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These three papers cover the overall methodology for the identification 
and localization of faults that occur in main transmission and distribution 
lines when broadband over power lines (BPL) networks are deployed 
across the transmission and distribution power grids, respectively. In fact, 
this fault case is the only one that cannot be handled by the combined 
operation of Topology Identification Methodology (TIM) and Instability 
Identification Methodology (FIIM). After the phase of identification of 
main distribution line faults, which is presented in this paper, the main 
line fault localization methodology (MLFLM) is applied in order to localize 
the faults in overhead medium-voltage BPL (OV MV BPL) networks. 
The main contribution of this paper, which is focused on the identification 
of the main distribution line faults, is the presentation of TM2 method 
extension through the adoption of coupling reflection coefficients. 
Extended TM2 method is analyzed in order to identify a main distribution 
line fault regardless of its nature (i.e., short- or open-circuit termination). 
The behavior of the extended TM2 method is assessed in terms of the 
main line fault nature and, then, its results are compared against the 
respective ones during the normal operation, which are given by the 
original TM2 method, when different main distribution line fault scenarios 
occur. Extended TM2 method acts as the introductory phase (fault 
identification) of MLFLM. 
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1. Introduction 
 During the past few years, a tremendous development in the deployment of 

broadband over power lines (BPL) networks for enhancing the intelligence, stability and 

autonomy of the vintage power grid infrastructure has been witnessed [1], [2].  

Only considering the scale of transmission and distribution power grids in the countries 

of modern world, BPL technology can transform these traditional grids into an integrated 

intelligent IP-based communications network with a myriad of smart grid applications 

[3]-[5].  

 Apart from the size of today’s power grids, the recent interest in smart grids stems 

from the significant increase in electricity needs of our societies, the need for a more 
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interconnected power grid and a more dynamic manner of power management. Therefore, 

the demand for coordination, agility and feedback of a new global interconnected power 

grid implies the delivery of high-bandwidth smart grid applications with data rates that 

exceed 1Gbps due to the vast amount of information required across the grid. Since the 

transmission and distribution power grids were not originally intended for conveying 

high frequency signals, any communication across the grids would be exposed to severe 

adversarial factors, such as high and frequency-selective channel attenuation and noise 

[6]-[12]. 

 As concerns the determination of the channel attenuation and reflection 

coefficient of overhead medium-voltage (OV MV) BPL networks, the well-established 

hybrid method, which is employed to examine the behavior of various multiconductor 

transmission line (MTL) structures, is also adopted in this paper [4], [6]-[10], [13]-[24]. 

Given as inputs the OV MV BPL network topology, OV MV MTL configuration and the 

applied coupling scheme, the hybrid method gives as outputs the corresponding transfer 

function and reflection coefficients. Actually, hybrid method consists of: (i) a bottom-up 

approach that is based on the MTL theory, eigenvalue decomposition (EVD) and singular 

value decomposition (SVD); and (ii) a top-down approach that is denoted as TM2 

method and is based on the concatenation of multidimensional chain scattering matrices. 

In this paper, TM2 method of the hybrid method, which is analytically presented in [17], 

is extended in order to cope with the various load terminations of the main line (terminal 

loads) of the distribution BPL networks since the original TM2 method assumes that 

terminal loads of OV MV BPL networks are matched. 

 Apart from the aforementioned adversarial factors that deteriorate the quality of 

service of OV MV BPL networks, a number of serious problematic conditions that causes 

temporary or permanent damage to the integrity of power grid can jeopardize the 

uninterrupted operation and availability of the power distribution. According to [23]-[27], 

depending on the affected pieces of power grid equipment, the problematic conditions 

can be divided into two main categories, say: faults and instabilities. In accordance with 

[27], the fault category describes all the interruptions that may occur across the main and 

branch lines of a power grid. Between these two cases, it comprises the fault subcategory 

of main line fault that defines the main interest of this paper. In fact, the main line fault 

subcategory forms the only fault case which cannot be treated by Topology Identification 

Methodology (TIM) and Fault and Instability Identification Methodology (FIIM) in [25], 

[26]. Since main distribution line faults can be assumed to behave as either short- or 

open-circuit terminal loads depending on the location of the conductors of the main 

distribution lines after the fault, the behavior of the extended TM2 method during the 

determination of its reflection coefficients of the aforementioned terminal loads is first 

examined in this paper. Furthermore, the reflection coefficients of the extended TM2 

method during main distribution line faults are compared against the respective ones of 

the original TM2 method during the normal operation of OV MV BPL networks.  

