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This paper investigates the possibility of detecting the hook style energy 
theft in the overhead low-voltage (OV LV) power grids through the hook 
style energy theft method (HS-DET method) when ad-hoc overhead  
Low-Voltage Broadband over Power Lines (OV LV BPL) networks are 
deployed by the Information Technology departments of the power 
utilities. Without the need for the deployment of a complete and 
permanent OV LV BPL network across the OV LV power grid, the impact 
of the deviation from the initial measurement positions and of  
longer ad-hoc OV LV BPL topologies on the detection efficiency of  
HS-DET method is assessed by using the already validated  
percent error sum (PES) metrics and appropriate contour plots.  
 
 

Keywords: Smart Grid; Broadband over Power Lines (BPL); Power Line Communications (PLC); 

Distribution Power Grid; Energy Theft; Jamming; Robustness 

 

 
1. Introduction 
 

 Energy theft defines a well-known problem either in traditional power systems or 

in the emerging smart grid while the financial losses of the power utilities reach up to  

$6 billion, $5 billion and $4.5 billion in United States, Brazil and India, respectively  

[1]-[10]. The existing portfolio of BPL broadband applications, such as  

Topology Identification Methodology (TIM) [11], Fault and Instability Identification 

Methodology (FIIM) [12], methodology to preserve power system stability [13]-[16] and 

Main Line Fault Localization Methodology (MLFLM) [17]-[19], that has been recently 

enriched with the hook style energy theft detection method (HS-DET method) [20]-[22] 

can monitor, meter, control and provide valuable real-time detailed information on actual 

operation of the power grid while it can identify and stop fraud (energy theft). 

Until now [20]-[22], HS-DET method, which is based on the hybrid model  

[23]-[40], has been assumed to operate on the basis of a permanently installed  

BPL network while examining the permanent BPL cascaded topologies of this  

BPL network. In fact, HS-DET method adopts ΔPES metric, which is the suitable percent 

error sum (PES) submetric for energy theft detection, and its relevant contour plots in 

order to detect the hook style energy theft across the OV LV BPL topologies [20]-[22].  
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In this paper, to avoid the cost and the delay of a permanent installation of a  

BPL network, Information Technology departments of the power utilities can deploy  

ad-hoc OV LV BPL topologies so that an energy theft can be detected.  

Actually, ΔPES and its relevant contour plots are going to be again exploited 

during the energy theft detection of ad-hoc OV LV BPL topologies since they are going 

to evaluate the asymmetry between the original and the modified ad-hoc OV LV BPL 

topology where the modified ad-hoc OV LV BPL topology comes from the original ad-

hoc OV LV BPL topology after the hook insertion. However, the asymmetry evaluation 

implies that the Information Technology departments have already deployed the same ad-

hoc OV LV BPL topologies during the normal operation of the power grid so that 

available measurements are available.  

 HS-DET method has first been presented in [20] where the impact of OV LV BPL 

topologies, hook characteristics and measurement differences on the performance of  

HS-DET method has been assessed through  metric and its relevant contour plots.  

In [21], a first set of special issues, such as: (i) the existence / definition of a threshold of 

the intensity of measurement differences that may occur / be produced preventing faulty 

decisions concerning the existence of hook style energy theft; (ii) the impact of the 

installation of very long hooks; and (iii) the impact of the use of “smart” hooks, has been 

examined. In [22], a second set of special issues, such as: (a) the impact of different CUD 

measurement differences of the same maximum value when the coupling transfer 

functions of the original and the modified OV LV BPL topologies are measured;  

(b) the installation of two “smart” hooks; and (c) the impact of the full interconnection 

assumption of the “smart” hook during the computations of HS-DET method, has also 

been addressed. Taking into consideration the findings of [20]-[22] and the special nature 

of ad-hoc OV LV BPL topologies, a set of following issues related to the operation of  

ad-hoc OV LV BPL topologies is investigated in this paper, namely:  

(i) the effect of the deviation from the initial measurement positions of the installed  

ad-hoc OV LV BPL topology by the Information Technology department; and  

(ii) the effect of application of longer ad-hoc OV LV BPL topologies than the typical  

OV LV BPL topologies of the permanent BPL networks. The impact of the 

aforementioned two special features of the ad-hoc OV LV BPL topologies on the 

performance of the HS-DET method is assessed by using the already validated ΔPES and 

its appropriate contour plots. 

The rest of this paper is organized as follows: In Section 2, a presentation of the 

proposed ad-hoc OV LV BPL topology installation concept is given as well as the 

required assumptions concerning the operation of ad-hoc OV LV BPL topologies.  

In Section 3, the synopsis of HS-DET method and PES metrics is presented. In Section 4, 

numerical results and discussion are provided, aiming at practically evaluating the 

performance of HS-DET method when ad-hoc OV LV BPL topologies are deployed. 

 

 

2. Ad-hoc OV LV BPL Topologies 
 

 Ad-hoc OV LV BPL topologies are deployed upon the OV LV power grid 

resembling to the cascaded OV LV BPL topologies of the permanent BPL networks.  

