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On the basis of [1] and [2], this paper investigates the possibility of 
jamming the method of the detection of the hook style energy theft  
(HS-DET method) that is used for the detection of the hook style energy 
theft in the overhead low-voltage (OV LV) power grids. Three more 
sophisticated scenarios, which have been revealed in [2] and are the 
evolution of the three main suspicious issues of [1], are further 
investigated in this paper. The detection efficiency of HS-DET method is 
assessed by using the already validated percent error sum (PES) 
submetrics and appropriate contour plots.  
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1. Introduction 
  

The hook style energy theft detection method (HS-DET method), which has been 

proposed in [1] and partially tested on its detection performance during a set of special 

cases in [2], aims at detecting the hook style energy theft in overhead low-voltage  

(OV LV) power grids that exploit broadband over powerlines (BPL) technology 

conveniences. HS-DET method is added in the existing portfolio of BPL broadband 

applications, such as Topology Identification Methodology (TIM) [3], Fault and 

Instability Identification Methodology (FIIM) [4], methodology to preserve power system 

stability [5], [6] and main line fault localization methodology (MLFLM) [7]-[9],  

while its application is considered valid when all the problematic cases of TIM, FIIM and 

MLFLM are excluded. The portfolio of BPL broadband applications focuses on a more 

accurate and more reliable monitoring, metering and controlling of distribution power 

grids. 

HS-DET method is based on the hybrid model [10]-[27] while the hook style 

energy theft is detected by HS-DET method through  metric, which is the suitable 

percent error sum (PES) submetric for energy theft detection, and its relevant contour 

plots. Actually,  evaluates the asymmetry between the original and the modified 
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OV LV BPL topology where the modified OV LV BPL topology comes from the original 

OV LV BPL topology after the hook insertion. If  remains above the strict  

threshold, which is equal to 10%, a safe detection of a hook style energy theft can be 

received. If  remains between the above the loose  threshold, which is equal 

to 0%, and the strict  threshold, a less safe detection of a hook style energy theft 

can be received. Here, it should be noted that HS-DET method can give reliable decisions 

concerning the existence of the energy theft regardless of the existence of very intense 

measurement differences due to the  definition that can significantly mitigate them 

(see [1] and Appendix of [2]).  

 In accordance with [1], three special issues have been addressed there and it has 

been proven in [2] that these three special issues cannot jam HS-DET method.  

More specifically, the concluding remarks concerning these three special issues can be 

synopsized as: (i) There is no threshold of CUD maximum values  of measurement 

differences below 20 dB that HS-DET method could not detect the hook style energy 

theft; (ii) The installation of very long hooks in order to mask the hook existence during 

the application of HS-DET method can indeed make the energy theft detection less easy 

by HS-DET method but again in all the cases HS-DET method can detect the hook style 

energy theft through its strict and loose  thresholds; and (iii) The  behavior of 

“smart” hook technique resembles to the respective behavior of very long hooks and 

hence the energy theft detection of “smart” hook technique by HS-DET method remains 

as easy as in the very long hook technique. In all the three special issues,  

HS-DET method detected the energy theft through strict and loose  thresholds.  

In accordance with [2], three more sophisticated scenarios have been proposed 

that aspire, by exploiting and extending the strengths of the three special cases, to distract 

further HS-DET method. With reference to [1] and [2], these three sophisticated 

scenarios are: (a) the existence of different CUD measurement differences of the same 

maximum value  when the coupling transfer functions of the original and the 

modified OV LV BPL topologies are measured; (b) The installation of a second “smart” 

hook, which acts as a feint device, so that the first “smart” hook that is responsible for the 

energy theft can be camouflaged; and (c) The impact of the full interconnection 

assumption of the “smart” hook during the computations of HS-DET method.  

The rest of this paper is organized as follows: In Section 2, numerical results and 

discussion are provided, aiming at practically evaluating the efficiency of the three 

sophisticated scenarios towards the jamming of HS-DET method. Section 3 concludes 

this paper. 

