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Biomass can be converted to biofuels and bioproducts via 
thermochemical processes. Biochar is one of the major products of 
thermochemical conversion of biomass. The efficient use of biochar is 
critical to improving the economic viability and environmental 
sustainability of biomass conversion technologies. Applications of 
biochar for both agricultural and environmental benefits (e.g. as soil 
amendment, for inorganic pollutant removal) have been studied and 
reviewed extensively. However, biochar for energy storage materials and 
catalytic applications has not been widely reviewed in the recent past. 
This review aims to present the more significant recent advances in 
several biochar utilizations such as catalysts and supercapacitors. 
Discussions on biochar production technologies, chemistry, properties, 
characteristics, and advanced functionalization techniques are provided. 
It also points out barriers to achieving improvements in the future. 
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Introduction  
  

 Energy crisis, environmental pollution, and global warming are serious problems 

that are of great concerns throughout the world. Sustainable development requires 

discovering economically viable and environmentally friendly energy sources with the 

aim of solving these problems. 

 One important aspect of such research is to synthesize a range of materials that 

can be used to resolve many of the challenges encountered (e.g., environmental pollution 

and global warming). For example, materials with catalytic functionalities can be 

developed to convert renewable sources to fuel or chemicals. Absorbents or catalytic 

materials can be developed to capture CO2 or remove pollutants. Materials with high 

storage capacities can be produced for the storage of low-cost clean renewable energy 

(such as solar, wind, and bioenergy) [1]. Carbon-based materials have attracted 

considerable interest in many energy-related applications, such as energy storage in 

supercapacitors and Li-ion batteries, catalysis/electrocatalysis, absorption, and gas 

separation and storage, due to their abundance, chemical and thermal stability, 

processability, and the possibility of tuning their textural and structural characteristics to 

fulfill the requirements of specific applications.  
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 Different routes have been used to synthesize carbon-based materials, such as 

chemical vapor deposition, arc discharge synthesis, and carbonization of synthetic or 

natural polymers. However, these methods usually require tedious synthetic methods as 

well as organic solvents and electrochemical treatment. In addition, they often rely on 

relatively expensive fossil fuel-based precursors, the use of metal catalysts, and 

complicated apparatus involving high processing temperatures, none of which are 

environmentally and economically sustainable. These drawbacks lead to high production 

cost and limit the large-scale production and commercialization of such carbon materials. 

Alternatively, thermochemical conversion (e.g. pyrolysis and hydrothermal carbonization) 

of biomass is a promising route, offering low-cost, low temperature, and environmentally 

friendly production of novel carbon materials from natural precursors without the need to 

use toxic chemicals [2].  

 Biomass is a naturally abundant renewable resource that has great potential as a 

raw carbon material for synthesizing various carbon materials [2]. Considerable attention 

has been given to lignocellulosic biomass such as agricultural residues, woody biomass 

and energy crops [3]. Recently, biochar, a product from biomass thermochemical 

conversion, has received increasing attention for the use in several applications due to the 

cheap, abundant, and sustainable advantages. The most common biochar application is 

soil amendment to mitigate greenhouse gas emission and improve soil health. Recent 

developments in activation procedures and/or precursors allow a better control over the 

pore structure and surface property. These characteristics have widened the use of 

biochar to more demanding applications, including use biochar as a precursor for making 

catalysts, energy storage, gas storage and contaminant adsorbents. These new high-value 

applications are still in their infancy, and further research and development are needed to 

reach commercialization.  

 This review addresses the opportunities and advantages of using new technologies 

to convert biomass into biochar-based functional materials with applications in energy 

storage and catalysis. Discussions on biochar production technologies, chemistry, 

properties, characteristics and advanced methods to modify its structure and properties 

are also provided. 

 

Biochar Production 
 
Overview of the biochar production technologies  
 Research to date has shown biochar to be a carbonaceous solid consisting of an 

aromatic, furanic, and aliphatic backbone and numerous oxygen defects. The 

international Biochar Initiative defines biochar as “a solid material obtained from the 

thermochemical conversion of biomass in an oxygen-limited environment” [4]. Biochar 

is produced in solid form by dry carbonization, pyrolysis or gasification of biomass, and 

in slurry form by hydrothermal carbonization (HTC) of biomass under pressure. Typical 

operating conditions and char yields of different thermochemical processes are shown in 

Table 1 [5]. An advantage of the thermochemical process is that it is relatively simple, 

usually requiring only one reactor, thus having a low capital cost. 