The comparison of the reflection coefficients between the normal and fault condition is 

going to determine the fault appearance across main distribution lines.  

The rest of this paper is organized as follows: In Sec.II, the OV MV MTL 

configuration, the indicative OV MV BPL topologies, the bottom-up approach of the 

hybrid method and the main distribution line fault subcategory are presented.  

Sec.III deals with the top-down approach of the hybrid method and, especially, with the 

extension of TM2 method. Special attention is given to the determination of the reflection 

coefficients of OV MV BPL topologies when main distribution line faults occur.  
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In Sec.IV, numerical results are provided, aiming at marking out the behavior of 

the extended TM2 method as well as the reflection coefficient differences between 

the extended and original TM2 method during the normal and fault operation, 

respectively. Sec.V recapitulates the conclusions of this paper. 
 

 

2. OV MV MTL Configurations, OV MV BPL Topologies,  
Bottom-Up Approach of the Hybrid Method and Faults 
2.1 OV MV MTL Configuration 
 The OV MV MTL configuration, which is examined in this paper, is presented in 

Fig. 1(a) of [4]. The OV MV MTL configuration consists of the three phase lines  

( 3OVMV n ) of radius pMV,r  that are spaced by ΔΜV and hung at typical heights hMV 

above ground. The imperfect ground is considered as the reference conductor with 

conductivity σg and relative permittivity εrg. The exact values concerning the 

aforementioned properties are reported in [6], [7], [16], [18], [20], [28]-[30] while the 

analysis concerning the impact of imperfect ground on broadband signal propagation and 

transmission via OV MV MTL configurations are analyzed in [6], [7], [16], [18], [20], 

[31]-[33]. 

 

 

2.2 Indicative OV MV BPL Topologies 
 To cope with the significant BPL signal aggravation due to the  

channel attenuation and noise, OV MV BPL networks are divided into cascaded  

OV MV BPL topologies of average path lengths of the order of 1000m which are 

bounded by BPL repeaters. With reference to Fig. 1(a), a typical OV MV BPL topology 

is presented that is bounded by two repeaters at the position A and B. Arbitrarily, the 

repeater at the position A acts as the transmitting end whereas the other repeater acts as 

the receiving end. Depending on the number and length of the branches encountered 

across the BPL signal propagation, different OV MV BPL topologies may be considered. 

In these three papers, four indicative OV MV BPL topologies of  

average path length are examined, namely:  

1. A typical urban topology (denoted as urban case) with N=3 branches 

(L1=500m, L2=200m, L3=100m, L4=200m, Lb1=8m, Lb2=13m, Lb3=10m). 

2. A typical suburban topology (denoted as suburban case) with N=2 branches 

(L1=500m, L2=400m, L3=100m, Lb1=50m, Lb2=10m). 

3. A typical rural topology (denoted as rural case) with only N=1 branch  

(L1=600m, L2=400m, Lb1=300m).  

4. The “LOS” transmission along the same end-to-end distance 

L=L1+…+LN+1=1000m (denoted as “LOS” case) when no branches are 

encountered. This topology corresponds to Line of Sight transmission in wireless 

channels.  
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Figure 1. (a) General OV MV BPL topology [23]. (b) Main Distribution Line Fault in OV MV BPL 
topologies. 
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2.3 Bottom-Up Approach of the Hybrid Method, Coupling Schemes, Coupling 
Transfer Functions and Reflection Coefficients 
 Successfully tested in various transmission and distribution BPL networks  

[6]-[10], [13]-[22], [32]-[34], the well-established hybrid method consists of:  

(i) a bottom-up approach that is based on the MTL theory and eigenvalue decomposition 

(EVD) decomposition for the single-input single-output (SISO) systems of this paper; 

and (ii) a top-down approach that is denoted as TM2 method and is based on the 

concatenation of multidimensional chain scattering matrices. Through the original 

version of TM2 method, the hybrid method gives as outputs the corresponding modal 

transfer functions and modal reflection coefficients when the OV MV MTL configuration 

and OV MV BPL topology are given as inputs to the hybrid method. 

 On the basis of the applied coupling scheme, which is the practical way that the 

signals are injected into OV MV lines and the outputs of the hybrid method, coupling 

transfer functions and coupling reflection coefficients can be determined.  

