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We evaluated and compared the performance of simulated Angström-
Prescott (AP) and Hargreaves-Samani (HS) models on monthly and 
annual timescales using generalized datasets covering the entire West 
African region. The fitted AP model yielded more efficient parameters of 
a = 0.366 and b = 0.459, whereas the HS model produced a 0.216 
coefficient based on an annual timescale, which is more suitable in the 
region compared to coefficients recommended by the Food and 
Agriculture Organization (FAO) (a = 0.25 and b = 0.5) and HS (0.17), 
respectively. Employing the FAO and HS recommended coefficients will 
introduce a relative percentage error (RPE) of 18.388% and 27.19% 
compared to the RPEs of 0.0014% and 0.1036% obtained in this study, 
respectively. When considering time and resource availability in the 
absence of ground-measured datasets, the coefficients obtained in this 
study can be used for predicting global solar radiation within the region. 
According to the AP and HS coefficients, the polycrystalline module (p-
Si) is more reliable than the monocrystalline module (m-Si) because the 
p-Si module has a higher tendency to withstand the high temperatures 
projected to affect the region due to its higher intrinsic properties based 
on the AP and HS coefficients assessment in the region. 

 
Keywords:  Ångström-Prescott coefficient; Hargreaves-Samani coefficient; Global solar radiation; Solar 

PV technologies; Climate forcing 

 
 

Introduction  
  

It is undeniable that the growth of solar PV installed capacity in the past years has 

outpaced the most optimistic projections, as indicated by global cumulative installed 

capacity at the end of 2013 being only 9.2 MW and worldwide cumulative capacity at 

year-end 2014 being 15.6 GW [1]. The exponential trend of PV installation growth 

started in 2008, and the total capacity has doubled every year, with the longest period of 

increase (since 2009) in 2014, when global installed capacity reached 15.6 GW and year-

end solar power share was estimated at 5% of global electricity generation in just 6 years 
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(period of 2000-2014), which indicates the steep growth rate in global cumulative 

installed capacity [1].  

The reason for this rapid growth is that in just 6 years, the cost of PV electricity 

has gone down significantly, which is phenomenal as it was in the years 2007 to 2009 

and 2012 to 2014, when global cumulative installed capacity grew by 71% (from 2.1 GW 

to 3.4 GW) and 47% (from 586 MW to 1.12 GW), respectively [1]. The global 

cumulative installed capacity of solar power was only 15.6 GW at year-end 2014, and the 

share of solar power in electricity generation was estimated at 5%. Solar power 

penetration grew from 20.9 GW in 2010 to 29.3 GW in 2014, with a CAGR (compound 

annual growth rate) of 60% for the six-year period of 2000-2014. Installed solar capacity 

in France and Germany amounted to 79 GW and 30 GW [1], respectively, due to a high 

construction cost and German government subsidies for PV power plants that are only 

given for the first 15 years of the plants, whereas PV power is available on the 

commercial grid in countries such as Italy, China, and India for a number of years.  

The cost of solar energy is affected by a number of factors. The most important 

factor is the installation costs of PV cells, particularly photovoltaic modules. The issue of 

determining the optimal location for a PV power plant has seen a steady decline as the 

cost of solar cells, per watt, has dropped from $2.96/W in 1979 to $1.61/W in 2013 and is 

expected to drop to about $1/W by 2016. More than 30 countries in the world are 

adopting solar power as a part of their national energy mix. After years of investment and 

research, solar energy has become a reliable source of electricity worldwide, and PV 

modules are becoming more efficient, using less energy and costing less to produce. 

Both of these conditions result in relatively low densities of data regarding 

incoming solar radiation at the ground level for global climatic information activities, 

especially at the local level in countries with a few stations in those countries that have 

started to monitor solar radiation. Satellite observations of solar radiation are more 

accurate and less expensive than terrestrial observations because they can make use of 

remote sensing instruments that determine the spectral composition and geographical 

distribution of incoming solar radiation. Consequently, the density of meteorological 

stations equipped for measuring solar radiation is too low for global coverage. For 

instance, there are over 3,000 stations worldwide measuring solar radiation, and in the 

rest of the world there is a density of about 10 stations per million people [2]. 

Additionally, a number of statistical problems have been identified, mainly in the field of 

quantifying solar radiation; for example, the variability of the measurement technique 

makes it difficult to use solar radiation data for selecting stations to form climatic 

networks. Finally, spectral solar radiation data on the horizontal and vertical distribution 

of solar radiation in space can be obtained with high precision, taking advantage of 

satellite measurements.  

Michael FitzGerald has found an equation from the period between 1781 and 

1860 that plots monthly mean global solar radiation (H) in all sky conditions on the 

horizontal axis versus H in clear skies (Hclear), which is S/So cited in Kimball [3]. 

Throughout the year, some astronomers believe that global solar radiation is closely 

related to or directly proportional to the duration of sunshine. However, others suggest 

that it is not directly related but that it changes in proportion to the strength of 

atmospheric transparency, according to the Global Precipitation Climatology Project 

(GPCP), an assessment of climate change conducted by NASA and other international 

organizations on the time of the Earth’s orbit about the sun.  
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FitzGerald's equation demonstrated that the relationship between monthly mean 

global solar radiation (H) and the duration of sunshine (S) varies from year to year and 

decade to decade between 1781 and 1860. FitzGerald found that there was a stable 

relationship between solar radiation and cloud cover. However, this was not the case in 

other periods during the nineteenth century. During the decade before 1840, there was an 

unstable relationship between solar radiation and cloud cover. The main results for this 

period show an increase in solar radiation because of an increase in global cloud cover 

and a decrease in solar radiation by changing the duration of sunshine from one decade to 

another. Therefore, we can say that FitzGerald’s equation is only accurate for the last part 

of the nineteenth century. 

Kimball [3] was the first to discover that FitzGerald's equation view of solar 

radiation in relation to sunlight is highly correlated with or directly proportional to the 

length of daylight. Angstrom [4] was the first to mathematically represent Kimball's idea. 

This was accomplished by relating the monthly mean global solar radiation (H) in all 

clear sky conditions (Hclear) to the fraction of sunlight duration (S/So). As a result, 

Angstrom [4] claims that the relation can be used to estimate H: 
𝐻

𝐻𝑐𝑙𝑒𝑎𝑟
= 0.25 + 0.75 (

𝑆

𝑆𝑜
)       (1) 

The most recent version of the Angstrom-Prescott model (AP) replaces H with 

daily average extraterrestrial solar radiation parameters (Ho) which Prescott modified [5] 

and is expressed as: 
𝐻

𝐻𝑜
= 0.25 + 0.54 (

𝑆

𝑆𝑜
)       (2) 

Environmental variables such as cloud cover, relative humidity, wind, 

temperature, and precipitation regime can help modify the physical AP model. However, 

these factors vary between physical and environmental parameters, and their effect is 

difficult to quantify numerically. 

The AP model was developed not only to expand energy applications in response 

to the need for adequate knowledge of available solar resources, but also to study 

numerous atmospheric physical parameters in which sunlight scattering, reflections, and 

diffractions influence the variation of AP coefficients in different parts of the world [6]. 

Paulescu et al. [7] identified two categories of algorithms for predicting solar energy 

using AP coefficients: (1) prediction of global solar irradiance under a clear sky; and (2) 

physical fit of clear sky estimates to the current sky state based on sunshine duration 

measurements. 

The authors of this study identified additional aspects that the AP model 

coefficient could help us evaluate. The coefficient can be quantified for various solar PV 

technologies suitable for solar energy harvesting by analyzing the atmospheric dynamics 

of the sum of the AP coefficients (a+b) and taking into account that different solar PV 

modules have different degrees of ability to withstand extreme temperatures due to the 

inherent characteristics of the module's solar cell. Polycrystalline silicon (p-Si), for 

example, is more resistant to high temperatures than monocrystalline silicon (m-Si), 

activating the production of electricity in places with low temperatures induced by a 

higher percentage of diffuse components of solar radiation worldwide. 

Thus, the amplitude of the AP coefficients (a + b) tells us about the transparency 

of the sky. Since different solar PV technologies have different intrinsic module 

characteristics, the conditions of the sky allow us to dictate the type of solar module 

technology suitable for a specific climatic and geographic environment. The p-Si 

technology is expected to be used in desert, arid, or semi-arid regions, where the sum of 
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AP coefficients (a + b) exceeds 0.65, because it has higher intrinsic modulus properties to 

withstand extreme temperatures in such climatic conditions with respect to m-Si. Despite 

the higher energy production, cost-effectiveness, and wider commercialization of m-Si 

technology compared to p-Si technology, p-Si is highly recommended when considering 

the effects of climate change on it. 

