  

(i.e., black background cells of the eighth column of Table 2). For the monotonic 

sections that APDna is lower than APDmd, APDna of L2WPMA of the new 
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aspect always presents better values in comparison with APDta of L2WPMA of 

the traditional aspect. 

Note that the numbers of 1 L1PMA monotonic section for both aspects and 5 L2WPMA 

sign changes for both aspects are going to be adopted in the following analysis.  

In accordance with [2], the aforementioned numbers can be treated as the basis for the 

respective piecewise monotonic data approximations regardless of the intensity of the 

measurement differences. In order to check the mitigation efficiency of L1PMA and 

L2WPMA of both aspects against different intensities of measurement differences,  

their performance is assessed through the quantitative methodology on the basis of 

respective iSHM footprints.  

 

4.3 The Quantitative Methodology for L1PMA and L2WPMA iSHM Footprints of 
both Aspects when Different Intensities of Measurement Differences Occur 
 In accordance with Figs. 6 and 7 of [2], the mitigation performance of L1PMA 

and L2WPMA of the traditional aspect against the measurement differences has been 

visually proven to be important when measurement differences remain very high. 

Anyway, the promising results regarding the mitigation of higher measurement 

differences by L1PMA and L2WPMA of the traditional aspect was expected after the 

determination of respective monotonic sections and sign changes in Sec.3.3 of [2] for 

maximum value 𝑎CUD  of 6dB that is anyway sufficiently high. The aforementioned 

qualitative observations of [2] require the quantitative validation of this Section.  

 Unlike [2], in Table 3, APD metrics of: (i) the applied measurement differences of 

maximum values 𝑎CUD that range from 0dB to 15dB for the real indicative OV LV BPL 

urban case A; and (ii) the results of the application of piecewise monotonic data 

approximations of both aspects; are here reported when the numbers of L1PMA 

monotonic sections and L2WPMA sign changes are equal to 1 and 5, respectively. 

 From Table 3, it is clear that the increasing maximum value 𝑎CUD  of CUD 

measurement differences entail significant increase of APDmd. Since L1PMA monotonic 

sections and L2WPMA sign changes have been defined when the relatively high 

measurement differences of Sec. 4.2 have been assumed, L1PMA and L2WPMA fail to 

mitigate the low measurement differences of maximum value 𝑎CUD of 1dB and 2dB. 

Here, the philosophy of the adaptive monotonic sections and sign changes, which have 

been proposed in [10], [11], can also be applied in iSHM footprints so that even the low 

measurement differences of maximum value 𝑎CUD of 1dB and 2dB can be mitigated by 

piecewise monotonic data approximations. 

In contrast with the situation occurs during the study of the very low measurement 

differences, L1PMA and L2WPMA can safely mitigate measurement differences whose 

maximum value 𝑎CUD  remains higher than 2dB regardless of the aspect adopted. In fact, 

for the high measurement differences, L1PMA of the traditional aspect when one 

monotonic section is applied achieves the best APDta in comparison with the APD 

metrics of the other examined piecewise monotonic data approximations till 

approximately maximum values 𝑎CUD of 10dB (cyan background cells of Table 3).  

For the very high measurement differences, L1PMA of the new aspect when one 

monotonic section is again applied starts to present the best APDna in comparison with 

the ones of the other examined piecewise monotonic data approximations. Anyway,  

the mitigation performance of all the examined piecewise monotonic data approximations 

mitigate measurement differences when maximum values 𝑎CUD  are greater than 2dB.  
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Table 3 

Quantitative methodology benchmark results for L1PMA and L2WPMA when Traditional and  

New Aspects are Applied  

(maximum value 𝑎CUD ranges from 0dB to 15dB, numbers of L1PMA monotonic sections and L2WPMA 

sign changes are equal to 1 and 5, respectively) 

 

 

 

 

 

Maximum Value 𝒂𝐂𝐔𝐃 of 

Measurement Differences  

(dB) 

 

 

Measurement 

Differences 

 

 

Traditional Aspect New Aspect 

 

 

L1PMA 

 

 

 

L2WPMA 

 

 

 

L1PMA 

 

 

L2WPMA 

𝑨𝑷𝑫𝒎𝒅 

(%) 

𝑨𝑷𝑫𝒕𝒂 

(%) 

𝑨𝑷𝑫𝒕𝒂 

(%) 

𝑨𝑷𝑫𝒏𝒂 

(%) 

𝑨𝑷𝑫𝒏𝒂 

(%) 

0 0 19.35 15.92 18.74 17.12 

1 7.99 18.95 18.58 19.12 18.80 

2 16.57 19.67 23.18 20.24 22.35 

3 32.23 20.43 24.41 21.73 24.42 

4 46.39 24.94 32.55 25.59 31.11 

5 61.22 33.78 38.67 34.57 36.09 

6 68.63 38.48 39.54 40.19 39.37 

7 72.73 39.05 41.40 39.16 42.64 

8 85.35 41.42 46.67 41.61 45.56 

9 84.34 43.93 48.43 44.34 49.25 

10 90.42 48.98 50.90 49.10 50.10 

11 96.07 46.94 51.24 46.47 55.05 

12 99.99 52.04 55.25 52.32 56.82 

13 101.48 50.14 57.20 49.57 59.39 

14 105.69 59.39 63.10 59.20 64.35 

15 110.69 58.65 59.95 58.58 63.99 

 

 

As L2WPMA is examined, mixed performance results occur between the traditional and 

new aspect. In general terms about L2WPMA, the traditional aspect is preferred when 

high measurement differences occur whereas the new aspect is used in the other cases. 

Through the prism of the new quantitative methodology, it is evident that 

piecewise monotonic data approximations can easily mitigate measurement differences 

when piecewise monotonic data approximations are well calibrated in terms of their 

critical intrinsic parameters. Depending on the applied piecewise monotonic data 

approximations and the intensity of measurement differences as previously analyzed,  

the selection among the available piecewise monotonic data approximations and aspects 

changes.  

 

 

5. Conclusions 
 

 After the proposal of the quantitative methodology of this companion paper,  

the reliability of BPL data that feed the business analytics and the tools of the SG is 

further enhanced. Towards the enhancement of the data quality and the data cleaning 

from the application of piecewise monotonic data approximations, such as L1PMA and 
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L2WPMA, the new aspect of applying piecewise monotonic data approximations can 

successfully mitigate measurement differences under conditions. With reference to  

iSHM footprints, it has been revealed that L1PMA and L2WPMA always mitigate 

measurements differences above a low threshold of 2dB while their performance 

becomes significant when measurement differences are important since the generated 

data of high measurement difference contamination are considered useless without a 

restoration. Finally, the interoperability of the qualitative and quantitative assessments of 

piecewise monotonic data approximations via iSHM footprints can be considered 

invaluable in order to ensure the data quality of the business analytics while the new 

aspects are added to the quiver of the available mitigation techniques against the 

measurement differences. 
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