In fact, two main categories of coupling schemes are mainly supported by the OV MV 

BPL networks, namely [4], [15], [17], [23], [24], [35]-[37]:  

(i) Wire-to-Ground (WtG) coupling schemes; and (ii) Wire-to-Wire (WtW) coupling 

schemes. In the case of WtG coupling schemes, which are examined in this paper,  

the WtG coupling transfer function 
sWtGH  is given from 

    WtG1

V

m

V

TWtGWtGs

CTHTC  H                (1) 

while WtG coupling reflection coefficient 
sWtG

 is determined by 

    WtG1

V

m

inV

TWtGWtGs

CTΓTC  
               (2) 

where WtGC  is an 1OVMV n  coupling column vector with zero elements except in row s 

where the value is equal to 1, VT  is a OVMVOVMV nn   matrix that depends on the 

frequency, the OV MV MTL configuration and the physical properties of the cables, 

m
H  is the OVMVOVMV nn   EVD modal transfer function matrix and  

m

inΓ  is the OVMVOVMV nn   EVD modal reflection coefficient matrix. Both EVD modal 

transfer function matrix and EVD modal reflection coefficient matrix are given as outputs 

by the TM2 method [6]-[10], [13]-[17], [20], [28], [38]. 

 To receive the WtG coupling transfer function and reflection coefficient of  

eqs. (1) and (2), respectively, certain assumptions for the circuital parameters of  

OV MV BPL topologies need to be taken into account during their determination of the 

original TM2 method. In accordance with [4], these assumptions are:  

(i) The branch lines are assumed identical to the main distribution ones;  

(ii) The interconnections between the main distribution and branch conductors of the 

lines are all connected; (iii) The transmitting and the receiving ends are assumed matched 

to the characteristic impedance of the modal channels; and  

(iv) The branch terminations are assumed open circuits. 

 

 

 

 

2.4 Faults and Instabilities in OV MV BPL Topologies 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.3, 2-25. doi: 10.17737/tre.2017.3.3.0036 7 

 

 During the continuous operation of the distribution power grid,  

critical problematic conditions can occur across it whose nature differs from the 

measurement differences. The presence of these problematic conditions endangers power 

quality and power distribution safety while these conditions are divided into two 

categories, namely: faults and instabilities [23]-[27]. Fault category, which describes all 

the interruptions that can occur in the lines of a distribution power grid, comprises  

two subcategories, say: main distribution line faults and branch line faults.  

Main distribution line faults that are of the interest of these three papers describe the 

condition where a main distribution line is interrupted due to physical or human reasons 

[27]. Main distribution line faults can be assumed to behave as either short- or  

open-circuit terminal loads. With reference to Fig. 1(b), let the main distribution line be 

broken at the position fm,

1

LL
k

i

k 


 from the transmitting end. A critical incident that 

determines the presence of this fault is the immediate communications failure between 

the transmitting and receiving end. However, there is a number of reasons why an 

immediate communications failure may appear in an OV MV BPL network thus creating 

a cause ambiguity. In addition, even if a main distribution line fault occurs and is 

identified, the localization of the exact fault position can significantly facilitate the 

maintenance personnel. Various efforts concerning the main distribution line fault 

localization have already been presented in [31], [39]-[42]. In this paper, the 

identification of a main distribution line fault is secured via the study of the behavior of 

reflection coefficients that come from the hybrid method.  

 From the third assumption of Sec.IIC, which concerns the circuital parameters of  

the original TM2 method, it is assumed that the terminal load is matched to the 

characteristic impedance of the modal channels but this is a not valid assumption when a 

main distribution line fault arises. Since main distribution line faults can be assumed to 

behave as either short- or open-circuit terminal loads, the original TM2 method fails to 

handle this situation in terms of the occurred reflection coefficients. The extension of 

TM2 method to cope with the aforementioned load terminations in terms of the reflection 

coefficients is described in Sec.III. 

 

 

3. Original and Extended TM2 Method 
 Based on the model description of [17], the original TM2 method is extended in 

this paper by exploiting the generic multidimensional network analysis of [21], [34]. 

This extension copes with the different terminal loads that may occur during a main 

distribution line fault. The extended TM2 method is suitable for both transmission and 

distribution BPL networks so that the respective main transmission and distribution line 

faults can be handled and, thus, simulated. 