Extreme temperatures, inherently, cause high wind speeds due to low vapour 

pressure, resulting in low relative humidity and cloud cover, as well as relatively high 

sunshine duration and fraction in an open savanna [8], suggesting that as the impact of 

climate change intensifies, extreme temperatures combined with high wind speeds in 

such open savanna regions may likely result in damaging the solar cell designed to 

generate voltage for electrification purposes [9]. Extreme wind speed events, on the other 

hand, have the potential to destroy or damage the module due to the lack of sufficient 

wind break in open savanna climate regions. These two factors can cause the modules to 

degrade faster or introduce cracks in the module, potentially reducing the module's 

energy productivity. 

However, m-Si technology is preferred for regions with a low transparency index, 

which can also be calculated using AP (a + b) coefficients. This will essentially lead to a 

sharper reduction in global solar radiation and, in some rare cases, in solar PV generation. 

The longer the PV cells are exposed to low AP (a+b) environments, implying a high 

humidity environment, the steeper the expected performance degradation. This could be 

due to the high concentration of water vapor in the atmosphere, which often leads to the 

disintegration of the cavity [10]. 

Cell interconnect failures or broken cells are often exacerbated in m-Si 

technology compared to p-Si modules, according to Obiwulu et al. [11]. This suggests 

that a local climate and geographic environment with hot and humid weather (as 

determined by AP coefficients) may accelerate these deterioration processes, which are 

common in regions with high relative humidity or a low clarity index (implying a low 

sum of AP coefficients). 

AP coefficients (a+b) can also be used to estimate the length of sunlight and 

clarity index, as well as their implications for climate pressure dynamics and air quality 

[12]. The Earth's atmosphere is made up of gases, particles, and clouds that form a thin 

column around the planet. This thin column contains billions of tons of pollutants that 

change the atmosphere unintentionally. These pollutants are produced by the burning of 

fossil fuels for energy needs and domestic and industrial transport, as well as forest fires, 

volcanoes, soil dust, and sea salts. Carbon dioxide, a greenhouse gas, is the final by-

product of all forms of combustion [13]. According to Ramanathan and Feng [14], the 

cumulative effects of these reactions produce ozone, another greenhouse gas that is a 

major contributor to global warming and climate change. 

As a result of the renewable energy and atmospheric benefits of the AP model, 

countless empirical models based on the AP model and other modified models such as 

exponential, logarithmic, quadratic, polynomial, and power law models have been 

introduced worldwide, among others, for the estimation of global solar radiation. This 

pattern is well documented for Nigeria [15], West Africa [16], Africa [17], India [18], 

China [19], and the globe [20]. 

The availability and demand for air temperature input data, which can be easily 

measured globally, are of particular interest in temperature prediction models. Hargreaves 

and Samani [21] developed the first temperature-based model for predicting global solar 

radiation, using maximum and minimum temperatures and extraterrestrial solar radiation 
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as input parameters, and obtained an empirical coefficient of 0.17, as shown in Equation 

3. It has since been recognized as one of the most popular, simple, and accurate 

temperature models for predicting global solar radiation and can be used for short- and 

long-term predictions of global solar radiation expressed as: 
𝐻

𝐻𝑜
= 0.17(∆𝑇)0.5        (3) 

where H is the extraterrestrial solar radiation on a horizontal surface, is the temperature 

gradient depicting the difference between the maximum and minimum temperature? 

This model has been used by numerous researchers to predict global solar 

radiation in various parts of the world. However, because of differences in climatic and 

geographical conditions unique to different locations around the world, the obtained 

coefficients of 0.17 seem to vary considerably. 

When the hours of sunshine datasets needed to evaluate the AP model were not 

available due to cost, the instrumentation network, or the expertise required for ground-

based observations, researchers have often used this approach to primarily generate solar 

energy data. On the other hand, this study suggests that climate and geographic location-

specific Hargreave-Samani adjustment coefficients (AHC) can be used to estimate 

climate pressure dynamics and air quality in inland and coastal regions. Some 

investigators reported that the AHS coefficient ranged from 0.19 to 0.21 in coastal 

regions [22, 23] and fell below this range in inland regions to around 0.17 depending on 

the local climate and geographical conditions of the sites. 

When evaluating their impacts on climate forcing dynamics and air quality in a 

given location, what does a higher AHC value inland or a lower value in the coastal 

region imply? The higher AHC value obtained for coastal regions often indicates high 

cloud cover and relative humidity, which can return additional longwave radiation to the 

ground, reducing the influence of the air temperature gradient on global solar radiation. 

This means that the smaller the air temperature gradient, mainly caused by the influence 

of open water bodies on the atmosphere, the longer the AHC, which can lead to large 

errors in estimating global solar radiation using the Hargreaves-Samani (HS), and vice 

versa. 

According to atmospheric research, increased or greater values of cloud cover and 

relative humidity increase diffuse solar radiation and decrease the normal direct radiation 

available through scattering; at the same time, global solar radiation remains undisturbed. 

This reduces the amount of conventional direct radiation available that is needed to 

generate more solar energy for concentrated solar power (CSP). Normal direct solar 

radiation must be equal to or slightly higher than global solar radiation for concentrated 

solar power to work effectively [24]. Solar PV technologies, on the other hand, can still 

be used in this climate. Basically, m-Si technology is recommended for the maximum use 

of solar energy because its inherent properties favour scattered light over p-Si in places 

with higher levels of global solar radiation than with normal direct irradiation. 

Therefore, the first objective of this paper was to provide AP and HS coefficients 

in West Africa using generalized datasets that have not been used in the literature since 

the beginning of solar radiation prediction. In addition, the study proposes a qualitative 

approach to the analysis of the implications of the AP and HS coefficients for predicting 

global solar radiation and potential evapotranspiration on climate pressure dynamics, as 

well as suitable solar PV technology and solar energy concentration in West Africa, 

which have not been previously implemented in the literature using generalized data sets 

for the region. Third, the authors proposed an analytical approach based on a rigorous 
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error metric analysis to determine the predictability of the APC (a = 0.25 and b = 0.5) 

recommended by the Food and Agriculture Organization (FAO) to estimate potential 

evapotranspiration when no ground observations are available, as well as validation of 

the AHC's performance for the prediction of global solar radiation in West Africa in this 

era of climate change and global sustainability, which has been studied in the literature 

using generalized regression. 

 
 
Materials and Methods 
 

Data Description, Quality and Modeling 
Surface downwelling shortwave radiation (hereafter, global solar radiation, 

W/m
2
), incident shortwave radiation in the upper atmosphere (hereafter, extraterrestrial, 

W/m
2
), total fraction of clouds (%), relative humidity (%), minimum surface air 

temperature (Tmin) at 2 m height (
o
C), maximum cloud air temperature surface (Tmax) at 2 

m height (
o
C), with monthly spatial resolution were used in this study. These datasets 

were generated from two different Global Climate Model (GCM) outputs participating in 

Coupled Model Intercomparison Project Phase 6 (CMIP6). The datasets were 

downloaded using the latitudes cutting across North (28
o
) and South (30

o
), as well as the 

longitudes cutting across the west (-28
o
) and east (15

o
) of West Africa as a sub-region on 

the Africa continent under monthly time resolution as shown in Fig. 1. Using a 

conversion factor of 11.6, the obtained datasets for global solar radiation and 

extraterrestrial solar radiation in W/m
2
 were converted to MJ/m

2
/d. Meteo-solar 

parameters were used to fit the Anstrom-Prescott [5] and Hargreaves-Samani [21] 

coefficients to global solar radiation prediction models, as well as to assess the 

implications of the coefficients on climate forcing dynamics and technology selection for 

solar photovoltaic in the West African Region. 

The two GCMs (National Oceanic and Atmospheric Administration, Geophysical 

Fluid Dynamics Laboratory, USA (GFDL-ESM4), and National Centre for 

Meteorological Research, France (HadGEM3-GC31) are chosen based on the availability 

of relevant energy variables for all selected SSPs developed by the European Centre for 

Medium Weather Forecasts (ECMWF) 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). Table 1 presents a 

summary of the GCMs along with their spatiotemporal resolution. 