 

 

2. Numerical Results and Discussion 
  

The numerical results of this Section focus on assessing the performance of  

HS-DET method and describe the behavior of HS-DET method when the aforementioned 

three sophisticated scenarios occur. All these three scenarios try to jam HS-DET method, 

each one exploiting its own strengths presented in [2]. For that reason, the robustness of 

decisions of HS-DET method is also evaluated as well as the road map towards safer 

decisions concerning the detection of hook style energy thefts. As the circuital, 

topological and coupling scheme characteristics of OV LV BPL networks are concerned, 

these remain the same with [1], [2]. 
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2.1 Different CUD Measurement Differences and HS-DET Method Jamming 

 The influence of measurement differences of maximum value  up to 5 dB 

has been thoroughly discussed in [1] while the influence of measurement differences of 

maximum value  above 5 dB has been evaluated in [2]. It has been proven that there 

is no threshold of CUD maximum values  of measurement differences below 20 dB 

that HS-DET method could not detect the hook style energy theft. Actually, in the vast 

majority of the cases examined, HS-DET method detected the energy theft through its 

strict  threshold while the loose  threshold of HS-DET method have been 

used in special cases such as urban OV LV BPL topologies when very high measurement 

differences occur. 

 With reference to eqs. (2)-(4) of [2], HS-DET method can successfully detect the 

hook style energy theft regardless of the CUD maximum values  of measurement 

differences when measurements of original measured coupling scheme channel transfer 

function and modified measured coupling scheme channel transfer functions are available 

at the same time. However, the cost of a non-real time and continuous HS-DET method 

in terms of  is going to be assessed in this subsection. 

 If simultaneous measurements of original measured coupling scheme channel 

transfer function and modified measured coupling scheme channel transfer functions are 

not available, the aforementioned measured transfer functions suffer from different 

measurement differences. Supposing that the environmental and circuital conditions of 

the examined OV LV power grid remain the same due the short time interval between the 

two measurements, two different CUD measurement differences of the same maximum 

values  affect the original measured coupling scheme channel transfer function and 

the modified measured coupling scheme channel transfer functions. In this paper, the 

influence of average measurement differences (i.e., measurement differences of 

maximum value  between 0 dB and 5 dB) is evaluated in this paper. In accordance 

with [2], the performance of HS-DET method against different measurement differences 

will be assessed in terms of ,  and .  

 With reference to Fig. 2(b) of [1] and the indicative original OV LV BPL 

topologies as reported in Table 1 of [1], let assume that a hook of length  is inserted at 

distance  from the transmitting end. In Fig. 1(a),  is plotted with respect to the 

maximum value  when  and  are assumed for the  

five indicative original OV LV BPL topologies. Note that two different CUD 

measurement differences are used during the determination of the original measured 

coupling scheme channel transfer function and the modified measured coupling scheme 

channel transfer functions. In Figs. 1(b) and 1(c), same curves with Fig. 1(a) are given 

but for  and , respectively. 
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Fig. 1. PES submetrics of HS-DET method for the five original indicative OV LV BPL topologies of [1] 

when hook length of 5 m, hook distance from the transmitting end of 300 m and open-circuit hook 

termination are assumed for two different CUD measurement differences and various maximum values 

. (a) . (b) . (c) . 

 

 

 From Figs. 1(a)-(c), it is evident that HS-DET method can easily detect the hook 

style energy theft even if unintentional / intentional different measurement differences 

occur during the determination of the original measured coupling scheme channel 

transfer function and the modified measured coupling scheme channel transfer functions. 

This easily can be explained since all  and  values of all the indicative OV LV 

BPL topologies remain well above the respective  and  strict thresholds, which 

have been described in [2] (i.e., strict  and  thresholds are assumed to be equal 

to 10% and 20%, respectively). 

 In accordance with [2], the three categories of OV LV BPL topologies concerning 

the hook style energy theft detection through , say, “LOS”, good channel and bad 

channel cases, also remain the same despite the different CUD measurement differences. 

Similarly to the case of common CUD measurement differences during the determination 

of the original measured coupling scheme channel transfer function and the modified 

measured coupling scheme channel transfer functions, the easiest decision concerning the 

energy theft detection remains in original “LOS” case while the most precarious one 

remains in the bad channel case. 