A typical OV LV power grid consists of OV LV distribution power lines such as this of  

Fig. 1 of [20]. The dimensions of the OV LV multiconductor transmission line (MTL) 

configuration, the characteristics of the involved imperfect ground and the properties of 
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the BPL signal propagation / transmission through OV LV MTL configurations are 

detailed in [23], [25]-[29], [31]-[33], [41]-[46]. 

 In the case of a permanent and complete BPL network installation, a BPL network 

can be divided into cascaded BPL topologies while in the case of the ad-hoc BPL 

topologies, which are studied in this paper, the ad-hoc BPL topology is synonym to the 

BPL network. In Fig. 1(a), a typical ad-hoc BPL topology with N branches, which does 

not differentiate from a typical BPL topology of a permanent BPL network, is shown. 

With respect to Fig. 1(a), an ad-hoc BPL topology is bounded by its transmitting and 

receiving ends. BPL units that operate as the transmitting and receiving ends are treated 

as the network gateways of the Information Technology department for its measurements. 

The number of branches and the topological characteristics of ad-hoc BPL topologies 

vary depending on the location of the examined segment of the OV LV power grid;  

say, this location defines the OV LV BPL topology class. In Table 1, the topological 

characteristics of indicative ad-hoc OV LV BPL topologies are reported. Note that same 

indicative ad-hoc OV LV BPL topologies with the indicative OV LV BPL topologies of 

typical lengths  of 1000 m are initially assumed in this paper (see [20]). 

 During the normal operation of the power grid, the Information Technology 

department should collect channel attenuation measurements from the examined  

ad-hoc OV LV BPL topology that is hereafter denoted as the original ad-hoc OV LV 

BPL topology. These measurements will also act as the reference measurements of the  

HS-DET method and should be properly handled by a database management system. 

Now, with reference to Fig. 1(b), let assume that a hook style energy theft occurs at the 

position Ah that is located at distance  from the transmitting end.  

The hook is located at distance . from the kth branch while its length is equal to 

. In total, the modified ad-hoc OV LV BPL topology is illustrated in Fig. 1(b) with 

reference to the original ad-hoc OV LV BPL topology of Fig. 1(a).  

Apart from the topological characteristics of Table 1, a set of assumptions 

concerning the transmission and propagation of the BPL signal as well as the circuital 

characteristics of the OV LV MTL configurations, which are required to simplify the 

following analysis, are detailed in [23]-[28]. Except for the aforementioned assumptions, 

assumptions concerning the hook handling should be made, namely:  

(i) the hook termination is assumed to be open circuit; and  

(ii) the hook interconnection with the distribution lines is assumed to be complete  

(i.e., hook derivation points at the same distance from the transmitting end on all the three 

phases) and horizontal. Apart from the previous hook handling assumptions,  

no measurement differences are assumed in this paper. Although differentiations of the 

latter assumptions have been thoroughly examined and assessed in terms of the 

performance of the HS-DET method in [20]-[22], their simplest versions are assumed in 

this paper for the sake of the paper size reduction.  

 

 

3. HS-DET Method Synopsis and the Ad-Hoc OV LV BPL Topology Case 
 
3.1 Hybrid Model and BPL Signal Coupling 

 As the channel attenuation measurements of the Information Technology 

department are concerned, the hybrid model, which describes the BPL propagation and 

transmission, is here applied. Extensively analyzed in [23]-[29], [32],  
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hybrid model consists of two interconnected modules, say, the bottom-up and the  

top-down approach module, while several useful spectral efficiency metrics such as 

channel attenuation and capacity may be calculated. In accordance with the bottom-up 

approach of the hybrid model, the MTL configuration of the examined ad-hoc OV LV 

BPL topologies may support 4 modes that propagate across the MTL BPL configuration.  

 

 
Fig. 1.  (a) Typical original ad-hoc OV LV BPL topology with N branches [20]. (b) Typical modified  

ad-hoc OV LV BPL topology due to the hook insertion. 

 

 
Table 1 

Indicative Original Ad-Hoc OV LV BPL Topologies [20] 

Topology 

Name 

(OV LV BPL 

Topology 

Class) 

Topology Description Number of 

Branches 

Length of 

Distribution Lines 

Length of 

Branching Lines 

Urban case A Typical OV urban topology 3 L1=500m, L2=200m, 

L3=100m, L4=200m 

Lb1=8m, Lb2=13m, 

Lb3=10m 

Urban case B Aggravated OV urban 

topology 

5 L1=200m, L2=50m, 

L3=100m, L4=200m, 

L5=300m, L6=150m 

Lb1=12m, Lb2=5m, 

Lb3=28m, Lb4=41m, 

Lb5=17m 

Suburban case OV suburban topology 2 L1=500m, L2=400m, 

L3=100m   

Lb1=50m, Lb2=10m 

Rural case OV rural topology 1 L1=600m, L2=400m Lb1=300m 

“LOS” case OV Line-of-Sight 

transmission 

0 L1=1000m - 

 