 
 

Table 1. Summary of two Global Climate Models (GCMs) from Coupled Model Intercomparison 
Project Phase 6 (CMIP6) 
  Grid size (long × 

lat) 

/Spatial resolution  

Model Centre Historical Future Temporal 
resolution 

GFDL-ESM4 National Oceanic and Atmospheric 

Administration, Geophysical Fluid 
Dynamics Laboratory 

288 × 180 (1.25o × 

1.00o) 

288 × 180 (1.25o × 

1.00o) 

Monthly  

HadGEM3-GC31 National Centre for Meteorological 

Research, France 

1024 × 768 (0.35o 

× 0.23o) 

432 × 324 (0.83o × 

0.55o) 

Monthly 

 

 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Fig. 1. Descriptive statistics of input and output parameters 
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Since these two GCM model outputs have different spatial resolutions, they were 

averaged to reduce the margin of error. The total cloud fraction parameter was used to 

evaluate the fraction of sunlight in addition to the above parameters, which are used 

directly to predict global solar radiation. Equation (4) describes the fit of the conventional 

numerical model using the high-resolution sunshine fraction (S/So) and total cloud 

fraction (𝑐𝑙𝑡) parameters obtained from Zhu et al. [25]: 

𝑆/𝑆𝑜 = 0.946 − 0.6355(𝑐𝑙𝑡/100) − 0.4173(𝑐𝑙𝑡/100)2   (4) 

Khorasanizadeh et al. [26] developed a scattering technique to independently 

confirm the quality of the clearness index and sunshine fraction datasets, respectively, as 

they were important components of the input settings. The Khorasanizadeh et al. [26] 

method was also used to ensure that the quality of the sunshine fraction was checked. The 

HadGEM3-GC31 datasets were used to test the developed models using historical data 

from 1984 to 2014. The GFDL-ESM4 climate datasets were used to simulate global solar 

radiation models for West Africa. Table 2 displays the descriptive statistics for the input 

and output parameters. 

 
Table 2. Descriptive statistics of the input and output parameters 

 Parameter N Range Minimum Maximum Mean Std. Deviation 

H 372 7.520 17.470 24.980 20.996 1.662 

Ho 372 9.690 28.320 38.010 34.497 3.477 

kt 372 0.211 0.518 0.730 0.613 0.057 

S/So 372 0.507 0.322 0.829 0.538 0.117 

∆T 372 11.200 4.500 15.700 8.139 1.643 

∆T0.5 372 1.840 2.120 3.960 2.839 0.283 

Tave 372 10.400 18.600 29.000 24.997 2.949 

clt 372 51.300 16.600 67.900 48.122 11.546 

RHave 372 36.600 35.400 72.000 49.008 8.621 

Tmin 372 12.100 13.750 25.850 20.927 3.590 

Tmax 372 9.100 23.350 32.450 29.067 2.419 

 Where H is the global solar radiation (MJ/m
2
/d), Ho stands for extraterrestrial solar radiation (MJ/m

2
/d), kt 

represents clearness index, S/So represents sunshine fraction, ∆T stands for temperature gradient (
o
C), Tave 

represents average ambient temperature (
o
C), clt represents total cloud percent (%), RHave represents 

average relative humidity (%), Tmin and Tmax represent minimum and maximum temperature respectively 

in degrees Celsius  

 

On both the monthly and annual timescales for West Africa, the statistically 

validated clearness index and sunshine fraction were used to fit the Angstrom-Prescott [5] 

adjusted model (AP). The temperature gradient and the clearness index parameter were 

used in West Africa to fit the Hargreaves-Samani [21] adjusted model (AHS) on monthly 

and annual timescales. Table 3 shows the coefficients of the Angstrom-Prescott [5] 

adjusted model (AP) and the Hargreaves-Samani [21] adjusted model (AHS). 
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Table 3. The coefficients of the Angstrom-Prescott (AP) and Hargreaves-Samani (HS) and their 
respective adjusted coefficients in West Africa 

Resolution Angstrom-Prescott (AP) type model Hargreaves-Samani type model 

 Original AP model Present study Original HS model Present study 

January 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟗𝟔 + 𝟎. 𝟐𝟕𝟑 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟖(∆𝑻)𝟎.𝟓 

February  𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟕𝟓 + 𝟎. 𝟑𝟎𝟒 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟒(∆𝑻)𝟎.𝟓 

March  𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟓𝟎𝟔 + 𝟎. 𝟐𝟒𝟗 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟑(∆𝑻)𝟎.𝟓 

April  𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟗𝟏 + 𝟎. 𝟐𝟔𝟑 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟓(∆𝑻)𝟎.𝟓 

May 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟑𝟔 + 𝟎. 𝟑𝟒𝟑 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟒(∆𝑻)𝟎.𝟓 

June 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟏𝟏 + 𝟎. 𝟑𝟔𝟕 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟓(∆𝑻)𝟎.𝟓 

July 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟑𝟓𝟖 + 𝟎. 𝟒𝟐𝟐 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟐(∆𝑻)𝟎.𝟓 

August 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟑𝟒𝟔 + 𝟎. 𝟒𝟑𝟕 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟓(∆𝑻)𝟎.𝟓 

September 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟎𝟑 + 𝟎. 𝟑𝟓𝟏 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟓(∆𝑻)𝟎.𝟓 

October  𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟐𝟔 + 𝟎. 𝟑𝟒𝟎 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟕(∆𝑻)𝟎.𝟓 

November  𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟑𝟕 + 𝟎. 𝟑𝟒𝟐 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟐𝟑(∆𝑻)𝟎.𝟓 

December 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟓𝟐𝟕 + 𝟎. 𝟐𝟐𝟏 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟐𝟓(∆𝑻)𝟎.𝟓 

Annual 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟑𝟔𝟔 + 𝟎. 𝟒𝟓𝟗 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟔(∆𝑻)𝟎.𝟓 

 

 

Analytical Tools and Performance Evaluation 
The coefficient of determination (R2), root mean square error (RMSE), 

normalized root mean square error (nRMSE), relative percentage error (RPE), skill score 

(SS), and mean absolute percentage error (MAPE) were the evaluation metrics used in 

this study, as shown in Table 4. 
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Table 4. Details of the statistical indicators 
S/N Abbreviation Statistical test Expression Idea value 

1. R2 Coefficient of determination 
𝑹𝟐 = 𝟏 − [

∑ (𝑶𝒊 − 𝑷𝒊)
𝟐𝒏

𝒊=𝟏

∑ (𝑶𝒊 − 𝑶𝒂𝒗𝒆)𝟐𝒏
𝒊=𝟏

] 
One 

2. RMSE Root mean square error 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑(𝑶𝒊 − 𝑷𝒊)

𝟐

𝒏

𝒊=𝟏

 

Zero 

3. nRMSE Normalized root mean square error 
𝒏𝑹𝑴𝑺𝑬 =

𝑹𝑴𝑺𝑬

∑ (𝑯)𝒏
𝒊=𝟏

 
Zero 

4. RPE Relative percentage error 
𝑹𝑷𝑬 = ∑ (

𝑶𝒊 − 𝑷𝒊

𝑷𝒊

) × 𝟏𝟎𝟎

𝒏

𝒊=𝟏

 
Zero 

5. SS Skill score 
𝑺𝑺 = 𝟏 −

𝒏𝑹𝑴𝑺𝑬𝒑𝒓𝒆𝒔𝒆𝒏𝒕 𝒔𝒕𝒖𝒅𝒚

𝒏𝑹𝑴𝑺𝑬𝒍𝒊𝒕𝒆𝒓𝒂𝒕𝒖𝒓𝒆

 
One 

6. MAPE Mean absolute percentage error 
𝑴𝑨𝑷𝑬 =

𝟏

𝒏
∑|𝑶𝒊 − 𝑷𝒊| × 𝟏𝟎𝟎

𝒏

𝒊=𝟏

 
Zero 

 

 
Results and Discussion 
 

Performance of AP Parameters in West Africa 
According to the statistics of the AP parameter in the different months and 

according to the annual time scale (Table 3), the parameter a had a higher value in West 

Africa. The parameter reported a monthly value of 0.346 in August and a monthly value 

of 0.527 in December, with a corresponding annual value of 0.366. The monthly 

variability of parameter b was the inverse of that of parameter a, with a maximum value 

of 0.437 in August and a minimum value of 0.221 in December, and a corresponding 

annual value of 0.459, which is the maximum value for parameter b. Figure 2 shows that 

the trend between the AP parameters (a and b) is inverse for daily, monthly, and annual 

time scale fluctuations. For example, in August, both parameters a and b produced 

maximum and minimum values. Consequently, the two parameters converge between 

June and July, August and September, and December and the annual value. Figure 2 

shows that the AP parameter gradually increases from January to August and then begins 

to decrease from September to December, with an accelerated value of 0.459 representing 

the maximum during the entire monthly period. In contrast, the AP metric decreased 

gradually from January to August before starting to accelerate from September to 

December, with a corresponding decrease in value on the annual time scale. Figure 3 

shows that the AP a+b parameter produced somewhat uniform values from May to 

August, with a minimum value in January and a maximum value of 0.783 in August, 

while the annual time scale value accelerated over the range 0.733–0.779 between 

January and December to 0.825. 
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Table 5. Variation of AP parameters in West Africa 