 In accordance with the definition of the original TM2 method of [17] and with 

reference to Fig. 1(a), an end-to-end BPL topology is separated into network modules, 

each of them comprising the successive branches encountered. BPL signal transmission 

through the serial connection of the various network modules is taken into account 

through the concatenation of their respective chain scattering matrices.  

Each network module may be considered as a cascade of two submodules, say:  

(i) the “transmission” submodule representing a distribution line of length 
kL ; and  

(ii) a “shunt” submodule representing the cascade of the branch termination 
kA , the 
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branch line of length 
kLb

 and the interconnection between the main and branch 

conductors. Based on the specialized algebra for handling multidimensional scattering 

matrices, which is analytically presented in [17], [21], [34], the 2 OVMVn ×2 OVMVn  chain 

scattering matrix of the network module k
T  is determined by using the appropriate 

cascade rule order. The last module of the BPL topology is the distribution line of length 

1NL  characterized by its 2 OVMVn ×2 OVMVn  chain scattering matrix 1N
T .  

Having determined the chain scattering matrices of the various network modules 

encountered along the end-to-end connection, the 2 OVMVn ×2 OVMVn  overall end-to-end 

chain scattering matrix of the original TM2 method is evaluated through the 

multiplication rule from 
















1

1
iginaloverall,or

22

iginaloverall,or

21

iginaloverall,or

12

iginaloverall,or

11iginaloverall,or
N

k

kT
TT

TT
T             (3) 

where originaloverall,

11T , originaloverall,

12T , originaloverall,

21T  and originaloverall,

22T  are the  
OVMVn × OVMVn  matrix elements of the iginaloverall,or

T  as evaluated from eq. (3).  

The respective 2 OVMVn ×2 OVMVn  overall end-to-end scattering matrix is obtained from 

[17], [21], [34] 
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where originaloverall,

11S , originaloverall,

12S , originaloverall,

21S  and originaloverall,

22S  are the  
OVMVn × OVMVn  elements of the originaloverall,S  matrix as defined in eq. (4).  

Combining eqs. (1) and (4), the OVMVn × OVMVn  EVD modal transfer function matrix is 

given by the originaloverall,

21S  element of the originaloverall,S  matrix, that is 

   1iginaloverall,or

11

iginaloverall,or

21

m,original 
 TSH           (5) 

while the OVMVOVMV nn   EVD modal reflection coefficient matrix is given by  

 iginaloverall,or

11

m,original

in SΓ             (6) 

Here, it should be noted that the transmitting and receiving ends are assumed matched to 

the characteristic impedance of the modal channels during the determination of  

the aforementioned modal quantities. Indeed, this is the suitable assumption for the 

normal operation of OV MV BPL networks. However, the terminal loads differentiate 

from the matched termination when a main distribution line fault occurs.  

 On the basis of the specialized algebra for handling the various branch 

terminations and terminal loads [21], [34], extended TM2 method transforms the overall 

end-to-end chain scattering matrix of the original TM2 method, which is given in eq. (4), 

into the OVMVOVMV nn   EVD modal reflection coefficient matrix m,extended

inΓ  that is 

determined by 

   iginaloverall,or

21

m,extended

out

1iginaloverall,or

22

m,extended

out

iginaloverall,or

12

iginaloverall,or

11

m,extended

in OVMV SΓSΓISSΓ 


n

          (7) 
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where OVMVn
I  is a OVMVOVMV nn   identity matrix and 

m,extended

outΓ  is the  

OVMVOVMV nn   EVD modal reflection coefficient matrix of the terminal load.  

From the observation of eq. (7), m,extended

inΓ  degenerates into originaloverall,

11S  during the normal 

operation of the OV MV BPL network since then the terminal load can be assumed 

matched to the characteristic impedance of the modal channels, which implies that 

extendedm,

outΓ  is equal to a OVMVOVMV nn   zero matrix. 

 On the basis of eq. (7), the conversion of the original TM2 method to the  

extended TM2 method is also schematically given in Figs. 2(a) and (b).  