 Although the detection of the energy theft is based on the strict  and  

thresholds in all the examined OV LV BPL topologies and CUD maximum values,  

the uncertainty degree of the two different CUD measurement differences, which is 

intrinsically added in the  and  curves of respective Figs. 1(a) and 1(c), need to 

be assessed. This assessment will highlight the possibility of jamming the decision 

concerning the energy theft. In Appendix, the sole influence of the two different CUD 

measurement differences of the same maximum value  is assessed in terms of , 
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 and . As it is shown in the Appendix, the effect of two different CUD 

measurement differences on  and  values remains marginal (i.e., below 3% and 

4% for  and , respectively) and remain as a small fraction of the respective 

 and  values in all the cases examined in Figs. 1(a) and 1(c). However, the 

effect of two different CUD measurement differences on  and  values cannot be 

neglected in the cases where the decision concerning the existence of hook style energy 

theft needs to be taken by using the respective loose  and  thresholds (see 

decisions with loose  and  thresholds in [2]).  

Since the impact of two different CUD measurement differences on the detection 

of hook style energy theft is negligible in the cases examined in this paper, a common 

CUD measurement difference during the determination of the original theoretical 

coupling scheme channel transfer function and the modified theoretical coupling scheme 

channel transfer function is considered in the following analysis. Anyway, this is the 

typical procedure that has been followed until now and further implies the existence of a 

real time and continuous HS-DET method.  

Also, by comparing Figs. 1(a) and 1(c), there are no areas of maximum value 

 uncertainty where  and  give conflicting results concerning the existence 

of hook style energy theft. Therefore, only  plots are going to be used in the 

following analysis.  

 

2.2 Two “Smart” Hooks and HS-DET Method Jamming 

 In accordance with [2], the installation of additional equipment on the power grid 

can be easily detectable by the authorized maintenance personnel. However, the small 

size of “smart” hooks can be camouflaged in comparison with other energy theft 

techniques such as the very long hooks technique. Anyway, HS-DET method can detect 

any hook style energy theft that is based on the concept of “smart” hooks but in few cases 

such as the aggravated urban OV LV BPL topologies that suffer from intentional / 

unintentional measurement differences, the detection has been made through the loose 

 threshold [2].  

 The concept of this subsection is that the use of two “smart” hooks, where the first 

one (hook A) will perform the energy theft and the second one (hook B) will try to jam 

HS-DET method as a feint hook, could significantly decrease  values. As indicated 

in Sec.2.1, the success of this combined use of “smart” hooks would be accomplished if 

 values can remain below 5%. Although  values that are below 5% can be 

detected by the loose  threshold, these  values can be considered as various 

small measurement differences, which have not been mitigated and finally ignored by the 

authorized maintenance personnel. Anyway,  values that are below 5% have been 

detected neither in [1] nor in [2] in all the cases examined.  

 To investigate the possibility of camouflaging the hook style energy theft through 

the use of two “smart” hooks, in Fig. 2(a),  is plotted versus the hook A distance 

from the transmitting end and the hook B distance from the transmitting end when the 

OV LV BPL topology of urban case A is assumed, and maximum value  of 1 dB is 

applied. In Figs. 2(b) and 2(c), same contour plots with Fig. 2(a) are given but for 

maximum value  of 2 dB and 5 dB, respectively. In Figs. 3, 4, 5 and 6, same plots 

with Fig. 2 are given but for the case of the urban case B, suburban case, rural case and 

“LOS” case, respectively. In accordance with [1], the hook A and B distance from the 

transmitting end span is assumed to be equal to 50 m, the terminations of hook A and B 
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are assumed to be matched while the hook A and B length is assumed to be equal to 5m 

for all the examined contour plots of this paper. Note that the range of the hook A 

distance from the transmitting end is from 1 m to 951 m for all the examined contour 

plots of this paper while the respective range of the hook B is from 2 m to 952 m.   
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Fig. 2.  of the urban case A of the indicative OV LV BPL topologies in the 3-88MHz frequency band 

for various hook A and hook B distances from the transmitting end. (a) . (b) .  