Month Present study AP parameters FAO recommended AP parameters 

 

a b a+b a b a+b 

JAN 0.496 0.237 0.733 0.25 0.5 0.75 

FEB 0.475 0.304 0.779 0.25 0.5 0.75 

MAR 0.506 0.249 0.755 0.25 0.5 0.75 

APR 0.491 0.263 0.754 0.25 0.5 0.75 

MAY 0.436 0.343 0.779 0.25 0.5 0.75 

JUN 0.411 0.367 0.778 0.25 0.5 0.75 

JUL 0.358 0.422 0.78 0.25 0.5 0.75 

AUG 0.346 0.437 0.783 0.25 0.5 0.75 

SEP 0.403 0.351 0.754 0.25 0.5 0.75 

OCT 0.426 0.34 0.766 0.25 0.5 0.75 

NOV 0.437 0.342 0.779 0.25 0.5 0.75 

DEC 0.527 0.221 0.748 0.25 0.5 0.75 

ANN 0.366 0.459 0.825 0.25 0.5 0.75 

 

 

 

Fig. 2. Variation of AP parameters in West Africa 
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Fig. 3. Variation of a+b AP parameter in West Africa 

 

Compared to the FAO parameter values (a = 0.25 and b = 0.50), the average 

parameter "a" in each month as well as the annual value were higher, and the monthly 

value and the annual value of the "b" parameter were lower. If the recommended FAO 

values of a = 0.25 and b = 0.50 are used to estimate global solar radiation or potential 

evaporation, the system will have an additional margin of error of 46.4% and a relative 

percentage error of -8.2%, according to Table 6. Since the annual value is the lowest, a 

higher margin of error is introduced on a monthly basis, as shown in Table 6. However, 

in this era of climate change and global warming, it is clear that the AP parameters 

proposed by the FAO are not suitable for West Africa, as it will be necessary to estimate 

the impacts of climate change on solar PV generation, net radiation, net primary 

productivity, and potential evaporation. these solar flux parameters, introducing an 

additional margin of error due to the sensitivity of climate change to input and output. 

 

Table 6. Error metrics between observed and FAO AP parameters in West Africa 

 

 

a b 

Month/Annual RMSE MAPE nRMSE RPE RMSE MAPE nRMSE RPE 

JAN 0.0071 0.0413 0.0143 98.4 0.0076 0.0925 0.0320 -52.6 

FEB 0.0065 0.0395 0.0137 90.0 0.0057 0.0537 0.0186 -39.2 

MAR 0.0074 0.0422 0.0146 102.4 0.0072 0.0840 0.0291 -50.2 

APR 0.0070 0.0409 0.0142 96.4 0.0068 0.0751 0.0260 -47.4 

MAY 0.0054 0.0356 0.0123 74.4 0.0045 0.0381 0.0132 -31.4 

JUN 0.0046 0.0326 0.0113 64.4 0.0038 0.0302 0.0105 -26.6 

JUL 0.0031 0.0251 0.0087 43.2 0.0023 0.0154 0.0053 -15.6 

AUG 0.0028 0.0231 0.0080 38.4 0.0018 0.0120 0.0042 -12.6 

SEP 0.0044 0.0316 0.0110 61.2 0.0043 0.0354 0.0123 -29.8 

OCT 0.0051 0.0344 0.0119 70.4 0.0046 0.0392 0.0136 -32.0 

NOV 0.0054 0.0357 0.0124 74.8 0.0046 0.0385 0.0133 -31.6 

DEC 0.0080 0.0438 0.0152 110.8 0.0081 0.1052 0.0364 -55.8 

ANN 0.0033 0.0264 0.0091 46.4 0.0012 0.0074 0.0026 -8.2 

 

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN

A
 

MONTH OF THE YEAR 

a+b



 

Peer-Reviewed Article   Trends in Renewable Energy, 9 

 

 

Tr Ren Energy, 2023, Vol.9, No.1, 78-106. doi: 10.17737/tre.2023.9.1.00150 90 

 

Compared to the parameter values (a + b = 0.75) provided by FAO, the average 

parameter a + b in all months as well as the annual value was higher than expected, with 

the exception of January and December, which recorded lower values. as shown in Table 

5. Using the recommended FAO value of a+b = 0.75 to estimate global solar radiation or 

potential evaporation will introduce an additional 10.0% margin of error on the annual 

mean values of the relative percentage error in the system, according to Table 5. The 

recommended FAO value is overestimated by -2.3% in January and -0.3% in December, 

according to Table 7, while other parameters introduce marginal errors between 0.5 and 

4.5% for the months that are left. Since this annual value is the lowest, a larger margin of 

error is introduced on a monthly basis, as shown in Table 7. However, in this era of 

climate change and global warming, it is clear that the AP parameters recommended by 

FAO56 (the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper No. 

56) are inadequate. suitable for West Africa, as these solar flux parameters will be needed 

to account for the impact of climate change on solar PV generation, net radiation, net 

primary production, and potential evaporation, which will introduce an additional margin 

of error due to input and output sensitivity to changing climate. 

Multiple results were obtained from adjusting the AP equation coefficient 

between the adjusted and recommended values. Most of these studies are based on single 

or multiple stations [27, 28], and provincial or global study regions, as well as uniform 

coefficient values, are commonly used in regional studies [29, 30, 31]. Although some 

regional coefficients were interpolated, they were not optimized. Liu et al. [32] show that 

the coefficient "a" ranges from 0.139 to 0.270, with an average of 0.205 in China. 

 
Table 7. Error metrics between observed and FAO AP a+b parameter in West Africa 

 

 

a+b 

Month/Annual RMSE MAPE nRMSE RPE 

JAN 0.0005 0.0019 0.0007 -2.3 

FEB 0.0008 0.0031 0.0011 3.9 

MAR 0.0001 0.0006 0.0002 0.7 

APR 0.0001 0.0004 0.0002 0.5 

MAY 0.0008 0.0031 0.0011 3.9 

JUN 0.0008 0.0030 0.0010 3.7 

JUL 0.0009 0.0032 0.0011 4.0 

AUG 0.0010 0.0035 0.0012 4.4 

SEP 0.0001 0.0004 0.0002 0.5 

OCT 0.0005 0.0017 0.0006 2.1 

NOV 0.0008 0.0031 0.0011 3.9 

DEC 0.0001 0.0002 0.0001 -0.3 

ANN 0.0022 0.0076 0.0026 10.0 

 

Performance of A-P Model for Predicting Global Solar Radiation in West Africa 
Table 8 summarizes the performance of global solar radiation prediction on 

monthly and yearly timescales, as well as training and testing timelines, using FAO-

recommended AP parameters and those obtained in this study. The statistical error metric 

obtained using both approaches revealed that the FAO-recommended AP parameters are 

ineffective for predicting global solar radiation, whereas those fitted using the parameters 

in this manner performed significantly better for both the training and training categories. 

For example, for all 13 models developed between January and December on an annual 
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time scale, the AP parameters developed in this study yielded upper R2 error metrics 

ranging from 0.451 to 0.929 and lower R2 error metrics ranging from 0.0011 to 0.0022 

for MAPE, between 0.0003 and 0.0008 for nRMSE, 0.0095 and 0.4501 for RPE, and 

0.8182 and 0.9167 for skill score values. The skill score error metric is used because the 

higher the R2 values, the closer they are to one, and the lower the nRMSE values, and the 

RPE may not fully reveal how accurately predictive performance differs between the 

FAO-recommended approach and the models adapted in this study.  

A skill score error metric indicator was used to compare the performance of the 

approach used in this study with the one recommended by the FAO. A skill score closes 

to one (between 0.5 and 1) indicates better performance accuracy, while skill scores close 

to zero and negative values indicate moderate and poor benchmarking results, 

respectively. Table 8 shows that on an annual time scale, the ability score for all 13 

models developed between January and December was between 0.8182 and 0.9167, 

indicating a lack of predictive ability for the parameters recommended by FAO to assess 

the potential global solar radiation in West Africa using the AP parameters obtained 

using the datasets of this study. This may be because the models were built using 

historical datasets from when global warming had not exceeded 1.0 degree Celsius, 

compared to the 1.4 degree Celsius reported by the European Center for Medium-Term 

Weather Forecasts database. beam (ECMWF) in April 2022. 