 

With reference to Figs. 1(a) and 1(b), through the combined operation of TM2 method, 

which is based on the scattering matrix formalism and is part of the top-down approach 

of the hybrid model [47], and CS2 module, which deals with the way that the BPL signal 

is injected onto and extracted from the OV LV lines and is also part of the top-down 

approach of the hybrid model [48], [49], the coupling scheme channel transfer function 
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that relates output BPL signal of the receiving end and input BPL signal of the 

transmitting end is given by 

                              (1) 

where  is the  modal channel transfer function matrix  of the examined  

OV LV MTL configuration,  is a  matrix depending on the frequency,  

the examined distribution power grid type, the physical properties of the cables and  

the geometry of the MTL configuration,  is the  input coupling vector,  

 is the  output coupling vector and  denotes the applied coupling scheme.  

In accordance with [48], [49], CS2 module may support three types of coupling schemes 

in ad-hoc OV LV BPL topologies, namely: (i) Coupling Scheme Type 1: Wire-to-Ground 

(WtG) coupling schemes; (ii) Coupling Scheme Type 2: Wire-to-Wire (WtW) coupling 

schemes, and (iii) Coupling Scheme Type 3: MultiWire-to-MultiWire (MtM) coupling 

schemes. Depending on the applied coupling scheme,  and  are properly defined, 

as dictated in [48], [49], and, then, the coupling scheme channel transfer function  is 

straightforward computed from eq. (1).  

 
3.2 HS-DET Method 

 With reference to eq.(1), [20] and [21], to apply HS-DET method when  

no measurement differences are assumed and the original ad-hoc OV LV BPL topologies 

are considered, the original measured coupling scheme transfer function , which is 

measured by the Information Technology department, for given coupling scheme can be 

determined by 

, i=1,…,u                                 (2) 

, i=1,…,u                                            (3) 

where fi, i=1,…,u denotes the measurement frequency, u is the number of subchannels in 

the examined frequency range and e(fi) synopsizes the total measurement difference in 

dB at frequency fi. that is anyway equal to zero in this paper.  

 As already mentioned, each hook can be treated as an open circuit fully 

interconnected horizontal branch by the hybrid model while the hook insertion modifies 

the original ad-hoc OV LV BPL topology to the respective modified one.  

With reference to eqs. (2) and (3),  can be considered as the modified measured 

coupling scheme channel transfer function, which is measured by the  

Information Technology department, that anyway coincides with the modified theoretical 

coupling scheme channel transfer function  due to the no measurement difference 

assumption of this paper. 

 Apart from the channel attenuation measurements of the Information Technology 

department, its main concern is the computation of PES submetrics that are the 

cornerstone metrics of HS-DET method and define whether a hook style energy theft 

occurs or not. In accordance with [20], the PES submetrics that are used in this paper 

when the no measurement difference assumption occurs are: 

                          (4) 

                       (5) 

                               (6) 
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where  and  assess the accuracy of the original measured coupling scheme 

channel transfer function and modified measured coupling scheme channel transfer 

functions, respectively, in relation with the original theoretical coupling scheme channel 

transfer function while  is the difference between the original and modified 

measured coupling scheme channel transfer functions. Based on  computations of 

eq. (6), appropriate contour plots may be plotted that facilitate the hook style energy theft 

detection [20]-[22]. In accordance with [21], suitable  thresholds have been 

proposed towards the safe hook style energy theft detection; HS-DET method can detect 

the energy theft through its strict  threshold of 10% in the vast majority of the  

OV LV BPL topologies while the loose  threshold of HS-DET method of 0% 

allows the energy theft in the remaining OV LV BPL topologies (e.g., urban OV LV BPL 

topologies when very high measurement differences occur) with the risk of a false alarm. 

In this paper, the same conclusions regarding the  thresholds of [21] are applied for 

the  computations. 

 A number of different scenarios concerning the operation of the HS-DET method 

has been examined until now while two critical but special issues concerning the 

operation of the ad-hoc OV LV BPL topologies are here outlined and investigated.  

Until now, the impact of OV LV BPL topologies, hook characteristics and measurement 

differences on the performance of HS-DET method has been assessed in [20] through 

 metric and its relevant contour plots. In [21], apart from the decision  

threshold regarding the energy theft detection, the impact of the installation of very long 

hooks and the use of “smart” hooks has been examined. In [22], the impact of different 

CUD measurement differences, the installation of two “smart” hooks and the full 

interconnection assumption has also been assessed. Taking into consideration the 

findings of [20]-[22], two issues related to the operation of ad-hoc OV LV BPL 

topologies are investigated in this paper, namely:  

• The effect of the deviation from the initial measurement positions.  

As already mentioned, in order to detect a hook style energy theft,  

Information Technology department should have already installed the original  

ad-hoc OV LV BPL topology and should have gathered reference measurements 

for the topologies of interest (e.g., the indicative ad-hoc OV LV BPL topologies 

of Table 1) during the normal operation of the OV LV power grid.  