(c) . 
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Fig. 3. Same curves with Fig. 2 but for the urban case B. 
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Fig. 4. Same curves with Fig. 2 but for the suburban case. 
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Fig. 5. Same curves with Fig. 2 but for the rural case. 
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Fig. 6. Same curves with Fig. 2 but for the “LOS” case. 

 

 

From Figs. 2-6, the insertion of the feint “smart” hook significantly increases  

 values for given OV LV BPL topology, “smart” hook A distance from the 

transmitting end and maximum value . Instead of reducing  values, HS-DET 

method now more easily detects the energy theft; when the feint “smart” hook is 

employed,  values of Figs. 2-6 are more than twice as high as those of the 

respective Figs. 2-6 of [2] in all the cases examined. In addition, higher  values are 

observed when two “smart” hooks remain close enough due to the fact that the 

comparable distance of two hooks allows the creation of new significant multipath 

channels [10], [12]. Furthermore,  difference between the highest and lowest  

value for given figure remains below 3% in all the cases examined.  

In addition, each of Figs. 2-6 presents a strong symmetry with respect to the 

diagonal linking the top of the axes with the top right top. This implies that the overall 

, which is shown in Figs. 2-6, can be regarded as the additive result of the partial 

 of the two “smart” hooks.  

Anyway, by comparing Figs. 2-6 with Fig. 7(a) of [2], it is clear that the  

two-“smart”-hooks technique cannot jam HS-DET method by its own. Actually, the 

effect of feint “smart” hook on  values can be described as a small  

fluctuation to the existing  values of the first “smart” hook while the effect of 

higher maximum value  becomes significantly stronger. The last conclusion is also 

validated by the almost the same color tone presented in each of the Figs. 2-6. 

In general, the belief that adding feint “smart” hooks can allow the bypass of HS-

DET method is misleading. HS-DET method can detect the hook style energy theft via 

two or more “smart” hooks with the same difficulty as HS-DET method does when one 

“smart” hook is installed across the OV LV lines.  
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3.3 Full Interconnection Assumption, Hybrid Method and HS-DET Method 
Jamming 

 Hybrid model is extensively employed to examine the behavior of various 

multiconductor transmission line (MTL) configurations in transmission and distribution 

BPL networks [10]-[24] while it is the core element of HS-DET method. Actually, the 

hybrid model consists of two interconnected modules, namely:  

(i) the bottom-up approach module; and (ii) the top-down approach module.  

The top-down approach module of the hybrid model is based on the concatenation of 

multidimensional transmission matrices of the cascaded network BPL connections and, 

among others, through its interconnection multidimensional transmission matrix Ck 

describes the connection between the distribution and branch TLs  

(i.e., the interconnection between the phases and the neutral of two TLs) [10].  

 Until now [1], [2], full interconnections between the hook and the distribution 

TLs have been considered while the impact of partial interconnection (i.e., hook hung on 

one phase) is here investigated. The full interconnection allows the hook to be treated as a 

branch by the hybrid model and, hence, the simplicity of the analysis is enhanced.  

To proceed with the partial interconnection, the hook is assumed to be hung only on one 

phase, say phase A or the green conductor of Fig. 1 of [1]. As it is obvious, the partial 

interconnection is more realistic way of hook style energy theft while this may have an 

impact on the coupling scheme that is used to detect hook style energy theft. In the case 

of hook hung on phase A and with reference to [10], the interconnection 

multidimensional transmission matrix is equal to zero array apart from the element of the 

first row and first column that is equal to 1. 

 To investigate the effect of partial interconnections during the energy theft 

detection by HS-DET method, with reference to Fig. 2(b) of [1] and the indicative 

original OV LV BPL topologies as reported in Table 1 of [1], let assume again that an 

open-circuit hook of length  is inserted at distance  from the transmitting end.  