Paulescu et al. [33] recently compared the performance of developed AP 

parameters derived from ground-based data from WRDC and BSRN with four online 

platforms. The authors found that the performance of platforms using the AP equation is 

broadly comparable, with ability scores ranging from 6.1% to 40%. They also stated that 

both platforms and AP parameters are climate-sensitive; however, AP parameters 

outperformed platforms in tropical and continental climates. The authors also found that 

no AP equations outperformed the platforms in all seasons and that no platforms 

outperformed the AP equations in all seasons. According to Paulescu et al. [33], there is 

no recommendation for using a platform or empirical equation. The models developed by 

the online platform exceeded FAO parameters in this study. Thorough testing of 

radiometric sources (satellites, reanalyses, empirical equations) against reliable data 

measured from the ground, as well as dissemination of results, are general requirements 

for scientific progress in solar radiation modeling and selection of the appropriate model 

in solar engineering. This would make it easier to compare the results of different 

scientific studies. 
 

Table 8. Performance of Angstrom-Prescott model for estimating global solar radiation in West 
Africa 

 

Model 
# 

 

 

Training Model Fit statistics Testing Model Fit statistics 

   

R2 MAPE nRMSE RPE 

Skill 

Score 

 

R2 MAPE nRMSE RPE Skill Score 

JAN 
Present 
study 0.729 0.0010 0.0003 0.0095 

0.9167 
0.663 0.0009 0.0003 0.0086 0.8334 

 FAO 0.699 0.0104 0.0036 14.3714 0.0000 0.635 0.0095 0.0033 13.0649 0.0000 

FEB Present 
study 

0.710 
0.0013 0.0005 0.4501 0.8718 0.645 0.0012 0.0005 0.4092 0.7925 

 FAO 0.709 0.0113 0.0039 15.7238 0.0000 0.645 0.0103 0.0035 14.2944 0.0000 

MAR 

Present 

study 

0.451 

0.0017 0.0006 0.4182 0.8667 0.410 0.0015 0.0005 0.3802 0.7879 

 FAO 0.391 0.0131 0.0045 18.7053 0.0000 0.355 0.0119 0.0041 17.0048 0.0000 

APR 

Present 

study 

0.714 

0.0014 0.0005 0.4023 0.9020 0.649 0.0013 0.0005 0.3657 0.8200 
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 FAO 0.700 0.0147 0.0051 21.5031 0.0000 0.636 0.0134 0.0046 19.5483 0.0000 

MAY Present 

study 

0.851 

0.0014 0.0005 0.4015 0.9074 0.774 0.0013 0.0005 0.3650 0.8249 

 FAO 0.829 0.0156 0.0054 23.1318 0.0000 0.754 0.0142 0.0049 21.0289 0.0000 

JUN Present 

study 

0.851 

0.0015 0.0005 0.3421 0.9074 0.774 0.0014 0.0005 0.3110 0.8249 

 FAO 0.562 0.0156 0.0054 23.1274 0.0000 0.511 0.0142 0.0049 21.0249 0.0000 

JUL Present 

study 

0.800 

0.0018 0.0006 0.3187 0.8462 0.727 0.0016 0.0005 0.2897 0.7693 

 FAO 0.478 0.0112 0.0039 15.6581 0.0000 0.435 0.0102 0.0035 14.2346 0.0000 

AUG Present 

study 

0.792 

0.0017 0.0006 0.2955 0.8333 0.720 0.0015 0.0005 0.2686 0.7575 

 FAO 0.614 0.0104 0.0036 14.2686 0.0000 0.558 0.0095 0.0033 12.9715 0.0000 

SEP Present 
study 

0.817 
0.0017 0.0006 0.2701 0.8696 0.743 0.0015 0.0005 0.2455 0.7905 

 FAO 0.726 0.0133 0.0046 19.2397 0.0000 0.660 0.0121 0.0042 17.4906 0.0000 

OCT Present 
study 

0.861 
0.0014 0.0005 0.3313 0.9038 0.783 0.0013 0.0005 0.3012 0.8216 

 FAO 0.815 0.0149 0.0052 21.9478 0.0000 0.741 0.0135 0.0047 19.9525 0.0000 

NOV Present 

study 

0.929 

0.0013 0.0005 0.3886 0.8750 0.845 0.0012 0.0005 0.3533 0.7955 

 FAO 0.781 0.0117 0.0040 16.3367 0.0000 0.710 0.0106 0.0036 14.8515 0.0000 

DEC Present 

study 

0.537 

0.0013 0.0004 0.4348 0.8919 0.488 0.0012 0.0004 0.3953 0.8108 

 FAO 0.509 0.0108 0.0037 15.0118 0.0000 0.463 0.0098 0.0034 13.6471 0.0000 

ANN Present 

study 

0.882 

0.0022 0.0008 0.0014 

0.8182 

 0.802 0.0020 0.0007 0.0013 0.7438 

 FAO 0.674 0.0128 0.0044 18.3808 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 

 

Performance of Hargreaves-Samani Model for Predicting Global Solar Radiation  
Table 9 summarizes the performance of global solar radiation prediction on 

monthly and yearly timescales, as well as training and testing timelines, using 

Hargreaves-Samani (HS) parameter and those obtained in this study. The statistical error 

metric obtained using both approaches revealed that the HS coefficient is ineffective for 

predicting global solar radiation, whereas those fitted using the coefficient in this study 

performed significantly better for both the training and training categories. 

A skill score error metric indicator was used to compare the performance of the 

approach used in this study with the HS. A skill score close to one (between 0.5 and 1) 

indicates better performance accuracy, while skill scores close to zero and negative 

values indicate moderate and poor benchmarking results, respectively. Table 9 shows that 

on an annual time scale, the ability score for all 13 models developed between January 

and December was between 0.800 to 0.937, indicating a lack of predictive ability for the 

parameters HS model to assess the potential global solar radiation in West Africa using 

the datasets of this study. This may be because the models were built using historical 

datasets from when global warming had not exceeded 1.0 degree Celsius, compared to 

the 1.4 degree Celsius reported by the European Center for Medium-Term Weather 

Forecasts database. beam (ECMWF) in April 2022. 
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Table 9. Performance of Hargreaves-Samani model for estimating global solar radiation in West 
Africa 

 
Model 

# 

 

 

Training Model Fit statistics Testing Model Fit statistics 

   

R2 MAPE nRMSE RPE 

Skill 

Score 

 