Therefore, the transmitting and receiving ends, which define the initial 

measurement positions, are well defined while the length D between the ends is 

known (e.g., the typical length of the indicative ad-hoc OV LV BPL topologies of 

Table 1 is equal to 1000m). With reference to eq. (6), when an energy theft is 

suspected, Information Technology department should again install the  

ad-hoc OV LV BPL topology at the same measurement positions with the original 

ones. But, small measurement location deviations devt and devr may occur at the 

transmitting and receiving end, respectively, due to either position miscalculations 

of the Information Technology department or physical reasons having to do with 

the OV LV power grid. In Table 2, the respective modified ad-hoc OV LV BPL 

topologies of ones of Table 1 without the hook insertion are reported when the 

measurement location deviations devt and devr may take positive or negative 

values (the meaning of a positive or negative measurement location deviation is 

explained in Sec. 4.1). Two scenarios concerning the measurement location 

deviations devt and devr can occur and are examined in this paper: 
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o Scenario A: In this first scenario, the length D of the modified ad-hoc OV 

LV BPL topology without the hook remains the same with the original 

one. Since the length between the two aforementioned BPL topologies 

remains the same, the measurement location deviations devt and devr are 

related according to: 

                                                      (7) 

 

 
 

Table 2 

Modified Ad-Hoc OV LV BPL Topologies without Hook Style Energy Theft with Respect to the 

Measurement Location Deviation  

Topology 

Name 

(OV LV BPL 

Topology 

Class) 

Topology Description Number 

of 

Branches 

Length of 

Distribution Lines 

Length of 

Branching Lines 

Urban case A Shifted typical OV LV 

urban topology without 

hook 

3 L1=500m+devt, 

L2=200m, L3=100m, 

L4=200m+devr 

Lb1=8m, Lb2=13m, 

Lb3=10m 

Urban case B Shifted aggravated OV LV 

urban topology without 

hook 

5 L1=200m+devt, 

L2=50m, L3=100m, 

L4=200m, L5=300m, 

L6=150m+devr 

Lb1=12m, Lb2=5m, 

Lb3=28m, 

Lb4=41m, Lb5=17m 

Suburban case Shifted OV LV suburban 

topology without hook 

2 L1=500m+devt, 

L2=400m,  

L3=100m+devr  

Lb1=50m, Lb2=10m 

Rural case Shifted OV LV rural 

topology without hook 

1 L1=600m+devt, 

L2=400m+devr 

Lb1=300m 

“LOS” case Shifted OV LV Line-of-

Sight transmission without 

hook 

0 L1=1000m+devt+devr - 

 

 

o Scenario B: In this second scenario, the length D of the modified ad-hoc 

OV LV BPL topology without the hook is different from the original one. 

In this general case, the measurement location deviations devt and devr are 

not related each other and can be independently modified. 

With reference to Table 1, 2 and Fig. 1(b), the modified ad-hoc OV LV BPL 

topology after the hook insertion occurs when a hook style energy theft occurs at 

the position Ah that is located at distance  from the transmitting end of the 

original ad-hoc OV LV BPL topology. The performance of HS-DET method 

should be assessed for both scenarios after the hook insertion.  

• The effect of longer ad-hoc OV LV BPL topologies than the typical ones.  

With reference to Table 1 and 2, the indicative ad-hoc OV LV BPL topologies are 

assumed to have the typical lengths of 1000m, which are the same with the 

lengths of the cascaded OV LV BPL topologies of permanent BPL networks.  

In accordance with [11]-[14], [17]-[21], [23]-[28], although this is the typical 

topology length during the installation of complete BPL networks,  

longer ad-hoc OV LV BPL topologies can be deployed since across a length of 

1000 m a hook style energy theft can be easily detected through a simple optical 
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inspection. For that reason, concatenations of the same indicative  

ad-hoc OV LV BPL topologies of Table 1 are assumed for the study of the effect 

of longer ad-hoc OV LV BPL topologies in urban, suburban and rural 

environments. In Table 3, the respective modified ad-hoc OV LV BPL topologies 

of ones of Table 1 without the hook insertion are reported  

 

 

 
Table 3 

Modified Ad-Hoc OV LV BPL Topologies without Hook Style Energy Theft with Respect to the 

Concatenation of Original Ad-Hoc OV LV BPL Topologies 

Topology 

Name 

(OV LV BPL 

Topology 

Class) 