 Pyrolysis is the most common method to produce biochar, which can be 

categorized into slow pyrolysis and fast pyrolysis depending on the heating rate and 

residence time. Slow pyrolysis, also called conventional carbonization, produces biochar 

by heating biomass at a low heating rate for a relatively long residence time (up to several 
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days). According to the literature, the production of biochar from carbonization of 

biomass can be dated back for centuries [6].  

 

Table 1. Different thermochemical processes and typical char yields from these 
processes 

Process Temperature (°C) Residence Time Char Yield (wt%) 

Slow Pyrolysis 400-600 min to days 20-50 

Fast Pyrolysis 400-600 ~1 s 10-20 

Gasification 800-1000 5-20 s ~10 

Hydrothermal Carbonization 160-350 1-12 h 30-60 

  

On the other hand, fast pyrolysis involves the rapid thermal decomposition of 

organic compounds by heat in the absence of oxygen, which results in the production of 

biochar, bio-oil, and gaseous products. Fast pyrolysis produces biochar at a high heating 

rate (above 200 °C/min) and short residence time (less than 10 s). The major differences 

between the two pyrolysis methods are the yields of biochar and bio-oil: Fast pyrolysis 

favors a high yield of bio-oil, while slow pyrolysis favors a high yield of biochar. 

 Gasification is different from general pyrolysis processes. For gasification, the 

biomass is converted into primarily a gaseous mixture (containing CO, H2, CO2, CH4, 

and smaller quantities of higher hydrocarbons) by supplying a controlled amount of 

oxidizing agent under high temperature (greater than 700°C). The resulting gas mixture is 

known as synthetic gas or syngas. The typical biochar yield of gasification averages 

about 10 wt% of biomass [7]. 

 Hydrothermal carbonization (HTC) is also called wet pyrolysis, direct 

liquefaction, hydrothermal upgrading/pyrolysis, and solvolysis. The use of water as a 

solvent obviates the need to dry biomass and permits reactions to be carried out at lower 

temperatures in comparison with pyrolysis. HTC of biomass takes place in water at 

elevated temperatures (160–350 °C). Since the water temperature is above 100°C, the 

reaction pressure also must be elevated (more than 1 atm) to maintain the water in a 

liquid form. Low-temperature HTC can mimic the natural coalification of biomass, 

although the reaction rate is higher and the reaction time is shorter compared to the 

hundreds of years of slow natural coalification of biomass. Char yield of low-temperature 

biomass HTC varies from 30% to 60% depending on the feedstock properties, reaction 

temperature, and pressure [8]. Since HTC requires water, this may be a cost-effective 

biochar production method for feedstocks with high moisture content.    

 The char produced from HTC often is called hydrochar. It is important to 

differentiate biochar from hydrochar because the chemical and physical properties differ 

significantly from each other. Chemical properties of biochars from gasification or 

pyrolysis were compared to hydrochars from HTC in the publication of [9]. The 

observations showing that hydrochars have lower proportions of aromatic compounds 

than biochars (less stable) but are rich in functional groups (higher cation exchange 

capacity) than biochars [9]. 
 

Mechanism of biochar formation in the biomass thermochemical conversion 
process 
 Biomass undergoes series of chemical reactions that are highly complicated and 

partially understood during the biochar or hydrochar production. The understanding of 
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the mechanism involved in biochar formation is essential in order to make it possible to 

tune the morphology, functionality, and porosity of the resulting biochar.  