In Fig. 7(a),  is plotted with respect to the maximum value  when  

and  are assumed for the five indicative original OV LV BPL topologies, 

hook is hung on the phase A and WtG1 coupling scheme is applied. In Figs. 7(b) and 7(c), 

same curves with Fig. 7(a) are given but for the cases of WtG2 and WtG3 coupling 

schemes, respectively. 
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Fig. 7.  of HS-DET method for the five original indicative OV LV BPL topologies of [1] when hook 

of 5m-length, of 300m-distance from the transmitting end, hung at phase A and with open-circuit 

termination is assumed for different WtG coupling schemes. (a) WtG1. (b) WtG2. (c) WtG3. 
 

 

 From Figs. 7(a)-(c), interesting findings can be reported concerning the detection 

of hook style energy theft when the hook is hung on only one phase. More specifically: 

• Comparing Fig. 7(a) with Fig. 1(a) of [2],  plots are identical as expected. 

This means that when the applied WtG coupling scheme comprises the conductor 

where the hook is hung,  plots present no differences compared with  

 plots of fully interconnected hooks. Therefore, all the results of this paper, 

[1] and [2] occur without changes when the conductor of hook is the same with 

the conductor of WtG coupling scheme. 

• Comparing Figs. 7(b) and 7(c) with Fig. 1(a) of [2], when the applied  

WtG coupling scheme does not comprise the conductor where the hook is hung, 

 values are close to zero resembling with the difference measurement 

difference behavior of Fig. 8(a) of the Appendix. However, if the case of 

different CUD measurement differences during the determination of the original 

theoretical coupling scheme channel transfer function and the modified theoretical 

coupling scheme channel transfer function can be excluded (see Sec.2.1),  

the loose  threshold may detect the hook style energy theft through the 

fluctuating or negative  values even though the hook is hung on different 

conductor with reference to the conductor of the employed WtG coupling 

schemes. Therefore, with reference to Sec.2.1, a real time and continuous  

HS-DET method can trigger the hook style energy theft detection alarm even if 

the hook is hung intentionally on different conductor from the BPL injector / 

extractors. 

• In [28]-[31], new coupling schemes for transmission and distribution BPL 

networks have been presented through the adoption of CS2 module. Actually, 

CS2 module can exploit all the available conductors of the examined MTL 
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configuration and, hence, the detection of the hook style energy theft can be 

accomplished through a periodic surveillance test of the supported multiple input 

multiple output (MIMO) channels. 

Concluding this subsection, there are three ways of detecting the hook style 

energy theft when the hook is hung on only one conductor, namely: (i) through  

values when the employed WtG coupling scheme comprises the conductor where the 

hook is hung; (ii) through the existence of a real time and continuous HS-DET method. 

The exclusion of all other problematic cases can be ensured and the small  

fluctuations can imply a hook style energy theft through a different conductor from the 

one that is used by the applied WtG coupling scheme, and (iii) by exploiting WtW and 

MtM coupling schemes of CS2 module. These coupling schemes exploit all the 

conductors of the examined MTL configuration and, thus, the hook style energy theft 

detection can be easily achieved through a periodic check of the MIMO channel health. 

 

 

3. Conclusions 
  

 This paper has focused on the performance of HS-DET method when the three 

more sophisticated scenarios of [2] are addressed. In fact, these sophisticated cases are 

considered as the further consideration of special cases presented in [1] and investigated 

in [2]. As the first sophisticated scenario has been examined, the effect of two different 

CUD measurement differences on  and  values remains marginal in 

comparison with the respective  and  values when one CUD measurement 

difference is assumed during the computation of the original theoretical coupling scheme 

channel transfer function and the modified theoretical coupling scheme channel transfer 

function. In all the cases of average values of CUD maximum values , the hook 

style energy theft has been detected by HS-DET method through strict  and  

thresholds. As the second sophisticated scenario has been investigated, HS-DET method 

more easily detects the energy theft when a second “smart” hook, either acting as a feint 

“smart” hook or not, is installed across OV LV TLs. In fact,  values for given OV 