Topology Description Number of 

Branches 

Length of 

Distribution Lines 

Length of 

Branching Lines 

Urban case A Concatenated Typical OV 

urban topology without hook 

3 Lv,1=500m, 

Lv,2=200m, 

Lv,3=100m, 

Lv,4=200m 

Lv,b1=8m, 

Lv,b2=13m, 

Lv,b3=10m 

Urban case B Concatenated aggravated OV 

urban topology without hook 

5 Lv,1=200m, 

Lv,2=50m, 

Lv,3=100m, 

Lv,4=200m, 

Lv,5=300m, 

Lv,6=150m 

Lv,b1=12m, 

Lv,b2=5m, 

Lv,b3=28m, 

Lv,b4=41m, 

Lv,b5=17m 

Suburban case Concatenated OV LV 

suburban topology without 

hook 

2 Lv,1=500m, 

Lv,2=400m, 

Lv,3=100m   

Lv,b1=50m, 

Lv,b2=10m 

Rural case Concatenated OV LV rural 

topology without hook 

1 Lv,1=600m, 

Lv,2=400m 

Lv,b1=300m 

“LOS” case Concatenated OV LV Line-

of-Sight transmission 

without hook 

0 Lv,1=1000m - 

 

 

when the number of concatenations v may take integer values above 1. Since the 

length of the indicative ad-hoc OV LV BPL topologies of Table 1 is equal to 1000 

m, the length of the modified ad-hoc OV LV BPL topologies of Table 3 becomes 

equal to v×1000 m.  

 

 

4. Numerical Results and Discussion 
 

 The numerical results of this Section focus on evaluating the performance of  

HS-DET method after the installation of ad-hoc OV LV BPL topologies. Exploiting the 

already acquired knowledge of [20]-[22], the impact of the deviation from the  

initial measurement positions and of longer ad-hoc OV LV BPL topologies than the 

typical ones on the HS-DET method performance is assessed through the prism of  

and its appropriate contour plots. The goal of HS-DET method is to detect the hook style 

energy theft when the aforementioned two special issues of the operation of the  
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ad-hoc OV LV BPL topologies occur. For that reason, a HS-DET method roadmap and 

 thresholds of [20]-[22] are going to be exploited. As the circuital, topological and 

coupling scheme characteristics of OV LV BPL networks are concerned, these remain the 

same with [20]-[22]. 

 

4.1 HS-DET Method and the Deviation from the Initial Measurement Positions 

 With reference to eqs. (4)-(6), when the Information Technology department can 

exactly install its ad-hoc OV LV BPL topology at the initial measurement positions and 

no hook style energy theft occurs,  values between the original ad-hoc OV LV BPL 

topology and the respective modified ad-hoc OV LV BPL topology without the hook are 

going to be equal to zero, which is anyway the obvious result.  

However, small measurement location deviations (e.g., from few cm to approximately 10 

m) from the initial measurement positions may occur having as a result a  

 difference between the original ad-hoc OV LV BPL topology and the respective 

modified ad-hoc OV LV BPL topology without hook except for the “LOS” transmission 

case. In accordance with Sec. 3.2, there are two scenarios that should be examined. 

 

4.1.1 Scenario A 

With reference to Tables 1 and 2, let assume that a measurement location 

deviation devt occurs between the original ad-hoc OV LV BPL topologies and the 

respective shifted ad-hoc OV LV BPL topologies without hook that may range from  

-10 m to 10 m. Since Information Technology department can accurately measure the 

distance between the transmitting and receiving end and can assure that this distance 

remains equal to D, the measurement location deviation devr is given by eq. (7).  

In Fig. 2,  is plotted with respect to the measurement location deviation devt 

between the typical OV LV urban topology and the shifted typical OV LV urban 

topology without hook. In the same figure, same  curves with the urban case A but 

for the urban case B, suburban case, rural case and “LOS” transmission case are given.  

From Fig. 2, it is evident that extremely low  values are observed regardless 

of the applied magnitude of measurement location deviations. Practically, a positive 

measurement location deviation can be treated as a MTL distribution cable segment that 

is cascaded to the examined original ad-hoc OV LV BPL topology. At the same time,  

the equal in absolute value but negative measurement location deviation, which is 

expressed in eq. (7), can be treated as a MTL distribution cable segment that is removed 

from the examined original ad-hoc OV LV BPL topology. In total, since the distance 

between the transmitting and receiving end of Scenario A always remains equal to D,  

the symmetry property of BPL channels, which has been detailed in [50], [51], holds 

regardless of the examined ad-hoc OV LV BPL topology. Therefore, small measurement 

location deviations in Scenario A cannot trigger a false hook style energy theft alarm 

since  values remain significantly lower than the strict 10%  threshold.  