 The overall mechanism of biochar formation consists indirectly of the 

pyrolysis/HTC mechanisms of the main biomass components, namely, cellulose, 

hemicellulose, and lignin. However, the reaction mechanisms of these two processes are 

different, which have been studied by many investigators [10, 11]. The HTC occurred in 

an aqueous medium which involves complex sequences of reactions including solvolysis, 

dehydration, decarboxylation, hydrogenation of functional groups, etc. The 

hemicelluloses were partly undergoing hydrolysis at lower temperatures and results in the 

formation of biochar/hydrochar through polymerization (water solubility homogenous 

reaction). For pyrolysis, the reaction mechanism is characterized by decreasing degrees 

of polymerization through homogeneous reactions in the gas phase. A number of 

pyrolysis mechanisms of cellulose, hemicellulose, and lignin have been proposed in [12, 

13].  

 Several factors can influence the production and properties of biochar, of which 

the reaction temperature and the nature of biomass feedstock are the main factors [14]. 

The properties of biochar can be tuned by modifying the thermochemical operating 

conditions such as temperature, substrate concentration, residence time, and catalysts. 

Further studies are required to develop efficient catalysts for the conversion of biomass to 

biochar with the desired functional groups and porous structure.  

 
Feedstock for biochar production 
 A number of lignocellulosic biomass materials have been used as feedstocks for 

pyrolysis and HTC. For example, Minowa et al. [15] tested twenty species of forest and 

agricultural residues with different lignin, hemicellulose, and cellulose contents. However, 

animal wastes and aquatic materials with low lignin and cellulose contents have not been 

studied as extensively as the high lignin and cellulose content biomass due to their 

difficult handling conditions. Besides, Giant Miscanthus as a bioenergy feedstock has 

gained importance in the recent few years [16]. 

 Managing animal and crop wastes from agriculture poses a significant 

environmental burden that leads to pollution of ground and surface waters [17, 18]. These 

wastes, as well as other biomass, are usable resources for biochar production. Not only 

can energy be obtained in the production process, but the volume and weight of these 

wastes are significantly reduced, which is an important aspect of managing agricultural 

wastes [19].  

 Biomass with different chemical compositions (i.e. different contents of 

hemicellulose, cellulose, and lignin) are thought to have a significant impact on the 

biochar surface composition, reactivity with the chemical activating agent, and yields. A 

detailed comparative study on biochar produced from different feedstocks will be of great 

importance to identify common features and develop appropriate protocols for biochar-

based materials production. Furthermore, it will be of immense interest to develop a 

correlation between the surface characteristics of biochar and composition of starting 

material with the change in thermochemical parameters.  
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Biochar Characterization 
 

 Physical, chemical, and mechanical properties of biochars can vary with 

production conditions and raw feedstock. It is very important to characterize biochar 

because its characterization plays a vital role in determining their applications in industry 

and environment.   

 

Proximate, elemental composition and Inorganic fraction characterization 
 The proximate analysis can provide the weight fractions of moisture, volatile 

mater, ash, and fixed carbon. There are standardized methods for performing a proximate 

analysis (ASTM, ISO, DIN, and SB) [20]. Apart from the proximate analysis, the 

elemental composition of biochar are usually determined using analytical devices, such as 

an elemental analyzer. The principal elements of biochar are C, H, and O, with N 

sometimes included. The exact content differs greatly depending on the nature of the 

biomass feedstock. Usually, the carbon content of a typical biochar is in the range of 45-

60 wt %, the hydrogen content 2-5 wt %, and the oxygen content about 10-20% [21].  

 In addition to the proximate and the bulk elements, various inorganic elements 

present in biochar also substantially influence its properties. Several analytical techniques 

can be applied to characterize the inorganic elements: inductively coupled plasma atomic 

emission spectroscopy (ICP-AES), X-ray fluorescence (XRF), and X-ray diffraction 

(XRD). ICP-AES can be used to determine the absolute concentrations of the inorganic 

elements (K, Mg, Ca, Na, Si, Al, Fe, Mn, etc.). XRF is often used to determine the 

inorganic (ash) compositions in terms of weight fraction of oxides and XRD can be used 

to identify the crystalline minerals in ash [22, 23]. The contents and species of inorganic 

elements are highly dependent on the nature of the biomass feedstock and reaction 

conditions (e.g., temperature). 