R2 MAPE nRMSE RPE 

Skill 

Score 

JAN 

Present 

study 0.598 0.0012 0.0004 0.0064 

0.937 

0.556 0.0011 0.0004 0.0060 0.872 

 HS 0.598 0.0183 0.0063 28.2435 0.000 0.556 0.0170 0.0059 26.2730 0.000 

FEB Present 
study 

0.790 
0.0016 0.0006 0.8938 0.898 0.735 0.0015 0.0006 0.8314 0.835 

 HS 0.800 0.0172 0.0059 25.9703 0.000 0.744 0.0160 0.0055 24.1584 0.000 

MAR 
Present 
study 

0.917 
0.0013 0.0005 0.7001 0.914 0.853 0.0012 0.0005 0.6513 0.850 

 HS 0.911 0.0167 0.0058 25.1577 0.000 0.847 0.0155 0.0054 23.4025 0.000 

APR 

Present 

study 

0.873 

0.0018 0.0006 0.7123 0.900 0.812 0.0017 0.0006 0.6626 0.837 

 HS 0.877 0.0173 0.0060 26.3106 0.000 0.816 0.0161 0.0056 24.4750 0.000 

MAY Present 

study 

0.799 

0.0017 0.0006 0.7975 0.898 0.743 0.0016 0.0006 0.7419 0.835 

 HS 0.815 0.0171 0.0059 25.8491 0.000 0.758 0.0159 0.0055 24.0457 0.000 

JUN Present 

study 

0.014 

0.0032 0.0011 0.8735 0.825 0.013 0.0030 0.0010 0.8126 0.767 

 HS 0.012 0.0182 0.0063 26.5145 0.000 0.011 0.0169 0.0059 24.6647 0.000 

JUL Present 

study 

0.031 

0.0034 0.0012 0.7851 0.800 0.029 0.0032 0.0011 0.7303 0.744 

 HS 0.030 0.0173 0.0060 24.6948 0.000 0.028 0.0161 0.0056 22.9719 0.000 

AUG Present 
study 

0.203 
0.0017 0.0006 0.6952 0.900 0.189 0.0016 0.0006 0.6467 0.837 

 HS 0.207 0.0173 0.0060 26.2890 0.000 0.193 0.0161 0.0056 24.4549 0.000 

SEP Present 
study 

0.242 
0.0025 0.0009 0.8635 0.852 0.225 0.0023 0.0008 0.8033 0.793 

 HS 0.246 0.0175 0.0061 26.5019 0.000 0.229 0.0163 0.0057 24.6529 0.000 

OCT Present 

study 

0.105 

0.0032 0.0011 1.0038 0.828 0.098 0.0030 0.0010 0.9338 0.770 

 HS 0.108 0.0184 0.0064 27.8204 0.000 0.100 0.0171 0.0060 25.8794 0.000 

NOV Present 

study 

0.358 

0.0033 0.0011 0.7425 0.836 0.333 0.0031 0.0010 0.6907 0.778 

 HS 0.354 0.0194 0.0067 30.9011 0.000 0.329 0.0180 0.0062 28.7452 0.000 

DEC Present 

study 

0.007 

0.0030 0.0010 1.0837 0.857 0.007 0.0028 0.0009 1.0081 0.797 

 HS 0.001 0.0202 0.0070 32.4908 0.000 0.001 0.0188 0.0065 30.2240 0.000 

ANN Present 
study 

0.959 
0.0020 0.0007 0.1036 0.887 0.892 0.0019 0.0007 0.0964 0.825 

 HS 0.959 0.0179 0.0062 27.1905 0.000 0.892 0.0167 0.0058 25.2935 0.000 

 

Atmospheric Factors Militating the A‐P Parameters 
The values of parameters a and b, however, can vary from one station to another 

due to differences in geographical conditions. Therefore, a comprehensive understanding 

of these parameters is important for accurate estimates of global solar radiation. 

Therefore, it is crucial to accurately measure parameters a and b in order to properly 

estimate global solar radiation and further our understanding of regional climatic 

variations. In particular, the parameter a measures the fraction of radiation reflected by 

clouds, while the parameter b measures the fraction of radiation transmitted through 

clouds. This is an important factor because it allows us to determine how much radiation 

reaches the surface of the Earth and thus affects its climate. By accurately measuring 

parameters a and b, scientists can better understand how clouds affect the Earth's 
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radiation budget and how this in turn impacts regional climates. Furthermore, it is also 

important to understand the effect of aerosols on global solar radiation, as these particles 

can both absorb and reflect incoming radiation. This can have a significant influence on 

the Earth's energy balance, and therefore it is essential to take aerosols into account when 

measuring parameters of a and b.  

These longwave emissions can interact with other atmospheric gases, such as 

water vapor and carbon dioxide, creating a complex web of interactions that must be 

considered when measuring parameters, a and b. Thus, a thorough understanding of the 

interaction between aerosols and radiation is necessary to accurately measure parameters 

a and b. Furthermore, aerosols also influence the albedo of the Earth's surface by 

increasing its reflectivity. This increased reflectivity reduces the amount of incoming 

solar radiation, thus affecting the overall climate of a region. Additionally, aerosols can 

also affect the Earth's radiative budget by absorbing and scattering incoming longwave 

radiation. This absorption and scattering of longwave radiation can increase or decrease 

the amount of radiation emitted into space, further contributing to regional climate 

change.  

This leads to a decrease in the amount of solar radiation that is received by the 

Earth's surface, further altering regional climate. Additionally, the presence of aerosols 

can also affect precipitation patterns due to their effects on cloud formation and 

dynamics. By acting as a cloud condensation nucleus, aerosols can result in larger 

droplets in clouds and increased rain or snowfall. In extreme cases, aerosols can also lead 

to decreased visibility in the atmosphere, causing reduced levels of photosynthesis and 

reducing the health of terrestrial ecosystems. 

From the experimental results, geographic location, meteorological systems, and 

atmospheric conditions influenced the parameter values [6, 34, 35]. The astronomical 

radiant fraction that reaches the Earth's surface on a cloudy day is, according to the 

literature, influenced by atmospheric conditions such as humidity, dust content, cloud 

type and thickness, and pollutant concentration [36]. It varies with station altitude 

[37] and is determined primarily by cloud type and thickness, increasing as cloudiness 

increases [38]. When the sky is clear, the sum (a + b) equals the clarity index, which rises 

slightly with altitude [39]. The parameter b represents the transport properties (aerosol 

density) of a cloudless atmosphere under the influence of altitude and is primarily 

determined by the atmosphere's total water content and turbidity [40]. 

Liu et al. [31] calibrated AP parameters in China using six classification zones. A 

partial correlation analysis of the calibration parameters and variables showed that the 

main influences on the calibration parameters were sunlight duration, temperature, 

altitude, and precipitation. The authors also found that prediction models accounting for 

changes in altitude performed better in most regions, suggesting that altitude is the main 

determinant of AP parameters in most regions of China. The results of Liu et al. [31] 

agree with those of Paulescu et al. [33], who showed that height is a necessary input 

variable for the AP model. According to Liu et al. [31], only models of the altitude and 

precipitation parameters could reliably predict the parameters. 

Paulescu et al. [7] found that altitude influences a, and both latitude and altitude 

influence b. They demonstrated that the dependence of parameters a and b on latitude and 

longitude was critical to their fit; however, Liu et al. [31] unearthed that predictive model 

6 did not outperform Chinese predictive models based on altitude. Furthermore, the 

researchers found no significant correlations between the parameters and latitude or 

longitude in different parts of China. 
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Effects of Angstrom-Prescott Coefficients on Climate Forcing and Solar PV 
Technology Selection 
 Solar energy estimators have used the A-P model coefficient "a" to empirically 

determine the proportion of extraterrestrial solar radiation (Ho) in all sky conditions. 

Under clear sky conditions, the AP model coefficients (a + b) were used to calculate the 

proportion of Ho. The AP model based on an annual timescale was applied as an example 

using generalized datasets, that is, 
𝐻

𝐻𝑜
= 0.366 + 0.459 (

𝑆

𝑆𝑜
)        (5) 

where a=0.366 and b=0.459 

On sunny or clear days, solve equation (5) using the methodology of theoretical 

physics, where S = So, i.e., S/So = 1. The model parameters are changed to a+b=0.825. 

This means that under clear sky conditions, approximately 82.5% of extraterrestrial solar 

radiation (Ho) reaches the horizontal surface, while the remaining percentage is absorbed 

by clouds. On non-sunny days, however, S = 0, i.e., S/So = 0, and model (5) reduces to a 

coefficient of 0.366. This means that the clouds absorbed 36.6% of the total available 

sunlight.  

Despite the fact that global solar radiation has three components (namely direct 

solar radiation, diffuse solar radiation, and reflected solar radiation), the reflected 

component is often ignored because of its small proportion to the total radiation and the 

diffuse component. Therefore, most solar meteorological studies consider global solar 

radiation as a mixture of direct and diffuse components. This means that a greater 

percentage of the global solar radiation available on the horizontal surface can be 

attributed to normal direct irradiation on sunny days in West Africa. 

According to atmospheric studies, diffuse or diffuse radiation components 

dominate the available percentage of global solar radiation on non-sunny days 

(approximately 36.6% according to equation 5). Diffuse light accounts for about 36.6% 

of global solar radiation on non-sunny days. This means that, compared to a conventional 

solar module, the use of a monocrystalline (m-Si) solar module with the module's 

inherent characteristics of trapping and using a higher percentage of available stray light 

in temperate and humid climates can ensure significantly efficient performance during 

non-sunny days in the region. 

During sunny days, however, a larger percentage of the available global solar 

radiation (about 82.5% of the total) may be stimulated or produced in a tropical region by 

normal direct irradiation. This means that the region can experience extreme temperatures 

due to excess heat being trapped on the horizontal surface for months and days of the 

year. This could be attributed to clear skies, which allow direct radiation to penetrate 

easily due to low cloud cover and particulate matter in open savannah, enabling 

crosswind assessment and purifying air quality. As a result, the weather pressure 

parameters of clouds and aerosols that attenuate direct solar radiation through scattering 

and conversion of beam radiation are reduced. As a result, the region is likely to receive 

high solar fluxes throughout the year except for June-July-August, when the region 

suffers from a high precipitation regime in most of its southern parts due to open water 

bodies where increased pressure encourages steam, resulting in high rainfall in those 

regions. On the other hand, locations in north western Africa will have fewer rainy days 

and months, as well as longer dry seasons, than locations in the south of the region. 
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Extreme temperature events, according to the explanation, may be caused by 

higher tendencies to receive more direct radiation due to the atmosphere opening up as an 

open savanna region. As a result, the region may require solar PV modules resistant to 

extreme temperatures to harness the region's abundance of solar radiation, especially in 

this era of rising global temperatures that are causing climate change and devastating the 

global environment and economy. This suggests that polycrystalline (p-Si) solar 

photovoltaic modules suitable for harnessing solar radiation with high-performance 

capabilities and module resistance to extreme temperatures could be found in the region. 