Comparing Fig. 2(a), which describes the output of the original TM2 method, and  

Fig. 2(b), which describes the output of the extended TM2 method, it is evident that the 

extended TM2 method assesses the reflection of the incident waves 
1a  and reflected 

waves 
1b  at the transmitting end through the modal reflection coefficient matrix 

m,extended

inΓ  whereas it does not provide any transfer function details because no incident 

and reflected waves occur after the terminal load in contrast with the  

original TM2 method where incident waves 
2a  and reflected waves 

2b  appear at the 

receiving end and, afterwards, are measured.  

 As already been mentioned, the terminal load can be assumed matched to the 

characteristic impedance of the modal channels during the normal operation of the  

OV MV BPL networks whereas the terminal load may behave as either short- or  

open-circuit during a main distribution line fault depending on the location of the 

conductors of the main distribution lines after the fault. In order to assess and compare 

the previous behaviors in terms of their reflection coefficients when original and 

extended TM2 method is applied, m,original

inΓ  is given by eq. (6) during the normal 

operation whereas m,extended

inΓ  is given by eq. (7) during the main distribution line fault 

condition. In the latter case, 
extendedm,

outΓ  is assumed to be equal to OVMVn
I  (short-circuit 

terminal load) or OVMVn
I  (open-circuit terminal load) in order to evaluate m,extended

inΓ .  

 Summarizing the findings of this Section, the “real-life” operation of the OV MV 

BPL networks depends on the deployed coupling scheme systems across them. Since all 

the required modal quantities have been defined for the normal and fault operation by 

appropriately applying original and extended TM2 method, WtG coupling transfer 

function and WtG coupling reflection coefficient can easily be determined by eqs. (1) 

and (2), respectively, by appropriately replacing these modal quantities as previously 

outlined.  

 

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.3, 2-25. doi: 10.17737/tre.2017.3.3.0036 10 

 

 
Figure 2. (a) Overall end-to-end scattering matrix of the original TM2 method. (b) Modal reflection 

coefficient matrix of the extended TM2 method when terminal load occurs at the receiving end. 
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4. Numerical Results and Discussion 
4.1 Simulation Goals and Parameters  
 The indicative topologies of OV MV BPL networks are simulated with the 

purpose of identifying a main distribution line fault by comparing the results of reflection 

coefficient of the original TM2 method with the ones of the extended TM2 method.  

The behavior of reflection coefficients is further detailed for the different terminal loads  

(i.e., short- or open-circuit termination) when a main distribution line fault occurs. 

As regards the simulation specifications, those are the same with [4], [23]-[27]. 

More specifically, the BPL frequency range and flat-fading subchannel frequency 

spacing are assumed equal to 1-30MHz and 1MHz, respectively. Therefore, the number 

of subchannels is equal to 30 in the examined frequency range.  

Arbitrarily, the WtG3 coupling scheme is applied during the following simulations.  

As it is usually done [10], [13], [14], [16], [18], [23], [24], [43],  

the selection of representative coupling schemes is a typical procedure for the sake of 

reducing manuscript size. 

 

 

4.2 Coupling Transfer Function and Coupling Reflection Coefficient for the 
Indicative OV MV BPL Topologies (Original TM2 Method) 
 Prior to study the behavior of OV MV BPL networks when a main distribution 

line fault occurs, the magnitude of coupling transfer function and coupling reflection 

coefficient of the indicative OV MV BPL topologies is outlined when their terminal loads 

are assumed matched to the modal characteristics impedances. The nature of the studied 

terminal loads implies that original TM2 method is applied during the following 

simulations. Note that the behavior of the coupling reflection coefficient during the 

normal operation, which is presented in this subsection, is going to act as the benchmark 

in order to identify the existence of a main distribution line fault (see Sec.IVD).  

 In Fig. 3, the coupling transfer function is plotted versus frequency for the  

four indicative OV MV BPL topologies of Sec.IIB when WtG3 coupling scheme is 

applied. In Fig. 4, similar curves with Fig. 3 are shown but for the magnitude of coupling 

reflection coefficient.  

 From Fig. 3, it is clear that the existence of branches encountered across the  

BPL signal transmission in the examined OV MV BPL topologies imposes spectral 

notches in the coupling transfer functions, which are superimposed to the relatively 

steady “LOS” transfer function. The depth and the extent of these spectral notches mainly 

depend on the number and the electrical length of the branches as well as the nature of 

branch terminations. As concerns the characteristics of branches,  

OV MV BPL topologies with high number of branches and relatively low branch 

electrical length, such as the examined urban case one, create hostile and aggravated 

multipath environments for the BPL signal transmission. Conversely, when the presence 

of branches is scarce and the branch length is high, transfer function of these OV MV 

BPL topologies, such as the examined OV MV BPL rural one, tends to converge to the 

behavior of the “LOS” case where shallow and rare spectral notches are observed.  