 

Textural characterization and morphology 
 The structure of biochar can be analyzed using a broad suite of analytical 

techniques. Scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) are techniques commonly used for the general characterization of biochar (e.g., 

particle structure and surface topography) [24]. X-ray diffraction (XRD), Raman 

spectroscopy, and energy dispersive X-ray (EDX) spectroscopy are the most widely used 

methods for the characterization of the biochar microstructure [25]. Surface area and pore 

structure can be analyzed by using the Brunauer, Emmett, and Teller (BET) method, in 

which N2 and CO2 are the most widely used sorbate gas [20]. It is also suitable for the 

characterization of the biochar textural features, such as surface area and porosity. In 

addition to the above-mentioned routine characterization methods, there are also some in-

depth characterization techniques used to understand the biochar fine structure. For 

example, solid-state 13C nuclear magnetic resonance (NMR) is a commonly used 

technique for carrying out comparisons that do not rely on peak ratios [26, 27]. As it has 

already been mentioned in the earlier sections, the biochars produced in pyrolysis usually 

exhibit very different structures than those obtained from the HTC process.   

 

Surface functionality characterization 
 The surface functionality can be characterized by X-ray photoemission 

spectroscopy (XPS), FTIR, and temperature programmed desorption (TPD) techniques 

[28- 30]. The detailed surface chemistry of biochar, surface functionalities, and 
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composition can be obtained from these technologies. Surface functional groups play an 

important role in the application of biochars as functional materials, e.g., catalysts, 

adsorbents, and electrode materials. The surface chemistry of biochar is very variable due 

to its highly heterogeneous composition. The main contribution to the reactivity of 

biochar is the fact that the surface usually exhibits a range of hydrophilic and 

hydrophobic functional groups both acidic and basic [31]. 

 Although substantial progress has been made in the development of different 

techniques for the analyses of the structure, composition, and surface chemistry of 

biochar, future research efforts are required in order to explore the existence of various 

categories of biochar with unique molecular compositions and physical architectures. 

Future investigation into the effects of both charring conditions, such as charring duration 

and heating rates, as well as the nature of biomass (wood and grass) on the properties and 

yields of individual biochar categories may help refine the present classification scheme. 

 

 

Biochar Modification 
 
Tuning of surface properties  
 Typical biochars produced from a thermochemical conversion process present 

limited polar oxygenated surface groups such as C−O, C=O, and OH and possess very 

limited porosity and surface area (usually <150 m2/g) [32]. These inherent disadvantages 

limit the wide application of biochar as a useful functional material. For example, an 

abundant surface functionality is highly desirable for biochar destined to be used as a 

catalyst or adsorbent, because it may provide more active sites for catalysis or pollutant 

adsorption. Porosity and large surface areas are favorable for biochar used as an energy 

storage material or catalyst because they facilitate high mass transfer fluxes and high 

active loading.      

 Therefore, in order to enhance the performance of functionalized biochar 

materials, a suitable modification process is essential. The flexibility of biochar materials 

is that such groups can be easily tuned, and this offers a promising platform for 

synthesizing various functional materials. A number of functional materials synthesized 

through the functionalization/modification of the biochar materials are shown in Table 2.  

 

Table 2. Typical functionalization/modification processes for tuning surface 
properties of biochar materials 
Functionalization 

/Modification 

process 

Surface functional group 

(characteristics) 

Applications 

Surface Oxidation C=O, OH, and COOH Pollutant removal; soil remediation 

Surface Amination NH2 Pollutant removal; CO2 capture 

Surface 

Sulfonation 

SO3H Solid acid catalyst 

Surface and Pore 

structure 

modification 

Porous biochar materials Energy storage; CO2 capture; catalyst 

support 

Surface 

recombination 

Biochar support nanostructure Energy storage; CO2 capture; catalyst 
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 Surface oxidation is the most widely used method for creating oxygenated 

functional groups on the surface of biochar. Several types of oxygenated functional 

groups, such as carboxyl, phenolic hydroxyl, lactones, and peroxides, can be formed by 

surface oxidation treatments [33]. Oxygenated functional groups such as C=O, OH, and 

COOH are important for enhancing biochar performance in various applications. For 

example, Xu et al. found that surface OH and COOH groups can greatly enhance the 

adsorption capacity when biochar is used as an adsorbent for heavy-metal removal [34]. 