According to several literary works, arid, semi-arid and desert locations should use p-Si 

to harness solar energy fluxes, while humid regions should use m-Si [37, 41, 42]. 

However, in this era of climate change, the opening up of the atmosphere caused by high 

clarity index, direct normal irradiance, and low diffuse light, as well as shared 

socioeconomic pathways caused by low anthropological activity, may not result in 

increased solar radiation global and ambient temperature. Climate change is caused by a 

variety of atmospheric forcing factors. Consequently, it is recommended to establish a 

global climate model in the region accessible through several databases to determine the 

impacts of climate change on global solar radiation and ambient temperature. 

 

Effects of Hargreaves-Samani (HS) Coefficient on Climate Forcing and Solar PV 
Technology Selection  
 In West Africa, the values of the adjusted coefficient of the Hargreaves-Samani 

model (HS) are generated using the retrieved datasets described in Section 2. 

𝐻 𝐻𝑜 = 0.216(∆𝑇)0.5⁄         (1) 

𝐻 𝐻𝑜 = 0.17(∆𝑇)0.5⁄         (2) 

where equation (1) represents adjusted coefficient of Hargreaves-Samani coefficient 

obtained for West Africa, whereas, equation (2) stands for original coefficient of 

Hargreaves-Samani model simulated in North America.  

This shows that the adjusted Hargreaves-Samani coefficients (AHC) for West 

Africa is given as 0.216. The value generated in this study is greater than the results 

reported by other researchers around the world. Allen et al. [22] used the ratio of site 

atmospheric pressure to sea level to estimate the empirical coefficient of the Hargreaves-

Samani (HS) model. Allen reported values of 0.17 for inland regions and 0.20 for coastal 

regions. Hargreaves et al. [23] calibrated the HS model and obtained an AHC of 0.16 for 

inland regions and 0.19 for coastal regions. Adaramola [43] estimated AHC at 0.1945 for 

the inland region of Akure, Nigeria. For Osogbo, Nigeria, Ohunakin et al. [40] found 

0.1141. Nwokolo and Ogbulezie [15] found the following values for different parts of 

Nigeria: Calabar reported an AHC of 0.27, Port Harcourt 0.25, Uyo 0.25, Yenagoa 0.25, 

Warri 0.25, Asaba 0.23, and Benin City was 0.20, Ikeja was 0.20, and Enugu, Akure, 

Ilorin, Ibadan, Lokoja, Jos, Bauchi, Gusau, Yola, Kaduna, Maiduguri, and Sokoto were 

all 0.20. The authors also performed simulations for Kano and Nigeria as a whole. 

Overall, the authors obtained values of 0.22 and 0.20 for the coastal and interior regions 

of Nigeria, respectively. 

The AHC coefficient obtained in this study is consistent with those reported 

globally. However, the differences in values from one site to another could be attributed 

to the fact that global solar radiation is entirely dependent on the local climate and 

regional geography of the site. However, this high value of 0.216 corresponds to the high 

values found mainly in coastal regions around the world. Nwokolo and Ogbulezie [15] 
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reported 0.22 for the coastal region of Nigeria; Allen [22] reported 0.20; and Hargreaves 

et al. [23] reported 0.19 for the coastal region. AHC values should be higher in coastal 

regions than inland regions, according to numerous experimental results from different 

parts of the world. This also implies that the smaller the air temperature gradient 

(difference between maximum and minimum temperature), mainly due to the influence of 

open bodies of water on the atmosphere, the greater the AHC, which may result in a 

larger error in estimating global solar radiation (H) from the HS model found in West 

Africa. 

In contrast, the lower AHC obtained in the literature for the interior region is due 

to a decrease in humidity and cloud cover, which reduces long-wave radiation to the 

ground, thereby enhancing the effect of air temperature range on global solar radiation, 

which may cause a lower AHC in the region. This means that the higher the air 

temperature range, which is primarily caused by decreased humidity, cloud cover, diffuse 

solar radiation, and so on in the atmosphere, the smaller the AHC, which could improve 

the HS model's estimation of global solar radiation. For annual values, the AHC value 

reported in this study is higher than that of the original HS model (0.17).  

According to the results, using the original HS model value of 0.17 is grossly 

inadequate for estimating global solar radiation in West Africa. Rather, a value of 0.216 

can improve model performance. However, since the obtained value corresponds to the 

values of the coastal region as indicated by numerous literature sources [22, 15, 21, 43], 

an increase in cloudiness, diffuse solar radiation, and humidity, which mainly return 

additional long-wave radiation to the ground, thus reducing the influence of the air 

temperature gradient on global solar radiation, is thus expected in the region. This is 

obvious because the increase in cloud cover, humidity, and diffuse solar radiation, 

according to various atmospheric researchers, results in a decrease in the direct solar 

radiation available through the diffusion component of the solar radiation beam, while the 

solar radiation overall remains constant. However, as global temperatures rise and 

anthropological activities increase, which is inevitable in a developing region, and more 

and more additional longwave radiation is added to the ground, global solar radiation is 

expected to begin to decline rapidly in the near future. while the ambient temperature in 

the region will rise rapidly. This could lead to a warmer environment, a decrease in 

global solar radiation potential and normal direct radiation, and an increase in diffuse 

light. This means that as the global effects of climate change increase, West Africa will 

become warmer, with a corresponding decrease in global solar and normal direct 

radiation and an increase in diffuse solar radiation. 

In this case, p-Si technology will be the best choice to take advantage of the 

region's abundant solar energy. This is because, compared to other solar PV modules, the 

solar technology has higher module intrinsic characteristics to withstand the extreme 

temperatures of the region. According to Dutta et al. [41], solar PV generation will 

decline in Africa, including North Africa, West Africa, Cameroon, the Republic of the 

Congo, and the Democratic Republic of the Congo. Photovoltaic and concentrated solar 

power generation in Africa, North Africa, and West Africa is likely to decline, according 

to Crook et al. [42]. Gaetani et al. [44] reduced near-future PV energy availability in 

Europe and Africa in aerosol-climate modeling experiments. Huber et al. [45] 

investigated the impact of long-term changes in solar radiation projections based on 

CMIP5 climate models on PV energy yields in Africa and parts of West Africa. 

According to Zou et al. [46], Phase 5 models of a combined intercomparison project in 

Africa and West Africa showed a reduction in global surface solar radiation and 
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photovoltaic power. Bazyomo et al. [47] showed a decline in PV generation in West 

Africa, with the exception of Sierra Leone. Fant et al. [48] projected small changes in 

solar PV generation in 2050, with an increase in the winter and a decrease in the summer 

in most regions of Southern Africa. Patchali et al. [49] also reported reductions in global 

solar radiation at several locations in Togo, West Africa. Ohunakin et al. [50] showed a 

decrease in global solar radiation in Nigeria, with the largest possible decrease in 

southern Nigeria. 

 

Effects of Aerosol and Cloud on Climate Forcing  
In general, atmospheric aerosols enhance the scattering of radiation from the sun 

to the ground. Variations in atmospheric properties such as humidity and aerosol 

concentrations can significantly modify the spectrum of radiation passing through the 

atmosphere, both by scattering radiation and by absorbing radiation at specific 

frequencies. This can counteract the greenhouse effect by reflecting back incoming solar 

radiation, thus cooling the planet. These solar-radiation management techniques have 

been discussed in the recent literature in connection with a limitation of aerosol efficacy 

on regional climate [51]. Some earth science programs have begun to study the effects of 

indirect aerosolization. Aerosol particles play a role in snow formation and the Arctic Sea 

ice melt. Indirect aerosol effects enhance satellite views of Earth. They could also modify 

cloud lifetime and cover ocean surfaces, but there is not enough evidence to say that they 

have that much effect. CO2 emissions in the atmosphere are a major cause of global 

warming and have been estimated to have increased over 30% per year on average 

between 1973 and 2000. Indeed, as the figures show there have been large reductions in 

sunshine duration during the 20th century. In the light of this, Pope et al. [51] observes 

that the solar radiation does not reach all places on Earth at the same time; atmospheric 

particulate matter is a key culprit. The dimming or brightening of the atmosphere is 

caused by air pollution and can be mitigated. The transmittivity of the atmosphere plays a 

key role in explaining some of the observed changes in global dimming and brightening. 