LV BPL topology with two “smart” hooks are significantly higher than the respective 

ones of the same OV LV BPL topology with one “smart” hook regardless of the distance 

between them. Hence, by generalizing the findings of two “smart” hooks, the myth of 

many “smart” hooks that can jam HS-DET method has been disproven. The third 

sophisticated scenario that has been examined was the impact of the assumption of full 

interconnections during the computations of HS-DET method. When the hook is hung on 

only one conductor, three different detection cases have been analyzed that allow  

HS-DET method to securely detect the hook style energy theft. The three special cases of 

[1] and the three sophisticated scenarios of this paper have aimed at jamming HS-DET 

method. As it has been proven, HS-DET method can detect all the potential hook style 

energy thefts in OV LV BPL networks through its strict  threshold in the vast 

majority of the cases and its loose  threshold in few aggravated cases. Finally, the 

virtue of maintaining a real-time and continuous HS-DET method combined with  

CS2 module conveniences has been praised and its advantages have been analytically 

reported. 
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Appendix – Can Different CUD Measurement Differences Trigger the  
Hook Style Energy Theft Alarm of HS-DET Method 
  

The impact of same CUD measurement difference during the determination of the 

original measured coupling scheme channel transfer function and the modified measured 

coupling scheme channel transfer functions on ,  and  has been examined 

in the Appendix of [2]. In this Appendix, the sole influence of different CUD 

measurement differences but of the same maximum value  during the determination 

of the original measured coupling scheme channel transfer function and the modified 

measured coupling scheme channel transfer functions on the aforementioned three PES 

submetrics is evaluated. With reference to eqs (3)-(8) of [1], the modified theoretical 

coupling scheme channel transfer function  is assumed to be equal to the original 

theoretical coupling scheme channel transfer function . With reference to eqs. (5) 

and (6) of [1], since different measurement differences are considered,  stops being 

equal to  when the aforementioned assumption occurs. In general terms,  

the critical issue now is the difference between the two assumed CUD measurement 

differences for given frequency.  

 To examine the impact of the two different CUD measurement differences of the 

same maximum value , in Fig. 8(a),  is plotted with respect to the maximum 

value  when the modified OV LV BPL topology is assumed to be the same with the 

original one for the five indicative original OV LV BPL topologies of Table 1 of [1]. 

Note that two different CUD measurement differences of the same maximum value  

are used during the determination of the original measured coupling scheme channel 

transfer function and the modified measured coupling scheme channel transfer functions. 

In Figs. 8(b) and 8(c), same curves with Fig. 8(a) are given but for  and , 

respectively. 
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Fig. 8. PES submetrics of HS-DET method for the five original indicative OV LV BPL topologies of [1] 

when modified OV LV BPL topology is assumed the same with the original one and two different CUD 

measurement differences and various maximum values . (a) . (b) . (c) . 

 

 

By comparing Figs. 8(a)-(c) with the findings of [2], the following conclusions 

can be deduced concerning ,  and , say: 

• Due to the definition of  and , their study is focused on weighted 

differences between the absolute values of different CUD measurement 

differences of the same maximum value  since the modified theoretical 

coupling scheme channel transfer function and the original theoretical coupling 

scheme channel transfer function are equal. Therefore, it is expected that  

and  behave as CUD variables of zero mean. Possible divergences are due to 

the weighted definition of  and . 

• Already been mentioned in [2],  is independent of the modified measured 

coupling scheme channel transfer function since it depends only on the original 

measured and original theoretical coupling scheme channel transfer function. 

Hence, the increase of the considered maximum value  is reflected on the 

increased values of . 

• The influence of the different CUD measurement differences to  and  

values remain marginal and significantly lower than the respective strict  

and  thresholds. However,  and  values render precarious such a 

decision based on the loose  and  thresholds.  

Concluding this Appendix, the effect of two different CUD measurement 

differences on  and  values remains marginal allowing the decision concerning 

the existence of hook style energy theft by using the respective strict  and  

thresholds. However, the cost of a non-real time and continuous HS-DET method in 
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terms of  and  is that decisions concerning the hook style energy theft that are 

based on the loose  and  can be considered as risky ones. 
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