Hydrogen peroxide (H2O2), ozone (O3), potassium permanganate (KMnO4), and nitric 

acid (HNO3) are the most frequently used surface oxidation reagents [35-37].  

 Besides oxygenated functional groups, basic amino groups on the surface of 

biochar have also been shown to greatly improve its performance in applications such as 

CO2 capture and pollutant adsorption [38]. Surface amination is one of the most widely 

used methods to introduce amino groups into biochar. Ammonia (NH3) treatment at high 

temperatures is a conventional surface amination technique that has been used 

extensively for decades [39]. Alternatively, chemical modification using some amino 

containing reagents is an environmentally friendly method also used for the surface 

amination of biochar. Compared to NH3 treatment and chemical modification, the direct 

pyrolysis/HTC of nitrogen-rich biomass is a more sustainable method for the preparation 

of N-enriched biochar, because it does not require the use of NH3 or expensive chemical 

reagents.  

 Sulfonic groups (SO3H) are the main functional group in solid acidic materials. 

These are widely used as alternatives to liquid acids for the catalyzation of many 

chemical reactions [40]. Surface sulfonation of biochar using concentrated sulfuric acid 

or its derivatives (e.g., oleum and chlorosulfonic acid) is the most commonly used 

method for the preparation of biochar-based solid acids [41]. 

 

Pore structure tailoring 
 One limitation of the biochar materials is that they often possess only a small 

number of micropores with a small surface area compared to conventional activated 

carbon. For applications in energy storage in supercapacitor, catalysis/electrocatalysis, 

and CO2 capture or H2 storage, controlled porosity and a high surface area are highly 

desirable. Thus, to facilitate their application in these fields, a variety of techniques have 

been developed to control the porosity and increase the surface area of biochar.         

 One of the most commonly used techniques for tuning the pore structure of 

biochar is in situ catalytic pore formation during biomass pyrolysis. The process is 

catalyzed by certain chemicals typically an acid, strong base or a salt, such as ZnCl2 and 

H3PO4 [42-44]. The chemicals are impregnated into the biomass prior to pyrolysis at a 

temperature of 450-900 °C. H3PO4 activation can not only introduce microspores but also 

P-containing functional groups into biochar, which can greatly improve the performance 

of the biochar materials in electrochemical energy storage. It has been found that ZnCl2 

can greatly increase the surface area and porous volume of the biochar produced [43]. 

 In addition to in situ catalytic pore formation during biomass pyrolysis, pore 

structure tailoring through post activation also were used to tailor the pore structure. Two 

steps are commonly involved in the post activation process: (1) direct pyrolysis/HTL of 

the biomass to produce original biochar with a very low pore volume and surface area 

and (2) activation of the biochar using physical or chemical methods to improve its 

porous structure and surface area. Post activation mainly includes physical activation 

with different oxidizing gases (e.g., air, O2, CO2, steam or their mixtures) and chemical 
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activation with KOH, NaOH, H3PO4 or ZnCl2. In the physical activation process, a 

carbon precursor is first exposed to pyrolysis in an inert atmosphere at 400-900 °C to 

eliminate the bulk of volatile matter, followed by partial gasification using an oxidizing 

gas at 350-1000 °C. The chemical activation process consists of the heat-treatment of a 

mixture of the carbon precursor and the activating agent at a temperature normally in the 

450-900 °C range [45]. In addition to conventional physical and chemical activation, 

some other approaches, such as templating, also have the potential to introduce porosity 

into biochar, although to date no such reports on biochar pore structure tailoring have 

appeared [46]. Two stage activation processes consisting of chemical activation step 

followed by physical activation have also been used to further enhance the porosity 

development and tune the pore structure [47].     

 

Biochar nanocomposites 
 Controlled synthesis of carbonaceous nanocomposites has become a hot research 

area, due to their improved hybrid properties with high potential values in many fields.  