In all the other OV MV BPL topology cases, the behavior of their transfer functions lies 

between the one of urban (worst case) and “LOS” (best case) [6], [7], [8], [9]. Anyway, 

the challenge of mitigating these horrible transmission characteristics push the recent  
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Figure 3. Coupling transfer function versus the frequency for the indicative OV MV BPL 
topologies when WtG3 coupling scheme is applied and normal operation conditions are assumed 
(the frequency spacing is equal to 1MHz). 
 
 

 
Figure 4. Coupling reflection coefficient versus the frequency for the indicative OV MV BPL 
topologies when WtG3 coupling scheme is applied and normal operation conditions are assumed 
(the frequency spacing is equal to 1MHz). 

 

 

research efforts towards communications solutions such as multi-hop repeater systems,  

multiple-input multiple-output consideration of the BPL channels and various resource 

allocation schemes [11], [18], [44], [45]. 

 Similarly to coupling transfer functions, the magnitude of coupling reflection 

coefficients of the indicative OV MV BPL topologies present significant fluctuations in 

comparison with the almost zero reflection coefficient of the “LOS” case (matched 

termination load). In fact, the branch presence along the transmission path creates a 
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spectral environment that resembles to that of power dividers [10], [32], [33].  

Since different number and length of branches are connected to the main distribution line, 

this has as a result that the input impedance at the transmitting end presents a  

frequency-dependent behavior, which further affects the reflection coefficient at the same 

point. In general terms, the spectral behavior of the reflection coefficient can be 

approached in a similar way with the behavior of the transfer function; say, topologies 

with high number of branches having relatively short lengths of branches superimpose 

significant reflection and spectral notches to the “LOS” case whereas topologies with low 

number of branches and long lengths tend to render their reflection coefficient similar to 

the “LOS” case ones. 

 Observing both Figs. 3 and 4, it is obvious that the trend smoothness of transfer 

function and reflection coefficient curves, the extrema of the curves and the extent and 

depth of curve notches may act as an identity pattern for the OV MV BPL topologies. 

This unique property of the aforementioned curves is going to be exploited by the main 

line fault localization methodology (MLFLM) in the accompanying papers in order to 

localize the main distribution line faults that may occur in OV MV BPL networks  

[23]-[26]. 

 

 

4.3 Coupling Reflection Coefficient for the Indicative OV MV BPL Topologies 
when Main Distribution Line Faults Occur (Extended TM2 Method) 
 Already been mentioned, critical problematic conditions, such as the main 

distribution line faults, can occur across the distribution power grid during its operation. 

With reference to Fig. 1(b), let the main distribution line be broken at 750m from the 

transmitting end. The four modified indicative OV MV BPL topologies are then 

differentiated as follows: 

1. The modified urban topology (denoted as modified urban case) with  

N=2 branches (L1=500m, L2=200m, L3=50m, Lb1=8m, Lb2=13m). 

2. The modified suburban topology (denoted as modified suburban case) with  

N=1 branch (L1=500m, L2=250m, Lb1=50m). 

3. The modified rural topology (denoted as modified rural case) with N=1 branch 

(L1=600m, L2=150m, Lb1=300m).  

4. The “LOS” transmission along the same end-to-end distance 

L=L1+…+LN+1=750m (denoted as modified “LOS” case) when no branches are 

encountered.  

Here, it should be noted that the terminal load, which is located at the receiving end of 

the modified OV MV BPL topologies, is assumed equal to either short- or open-circuit. 

Hence, two sets of the four modified OV MV BPL topologies are examined in this 

subsection. 

 In accordance with Sec.III, the study of the behavior of OV MV BPL networks 

when a main distribution line fault occurs is focused on the examination of the reflection 

coefficients as dictated by eq. (7) through the application of the extended TM2 method.  

In Fig. 5, the magnitude of coupling reflection coefficient is plotted versus frequency for 

the four modified OV MV BPL topologies when WtG3 coupling scheme is applied and  

the terminal load is assumed to be short-circuit. In Fig. 6, similar curves with Fig. 5 are 

shown with the assumption that the terminal load is an open-circuit. 
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Figure 5. Coupling reflection coefficient versus the frequency for the modified OV MV BPL 
topologies when WtG3 coupling scheme is applied and short-circuit is assumed as the terminal 
load (the frequency spacing is equal to 1MHz). 
 