Actually, it is expected that the small measurement location deviations of 

Scenario A cannot abrupt the high performance of HS-DET method in detecting the hook 

style energy theft. In order to validate the detection efficiency of HS-DET method when a 

hook style energy theft occurs,  is going to be computed and presented 

hereafter;  expresses the difference between the  when a measurement 

location deviation occurs and the  without the measurement location deviation  

–see Figs. 3(a)-(e) of [20]– for given ad-hoc OV LV BPL topology, hook distance from 
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the transmitting end span and hook length span. In Fig. 3(a),  is plotted versus 

the hook distance from the transmitting end and the hook length when the indicative  

ad-hoc OV LV BPL topology of urban case A is assumed, measurement location 

deviation devt is equal to -10 m and Scenario A is examined. In Figs. 3(b), 3(c), 3(d) and 

3(e), same plots with Fig. 3(a) are given but for the case of the urban case B, suburban 

case, rural case and “LOS” case, respectively. In Figs. 4(a)-(e), same plots with the 

respective Figs. 3(a)-(e) but for the case of the measurement location deviation devt that 

is equal to 10 m. Here, it should be noted that the hook distance span and  

 

 

 
Fig. 2.  of HS-DET method for the five indicative ad-hoc OV LV BPL topologies for various 

measurement location deviations devt when no hook style energy theft occurs (Scenario A). 
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Fig. 3.  of the indicative OV LV BPL topologies for various hook distances from the original 

transmitting end and hook lengths when measurement location deviation devt is equal to -10 m  

(Scenario A). (a) Urban case A. (b) Urban case B. (c) Suburban case. (d) Rural case. (e) “LOS” case. 
 



 

Peer-Reviewed Article   Trends in Renewable Energy, 5 

 

 

Tr Ren Energy, 2019, Vol.5, No.2, 117-150. doi: 10.17737/tre.2019.5.2.0093 130 

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 5 

 

 

Tr Ren Energy, 2019, Vol.5, No.2, 117-150. doi: 10.17737/tre.2019.5.2.0093 131 

 

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 5 

 

 

Tr Ren Energy, 2019, Vol.5, No.2, 117-150. doi: 10.17737/tre.2019.5.2.0093 132 

 

 
Fig. 4. Same curves with Fig. 3 but for measurement location deviation devt of 10 m.  
 

 

the hook length span are assumed to be equal to 50 m and 5 m, respectively, while the 

range of the hook distance from the transmitting end of the examined original  

ad-hoc OV LV BPL topology and the range of the hook length are from 1 m to 951 m 

and from 1 m to 46 m, respectively, for all the examined contour plots of this paper.  

The selection of the previous plot specifications has been done for the sake of the direct 

PES submetric comparison against Figs. 3(a)-(e) of [20]. 

 By comparing Figs. 3(a)-(e) and 4(a)-(e) with Figs. 3(a)-(e) of [20],  

several interesting comparative observations can be made regarding the performance of 

HS-DET method when Scenario A is adopted, namely: 

• Regardless of the measurement location deviation devt and its dependent 

measurement location deviation devr,  remains extremely low in all the 

examined cases of Scenario A, in the order of 10-14%. This indicates that the small 

values of , which have already been spotted in Fig. 2, are further reflected 

on respective small  values of Figs. 3(a)-(e) and 4(a)-(e) thus unveiling 

the invulnerability of HS-DET method when various measurement location 

deviations that are in agreement with Scenario A occur.  

• Since  of Figs. 3(a)-(e) of [20] remains well above the 10% threshold of the 

easy hook style energy theft detection and all the observed  values of 

Figs. 3(a)-(e) and 4(a)-(e) remain in the order of 10-14%,  values of the 

modified ad-hoc OV LV BPL topologies after the hook insertion will remain 

significantly greater than the strict  threshold of 10% thus allowing the easy 

hook style energy theft detection regardless of the magnitude of the measurement 

location deviations. 

• From Figs. 3(a)-(e) and 4(a)-(e),  values remain in the order of 10-14% 

regardless of the examined ad-hoc OV LV BPL topology. Similarly to [20],  
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the hook detection becomes easier in the cases of ad-hoc OV LV BPL topologies 

of low number of long branches such as “LOS” and rural topologies. In the latter 

cases, a hook insertion provokes the birth of a multipath environment which is 

accompanied by deep and frequent spectral notches to the measured coupling 

scheme channel attenuation and, of course, significant increase of  and 

ΔPES. Indeed, the easy hook detection is validated by the high ΔPES values 

across the contour plots of the “LOS” and rural OV LV BPL topologies of [20].  

• From Figs. 3(a)-(e) and 4(a)-(e),  values remain in the order of 10-14% 

regardless of the hook length. Similarly to [20], the detection of the hook style 

energy theft of Scenario A in ad-hoc OV LV BPL topologies remains easier when 

the hook remains short enough (i.e., shorter than 10 m) while the detection 

becomes less easy but safe when the hook exceeds 10 m.  

• From Figs. 3(a)-(e) and 4(a)-(e),  values remain in the order of 10-14% 

regardless of the hook position during the Scenario A. Similarly to [20],  

the hook distance from the transmitting end becomes more crucial in  

ad-hoc OV LV BPL topologies with high number of branches rather than in the 

ad-hoc OV LV BPL rural and “LOS” topologies. 

From the previous observations, it is highlighted the main advantage of  

Scenario A that is the fixed distance between the transmitting and receiving end.  