As a result of the recombination of specific nanostructures on their surfaces, biochar-

based nanocomposites can be imparted with hybrid properties that in turn open up 

potential applications in many fields. The finial nanocomposites have been shown to be 

utile in many application fields, including catalysis, fuel cells, drug delivery, and bio-

imaging [48].  

 Two main methodologies are identified for the synthesis of such biochar-based 

nanocomposites: post-modification and in situ synthesis. The post-modification method 

implies coating of performed nanostructures (e.g., silica sphere, Fe3O4) or incorporation 

of inorganic nanostructures onto biochar materials (e.g., Ag, Au, Pt, and Pd) [48-51]. The 

in situ synthesis method implies of loading of metal nanoparticles directly to the biochar 

via a simple one step approach [8].  
 

 

Application of Biochar Materials 
 
 The most promising feature of the biochar-based material is that it’s sustainable 

and easily scalable allowing the production of different functionalized carbon and hybrid 

nanostructures with a range of practical applications. To date, the application of biochar 

was primarily focused on using biochar as a soil amendment. New state of the art 

applications of biochar is emerging, although most of the applications are still in their 

infancy. These applications include but not limited to energy production, agriculture, 

carbon sequestration, wastewater treatment, biorefinery, etc. Since many of the review 

articles have summarized the advances of activated carbon or biochar materials in 

environmental protection, and agriculture applications, we will not cover this topic in 

detail in this review. Here, we briefly summarize recent progress and the state of art in 

applications of biochar in catalysis and energy storage.  

 

Catalytic application  
 Biochar containing SO3H groups, also called biochar-based solid acids, represents 

a type of metal-free catalyst that is ubiquitously used in a wide variety of chemical 

reactions. The biochar-based solid acids have been demonstrated to be efficient catalysts 

for various acid-catalyzed reactions, such as the esterification of organic acids in an 

aqueous medium, acylation of alcohols and amines, and the alkylation of aromatics, as 
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well as the hydrolysis of biomass itself [52]. Biodiesel production through esterification 

is a typical reaction catalyzed by solid acids.  

 It is well-known that the performance of metal nanoparticle catalysts is greatly 

affected by their supporting materials. Biochar materials have been straightforwardly 

studied as supports to stabilize metal nanoparticles for different catalytic applications due 

to their high surface areas and functionalities, such as syngas cleaning and conversion of 

syngas into liquid hydrocarbons via Fischer-Tropsch synthesis [53]. Table 3 summarizes 

the recent studies on biochar catalytic applications.  

 
Table 3. Biochar unitization for catalytic applications   

Application Biochar type Effect Reference 

Syngas cleaning Pine bark (950°C) Tar reduction [54] 

Syngas cleaning Ni-Fe catalyst 
supported on rice husk 
biochar 

In-situ catalytic conversion of tar [55] 

Syngas cleaning Acidic surface 
activated carbon from 
switchgrass 

Tar, NH3, H2S removal [56] 

Fischer-Tropsch 
synthesis of 
syngas into liquid 
hydrocarbons 

Biochar-based iron 
nanoparticle from pine 
wood pyrolysis 

High efficiency of converting syngas 
into liquid hydrocarbon 

[57] 

Methane 
reforming 

Pt-Ru alloy 
nanoparticles 
supported on HTC 
biochar of furfural 

Hydrocarbon catalytic oxidations; 
heterogeneous catalysis 

[58] 

Biodiesel 
production 

Biochar-derived acid 
catalyst prepared by 
sulfonating biochar 
with concentrated 
sulfuric acid 

Transesterification of canola oil with 
alcohol and oleic acid due to high 
surface area and acid density 

[59] 

Biodiesel 
production 

Biochar-based catalysts 
made from peanut 
hulls, pine residues, 
and wood chips 

High efficiency in esterification of free 
fatty acids of vegetable oil and animal fat 
with methanol and high reusability due 
to their particle strength hydrophobicity, 
high surface area, and sulfonic acid 
group density. 