 

 
Figure 6. Same plots with Fig.5 but for an open-circuit terminal load. 

 

 

 The first fact that implies the presence of a main distribution line fault is the 

immediate communications failure between the transmitting and receiving end while the 

validation of the fault presence comes from the examination of the reflection coefficient 

at the transmitting end as highlighted in Figs. 4-6. In fact, the nature of the terminal load 

critically determines the form of the coupling reflection coefficient; say, any termination 

load, which differs from the matched terminal load of the normal operation of the OV 

MV BPL networks, significantly differentiates the coupling reflection coefficient from 

the one presented during the normal operation regardless of the examined topology.  
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 Comparing Figs. 4-6, it deserves special attention the behavior of the magnitude 

of the coupling reflection coefficient of the “LOS” case. First, the values of the reflection 

coefficient of “LOS” case drastically change from the zero when the terminal load 

connected at the receiving end takes a value that differs from the matched termination. 

Actually, the magnitudes of the reflection coefficient coincide when the terminal load is 

assumed to be either short- or open-circuit. Anyway, this is explained by eq. (7) and the 

values assigned to 
m,extended

outΓ  in Sec.III for each of the aforementioned terminal load 

cases.  

 From the aforementioned observations, it is evident that the identification and 

further localization of a main distribution line fault comes from the difference of 

reflection coefficients that occurs between the normal and fault operation, which is 

highlighted in the following subsection. 

 

 

4.4 Coupling Reflection Coefficient Differences between the Normal and Fault 
Operation of the Indicative OV MV BPL Topologies 
 Already been reported in Sec.IVC, the main distribution line faults differentiate 

the reflection coefficient behavior between the normal and fault operation. In this 

subsection, a study is undergone focusing on the comparative behavior of OV MV BPL 

topologies during the main distribution line faults.  

 In Fig. 7, the reflection coefficient differences of the indicative OV MV BPL 

topologies between their normal and fault operation is plotted versus frequency when 

WtG3 coupling scheme is applied and the terminal load is assumed to be short-circuit 

termination. The main distribution line fault is located at 750m from the transmitting end 

and the reflection coefficient difference, which is presented in Fig.7, essentially defines 

the difference between Figs. 5 and 6 for given OV MV BPL topology. In Figs. 8-10, 

same plots with Fig. 7 but for the main distribution line fault to be located at 1m, 520m 

and 910m, respectively. Similar curves with Figs. 7-10 are given in Figs. 11-14, but for 

the open-circuit terminal load case. 

Examining Figs. 7-14, several interesting conclusions can be deduced: 

• When the main distribution line fault is located immediately after the transmitting 

end, the impact of the presence of the transmission line is limited. Indeed, when 

the main distribution line fault is located at 1m from the transmitting end, the 

reflection coefficient is equal to -1 or 1 if the terminal load is a short- or open-

circuit termination, respectively. Therefore, the magnitude of the reflection 

coefficients is equal to 1 in both the cases. As presented in Figs. 8 and 12, it is 

expected that the coupling reflection coefficient difference of the “LOS” case is 

equal to -1 since the absolute value of the reflection coefficient of the “LOS” 

topology during its normal operation is equal to 0.  

• Apart from the “LOS” case where the main distribution line fault is located at the 

transmitting end, the coupling reflection coefficient differences of OV MV BPL 

topologies with branches present fluctuations that are distributed around the zero 

regardless of the terminal load.  

• When a communications failure between the transmitting and receiving end 

persists and the coupling reflection coefficient differences insist on differing from 

zero in the frequency domain a main distribution line fault is present.  
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Figure 7. Coupling reflection coefficient difference versus the frequency between the original and 
modified indicative OV MV BPL topologies when WtG3 coupling scheme is applied and short-
circuit is assumed as the terminal load at 750m from the transmitting end (the frequency spacing 
is equal to 1MHz). 
 