This implies that even if large measurement location deviations devt may occur,  

these deviations can be counterbalanced by the equal in magnitude but opposite 

measurement location deviations devr. Hence, the most important issue during the 

installation of an ad-hoc OV LV BPL topology for the hook style energy theft detection 

by the Information Technology department is the maintenance of the same distance 

between the transmitting and receiving end rather than the exact installation position of 

the transmitting end since measurement location deviations devt and devr can be 

counterbalanced.  

 

4.1.2 Scenario B 

With reference to Tables 1 and 2, let assume that a measurement location 

deviation devt occurs between the original ad-hoc OV LV BPL topologies and the 

respective shifted ad-hoc OV LV BPL topologies without hook that may range from  

-10 m to 10 m. In Scenario B, it is assumed that Information Technology department 

cannot assure that the distance between the transmitting and receiving end is equal to D. 

Since the length of the shifted ad-hoc OV LV BPL topology is not exactly known,  

the measurement location deviation devr may also range from -10 m to 10 m 

independently of the measurement location deviation devt.  

With reference to Sec. 4.1.1, it has been verified that the main issue regarding the 

performance of HS-DET method is the algebraic sum of the measurement location 

deviations devt and devr rather than their exact values. Hence, the measurement location 

deviation devt can be considered to vary from -20 m to 20 m in the following analysis so 

that all the different combinations of the measurement location deviations devt and devr 

can equivalently be studied without creating additional complexity. In Fig. 5,  
 is plotted with respect to the measurement location deviation devt between the 

typical OV LV urban topology and the shifted typical OV LV urban topology without 

hook when Scenario B is applied. In the same figure, same  curves with the urban 
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case A but for the urban case B, suburban case, rural case and “LOS” transmission case 

are given.  

 
Fig. 5.  of HS-DET method for the five indicative ad-hoc OV LV BPL topologies for various 

measurement location deviations devt when no hook style energy theft occurs (Scenario B). 

 

 

From Fig. 5, low  values that depend on the applied magnitude of 

measurement location deviation devt are observed in Scenario B. By comparing  

Figs. 2 and 5,  values of Scenario B are significantly higher than the ones of 

Scenario A but anyway remain significantly lower than the strict 10%  threshold. 

This is a logical result since insertion or removal of MTL cable segments are considered 

for the ad-hoc OV LV BPL topologies when positive or negative measurement location 

deviations devt are examined. Note that the symmetry property of BPL channels, which 

holds in Scenario A, does not stand in Scenario B except for the case where measurement 

location deviation devt is equal to 0. In the latter case, the study of Scenario B 

degenerates into the study of Scenario A. 

In accordance with [23], [25], [27], [30], [48], the small  values of Fig. 5  

are explained by the fact that multipath rather than “LOS” transmission distance is 

identified as the dominant factor in OV LV BPL channels thus mainly affecting BPL 

signal attenuation. Hence, the effect of insertion or removal of MTL cable segments at 

the ad-hoc OV LV BPL topologies is not so severe and is not recognized as the primary 

attenuation factor since multipath attenuation is the primary one.  

Therefore, among  values of different ad-hoc OV LV BPL topologies in Fig. 5,  

the most affected ones by the measurement location deviations of Scenario B are the 

“LOS” and rural OV LV BPL topologies since multipath attenuation remains negligible 

in these cases.  

In addition, it should be noted that  values of  

ad-hoc OV LV BPL topologies remain negligible with respect to  

the strict 10%  threshold while they start to become important with respect to  

the loose 0%  threshold of [21], [22].  
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In fact, if the loose 0%  threshold, but risky in terms of a possible false alarm,  

is assumed only the “LOS” ad-hoc OV LV BPL topology can trigger this false alarm  

(i.e.,  values slightly greater than 1% when the absolute value of measurement 

location deviation devt is equal to 20 m) since the other ad-hoc OV LV BPL topologies 

are characterized by significantly low  values (i.e.,  values lower than 0.3%).  

Similarly to Scenario A, it is expected that the small measurement location 

deviations of Scenario B cannot foment the high performance of HS-DET method against 

the hook style energy theft. In order to validate the detection efficiency of  

HS-DET method when a hook style energy theft occurs,  is going to be 

computed and presented for Scenario B; in Fig. 6(a),  is plotted versus  

the hook distance from the transmitting end and the hook length when the indicative  

ad-hoc OV LV BPL topology of urban case A is assumed, measurement location 

deviation devt is equal to -20 m and Scenario B is applied. In Figs. 6(b), 6(c), 6(d) and 

6(e), same plots with Fig. 6(a) are given but for the case of the urban case B, suburban 

case, rural case and “LOS” case, respectively. In Figs. 7(a)-(e), same plots with the 

respective Figs. 6(a)-(e) but for the case of the measurement location deviation devt that 

is equal to 20 m are given. As the hook characteristics are concerned for the examined 

contour plots, these are the same with Figs. 3(a)-(e) and 4(a)-(e). 