Here, the change in the transmittivity of the atmosphere must come from some causes 

other than climate change, so "changes in the concentration and optical properties of 

aerosols" will not suffice. Moderate increases in surface cooling, slow surface heating, 

drying of air and soil, damage to regional circulation systems, reduced removal of 

pollutants from the atmosphere and the hydrological cycle are all consequences of light 

pollution. At present, Earth climate is generally warmer than it was over the last two 

millennia. While current climate models include both effects, they do not include the 

feedbacks caused by changes in cloud cover. Solar dimming is a form of cloud 

interference. The most dramatic solar dimming effects, such as those on the African 

continent, result from volcanic eruptions and fireballs. Solar dimming results from 

surface cooling, an increase in atmospheric solar heating, a disruption of regional 

circulation systems, changes in atmospheric thermal structure, suppression of evaporation 

and precipitation, a slowing down of the hydrological cycle. Depending on the extent of 

the alterations, there may be changes in ocean circulation and weather patterns that could 

cause major alterations in the hydrological cycle. Another consequence of changing 

oceanic currents might be the shifting of continental glaciers, thereby increasing the 

Earth's albedo. The anticipated changes to the hydrological cycle could be disastrous. Yet 

existing estimates show that these effects, even if substantial, cannot be the sole cause of 

climate change at present. The practical implication is that global dimming results in 

significantly reduced plant growth [52]. Slight and apparently easily resolved, global 
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dimming may instead have far-reaching effect. Additionally, they play an important role 

in socialization processes: For instance, they influence the infant's ability to make direct 

contact with others and its early attachment to the parent. We anticipate that aerosols will 

pose more hazards as the planet becomes warmer. Salby [53] observes that atmospheric 

pressure can decrease over a volcanic plume by several millibars. The author, however, 

concluded the main threat to the earth's climate is the release of sulfuric acid aerosols by 

volcanoes. He also argues that when volcanic eruptions release particles into the 

atmosphere, they cool down the troposphere and thus slow global warming. In the mid-

nineteenth century, dust particles originating in Asian deserts accumulated over Europe 

and Northern America, causing violent storms that produced both summer and winter 

droughts. Contrary to Salby's assertions, it is well known that volcanic eruptions affect 

climate change. These aerosols serve as scavengers, with the effect of allowing a residual 

layer to exist at the interface between air and water. For example, large volcanic 

eruptions and such fluctuations in the content of atmospheric aerosols affect how aerosols 

are transported to different regions of the atmosphere [54]. The increasing frequency of 

ash emissions observed since the start of the twentieth century coincides with a 

significant cooling of the Earth's climate. Over time, aerosols (large particles and droplets 

in the atmosphere) play an important role in climate fluctuations. Scientists have studied 

the albedo effect and aerosols for centuries, but this novel provides a very human look at 

the result of increased emissions. Earth's climate fluctuates rapidly, because the net 

radiation to Earth is altered by the sun's light and heat output. One of the most important 

roles that aerosols play in climate change is to scatter sunlight, which is an essential 

aspect of the general circulation process. Besides also reflecting the influences of global 

climate change, volcanic eruptions may lead to an increase in ozone depletion [55] and an 

overall decrease in cloudiness and dimming of sunshine at earth's surface. Thus, the 

anthropogenic emissions of aerosols impact climate changes [56]. The variable 

equilibrium constants (K) of some phase changes tend to decrease with increased 

concentrations of aerosols [57]. The moisture content, cloud liquid water content, and 

latent heat storage characteristics of the atmosphere show a consistent response to aerosol 

increases [58]. When the albedo effect is balanced by aerosol absorption of incoming 

radiation, this causes the net cooling effect in polar areas. 

 

Effects of Cloud and Aerosols on Air Quality 
One interpretation of this plot idea is that the climate forcing effects of aerosols 

and clouds influence air quality through the following processes and mechanisms: 

causing small but significant changes in ventilation rates; precipitation scavenging; 

changes in chemical production and loss rates; and dry deposition. In the earlier studies, 

the ozone concentration had a low sensitivity to temperature (2 to 3.7 times less) than had 

been observed for PM10 [non-particulate matter] and black carbon. The researchers 

found that ozone is strongly associated with temperature, as ozone concentrations in both 

warm and cold years decrease and increase, respectively. Since the date at which the 

temperature of the Earth's atmosphere began to rise, it has increased annually by 0.85 K. 

The warming that results from the burning of fossil fuels has major implications for the 

chemical composition of ozone, a pollutant of considerable concern for public health. 

Although it was previously known that ozone was dependent on temperature and altitude, 

the findings from this study were remarkable. Ozone is a reactive, unstable chemical 

formed from oxygen molecules when ultraviolet light from the sun hits ground level 

pollutants. Ozone is a molecule that consists of three oxygen atoms bound together in a 
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molecule that resembles an H. A new study [60] published recently showed that 

temperature correlated with ozone and water vapor in the atmosphere over land. An 

increasing number of studies suggest that an increase in temperature is the main cause of 

this ozone depletion. From 1940 to 1976, the earth was cooler, and during this time there 

were three times as many days when the minimum overlying ozone concentration fell 

below 0.12 parts per billion (ppb). The best correlation, from which the present-day 

figure of 0.84 is derived, occurs between ozone and temperature in the lower atmosphere. 

Therefore, according to the authors, ozone forms when warmer air near the surface 

moves upward toward cooler layers of air. Today, this knowledge has helped us make 

considerable progress in reducing stratospheric ozone depletion, which would eventually 

lead to a significant reduction of ultraviolet radiation reaching the Earth's surface. Ozone 

and high temperatures are examples of a positive autocorrelation because ozone is 

sensitive to changing temperature and higher temperatures lead to more ozone, in spite of 

the fact that these variables have no direct causal relationship. Ozone is a poisonous gas, 

found in the atmosphere and emitted by some industrial emissions and forest fires. Large 

numbers of ozone molecules can be created when sunlight breaks apart ozone molecules 

with oxygen atoms (ozone is comprised of two oxygen atoms). Ozone affects 

temperatures through absorption of infrared radiation by liquid water, which returns the 

energy to space as long as it remains liquid.  

Ozone production occurs in the stratosphere as well, where the ionization of water 

molecules by solar ultraviolet radiation (UV) reduces the reactive hydroxyl radical. Most 

of these NMVOCs are harmful to the ozone layer and produce secondary organic 

aerosols (SOAs) [59]. As the concentrations of NMVOCs and NOx in the atmosphere rise 

due to anthropogenic climate change, ozone levels are expected to increase [60]. Ozone is 

produced in the troposphere by the photochemical oxidation of carbon monoxide (CO), 

methane and non-methane volatile organic compounds (NMVOCs), and the hydroxyl 

radical in the presence of reactive nitrogen oxides. 

 
 
CONCLUSIONS 
 The effects of the Angstrom-Prescott [5] and Hargreaves-Samani [21] coefficients 

on climate forcing and solar PV technology selection in West Africa were studied using 

monthly averaging datasets. The main finding was that the Angstrom-Prescott and 

Hargreaves-Samani coefficients are ineffective for assessing global solar radiation over 

West Africa. On the other hand, coefficients fitted in this study were more efficient for 

calculating the Angstrom-Prescott and Hargreaves-Samani coefficients in the region. 

Consequently, if global solar radiation ground measurement datasets were not available 

in West Africa, the following models based on sunlight and temperature could be used: 
𝐻

𝐻𝑜
= 0.366 + 0.459 (

𝑆

𝑆𝑜
)       (6) 

𝐻

𝐻𝑜
= 0.216(∆𝑇)0.5        (7) 

According to the above equation, AP parameters obtained on an annual basis 

include a = 0.366 and b = 0.459, whereas the Hargreaves-Samani coefficient of 0.216 can 

be used as more accurate parameters than the FAO-recommended a = 0.25 and b = 0.5, as 

well as the 0.17 recommended by Hargreaves and Samani [21]. The effects of the 

Angstrom-Prescott and Hargreaves-Samani coefficients were also examined to determine 

the best solar PV model for West Africa. According to the parameters of the Angstrom-

Prescott and Hargreaves-Samani coefficients, the p-Si module is more reliable than the 



 

Peer-Reviewed Article   Trends in Renewable Energy, 9 

 

 

Tr Ren Energy, 2023, Vol.9, No.1, 78-106. doi: 10.17737/tre.2023.9.1.00150 101 

 

m-Si module, because the p-Si module has a higher tendency to withstand the high 

temperatures projected to affect the region due to its higher module intrinsic properties 

[61]. 
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