 
Figure 8. Coupling reflection coefficient difference versus the frequency between the original and 
modified indicative OV MV BPL topologies when WtG3 coupling scheme is applied and short-
circuit is assumed as the terminal load at 1m from the transmitting end (the frequency spacing is 
equal to 1MHz). 
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Figure 9. Coupling reflection coefficient difference versus the frequency between the original and 
modified indicative OV MV BPL topologies when WtG3 coupling scheme is applied and short-
circuit is assumed as the terminal load at 520m from the transmitting end (the frequency spacing 
is equal to 1MHz). 
 

 
Figure 10. Coupling reflection coefficient difference versus the frequency between the original 
and modified indicative OV MV BPL topologies when WtG3 coupling scheme is applied and short-
circuit is assumed as the terminal load at 910m from the transmitting end (the frequency spacing 
is equal to 1MHz). 
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Figure 11. Same plots with Fig.7 but for an open-circuit terminal load. 

 

 
Figure 12. Same plots with Fig.8 but for an open-circuit terminal load. 
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Figure 13. Same plots with Fig.9 but for an open-circuit terminal load. 

 

 
Figure 14. Same plots with Fig.10 but for an open-circuit terminal load. 

 

 

Here, the identification of a main distribution line fault is secured and the 

localization of main distribution line faults through MLFLM procedure can be 

initiated (for more details concerning the localization of main distribution line 

faults and MLFLM, see [46]). 

• The detection of a main distribution line fault is easier in the OV MV BPL 

topologies with more branches than in the “LOS” case since the fluctuations of 

the coupling reflection coefficient differences around zero get severe in the 

aggravated topology cases. In contrast, rural and “LOS” OV MV BPL topologies 

demand more attention when the identification of main distribution line faults is 

undergone since their fluctuations are milder. 
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• Similarly to the findings regarding the unique appearance of transfer functions 

and reflection coefficients of OV MV BPL topologies, the unique characteristics 

of the coupling reflection coefficient differences (i.e., the trend of the curve, the 

extrema of the curves and the extent and depth of curve notches) are exploited as 

the identity pattern in order to exact localize main distribution line faults in [46], 

[47]. 

• Although the identification of a main distribution line fault has been theoretically 

secured in all the OV MV BPL topologies through the coupling reflection 

coefficient differences, the identification of these faults can be problematic in the 

“real-life” conditions since measurement differences can be added during the 

determination of reflection coefficients (fault alarm case). The countermeasures 

against the measurement differences by using piecewise monotonic data 

approximations (PMAs) as well as the identification efficiency of a main 

distribution line fault through the reflection coefficient differences is examined in 

[47]. 

• Apart from the identification of a main distribution line fault, the goal of these 

papers is the exact localization of the fault. On the basis of the PMA benchmark 

results of [47] and the extended TM2 method, TIM of [23] and FIIM of [24] can 

further be upgraded in order to deal with the main distribution line faults that 

constitute the only fault case which cannot be identified by TIM and FIIM in [25], 

[26]. MLFLM is going to exploit the unique characteristics of reflection 

coefficients of OV MV BPL topologies as well as the findings of this paper and 

[47] in order to exactly localize the main distribution line faults that may occur in 

OV MV BPL networks in [46]. 

 

 

Conclusions 
 In this first paper, the identification methodology of main distribution line faults 

in OV MV BPL networks has been presented and assessed. Initially, the extension of  

TM2 method has been analyzed on the basis of the original TM2 method through its 

generic multidimensional network analysis. In fact, the identification of main distribution 

line faults is based on the coupling reflection coefficients derived from the original and 

the extended TM2 method as well as their differences. The assessment of the 

identification of main distribution line faults has been applied to four indicative OV MV 

BPL topologies when their terminal loads are assumed to be either matched or short-

circuit or open-circuit. Actually, the pattern of the coupling reflection coefficients 

significantly depends on the examined OV MV BPL topology as well as the nature of the 

terminal loads, thus implying that there are significant differences in coupling reflection 

coefficients between the normal and fault condition for given OV MV BPL topology. 

Synoptically, the coupling reflection coefficient may act as an identity pattern for given 

OV MV BPL topology and terminal load while the communications failure between the 

transmitting and receiving end and the fluctuations of coupling reflection differences at 

the transmitting end marks the existence of a main distribution line fault across the OV 

MV BPL topology.  

 The influence of the measurements differences during the identification of main 

distribution line faults, the countermeasures against measurement differences by 

applying PMAs and the proposal of MLFLM with the intention to localize the main 

distribution line faults are going to be investigated in the following two papers. 
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