[60] 

Hydrolysis of 
biomass 

Biochar sulfonic acid 
catalysts prepared from 
bamboo, cotton, and 
starch 

High turnover number values for 
cellulose hydrolysis due to the 
multifunctional action of strong –SO3H,-
COOH, and-OH groups 

[61] 

Catalysis of 
various oxidation 
and reduction 
reactions 

Carbonaceous 
nanofibers (CNFs) 
prepared through a 
template-directed HTC 
process 

Displayed the persistent catalytic ability 
in a continuous-flow mode 

[62] 

Acylation reaction Starch biochar-silica 
composites bearing 
SO3H as the 
heterogeneous catalysts 

Reactants with NH2, OH, SH groups can 
be quickly acylated to yield target 
products with very high yields. 

[63] 
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 As shown in Table 3, biochar-based catalysts demonstrate favorable catalytic 

performance in various reactions. Besides, it can be recycled for several runs without 

significant loss of activity. However, it has relative low efficiency and low abrasive 

resistance compared with the commercial catalyst. In addition, the inorganic species in 

biochar may cause catalyst poisoning, thus decreasing the catalytic activity in some 

organic or electrochemical reactions [64]. Therefore, there is a need to develop new and 

sustainable ways to tailor the physicochemical properties of such catalysts in order to 

adopt them for specific applications.  

 

Energy storage application (Supercapacitor) 
 Supercapacitor, an energy storage device, has received attention to harvest energy 

due to its high-power density, long cycle life, and quick charge/discharge capability [65]. 

Supercapacitor can be used as uninterruptible power sources in electric vehicles, digital 

communications system, etc. The microstructure of supercapacitor electrodes has a great 

influence on supercapacitor performance. Carbon material with high surface area and rich 

porous structure are the primary raw materials for making supercapacitors due to its wide 

availability and low environmental impacts [66]. Producing attractive, high quality 

carbon material at low cost is critical for the development of the supercapacitor industry 

[67]. Table 4 listed some recent research activities regrading to the fabrication of 

supercapacitors using biochar from different feedstocks.  

 
Table 4. Supercapacitor performance of electrodes made from various 
precursors 

Material Surface 
area 

(m2/g) 

Capacitance 
(F/g) 

Reference 

Activated carbon from rubber wood sawdust <920 8-139 [68] 

Carbon nanotubes(CNTs) from oil palm fruit 
bunches 

1656 111 [69] 

Nanoporous carbons from sunflower seed shell 2509 311 [70] 

Functional microporous conducting carbon from 
dead leaves 

3404 273 [71] 

Templated carbon from acrylonitrile 1680 340 [72] 

 

Results indicated that the use of biochar is promising as an electrode due to its 

low cost and satisfactory performance. One of the great challenges in the development of 

supercapacitor technology is the relatively high cost when compared to other energy 

devices. Thus, future research should be directed towards the development of biochar-

based functional materials with high charge capacity and minimum equivalent series 

resistance in a cost-effective way. One-step synthesis without an additional activation 

process to obtain high density carbon or composite materials would be beneficial for the 

compact design of high power energy sources.  
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CONCLUSIONS 
 

            Recent advances in the biochar production, formation mechanism, and 

characterization are discussed in detail in this review. It is essential to modify the surface 

functionality and the porosity of biochar in order to enhance the performance of biochar 

materials for various applications. Processes used for turning the surface functionalities and 

pore structure of biochar, including surface oxidation, amination, sulfonation, pore structure 

modification, and recombination, are summarized and discussed. Abundant functional groups 

(e.g., C=O, -COOH, NH2, and SO3H), metal nanoparticles and inorganic nanostructures can 

be introduced onto the biochar surface. This allows the production of materials with different 

functionalized carbon and hybrid nanostructures for a range of practical applications. Recent 

progress and the state of art in applications of biochar in catalysis and energy storage are 

reviewed. Biochar-based catalysts exhibit favorable catalytic properties in a variety of 

reactions. In addition, the development of novel biochar materials, such as carbon 

nanotubes, functional microporous carbon, and activated carbons remain a primary 

choice for the construction of electrodes for commercial supercapacitor due to its low 

cost and satisfactory performance. Overall, the use of biochar as sustainable high-value 

materials seems to have a very promising future, and biochar properties need to be further 

improved and tailored for the appropriate applications.  
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