 By comparing Figs. 6(a)-(e) and 7(a)-(e) with Figs. 3(a)-(e), 4(a)-(e) and  

3(a)-(e) of [20], additional observations can be made regarding the performance of HS-

DET method when Scenario B is examined, namely: 

• Similarly to Figs. 3(a)-(e), the first value of the hook distance from the original 

transmitting end in Figs. 6(a)-(e) is equal to 51 m. Since a measurement location 

deviation devt of -10 m and -20 m is assumed in Figs. 3(a)-(e) and Figs. 6(a)-(e), 

respectively, this is equal to a respective MTL cable segment removal of 10 m 

and 20 m from the transmitting end of the original ad-hoc OV LV BPL topologies 

with reference to Table 2. Since the range of the hook distance from the 

transmitting end of the examined original ad-hoc OV LV BPL topology is equal 

to 1 m, the hook distance from the original transmitting end span is equal to 50 m 

and the first value of the range of the hook distance from the transmitting end 

cannot be used, the first value of the hook distance from the original transmitting 

end in Figs. 3(a)-(e) and 6(a)-(e) is equal to 51m. 

• Negative  values are observed in Figs. 6(a)-(e) whereas positive 

 values are observed in Figs. 7(a)-(e). Conversely to Figs. 3(a)-(e) and 

4(a)-(e) where a mixed scenario regarding the sign of  occurs,  

the negative  values but of small magnitudes that are observed in  

Figs. 6(a)-(e) indicate that HS-DET method slightly more difficult detects the 

hook style energy theft; the opposite occurs when the positive  values 

are demonstrated in Figs. 7(a)-(e). Hence, positive measurement location 

deviations that entail larger length between the transmitting and receiving end of 

the modified ad-hoc OV LV BPL topologies can facilitate the detection of hook 

style energy theft. 

• In accordance with [20], the hook distance from the transmitting end influences 

the performance of HS-DET method only in the cases of ad-hoc OV LV BPL 

topologies with high number of branches thus creating areas of different hook 

style energy theft detection difficulty in contour plots. Hence, with reference to 

Figs. 3(a)-(e) of [20], higher ΔPES values characterize areas of easier hook style 
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energy theft detection. With reference to Figs. 6(a)-(e) and 7(a)-(e),  
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Fig. 6.  of the indicative OV LV BPL topologies for various hook distances from the original 

transmitting end and hook lengths when measurement location deviation devt is equal to -20 m (Scenario 

B). (a) Urban case A. (b) Urban case B. (c) Suburban case. (d) Rural case. (e) “LOS” case. 
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Fig. 7. Same curves with Fig. 6 but for measurement location deviation devt of 20 m.  
 

 

the aforementioned areas are less affected by the measurement location deviations 

of Scenario B since the lowest in magnitude  values occur there.  

The opposite situation holds in the areas of more difficult hook style energy theft 

detection. For example, with reference to Figs. 3(a)-(e) of [20], the hook style 

energy theft detection in OV LV BPL “LOS” topologies remains easier when 

short hooks are applied regardless of the distance from the transmitting end while 

among the lowest  values occur in these cases with reference to  

Figs. 6(e) and 7(e). 

From the previous findings, the main advantage of Scenario B is underlined that is 

the consideration of longer modified ad-hoc OV LV BPL topologies by the  

Information Technology department for the hook style energy theft detection since 

positive  values imply better performance of HS-DET method. When longer 

modified ad-hoc OV LV BPL topologies are used, the algebraic sum of measurement 

location deviations devt and devr rather than the exact installation positions of the 

transmitting and receiving end remain the important issue for Scenario B.  

 

 

4.2 HS-DET Method and Longer Ad-Hoc OV LV BPL Topologies than the Typical 
OV LV BPL Topologies 

 When a complete OV LV BPL network is installed, this network can be divided 

into cascaded OV LV BPL topologies of typical lengths of 1000 m. In contrast,  

the main advantage of the installation of ad-hoc OV LV BPL topologies can be a more 

relaxed perspective regarding their lengths. If the hook style energy theft detection 

remains safe by HS-DET method, significantly longer lengths can be exploited for the  

ad-hoc OV LV BPL topologies. In order to assess the performance of HS-DET method 

through ΔPES, longer ad-hoc OV LV BPL topologies should be examined in urban, 
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suburban, rural and “LOS” environments. Note that each environment corresponds to a 

respective ad-hoc OV LV BPL topology class with reference to Tables 1-3.  

To examine the length impact of ad-hoc OV LV BPL topologies in the aforementioned 

environments, concatenated OV LV BPL topologies will be used; for example,  

the indicative ad-hoc OV LV BPL urban topology of Table 1 is equal to 1000 m,  

while the respective concatenated ad-hoc OV LV BPL urban topology without hook of 

v×1000m length is given in Table 3 where v is the number of concatenations.  

Although the concatenation of same OV LV BPL topology classes is a rather simplified 

and pessimistic approach, it can describe the BPL topology complexity of the urban, 

suburban, rural and “LOS” environments. 

 With reference to Tables 1 and 3, let assume that a concatenated  

ad-hoc OV LV BPL topology of v indicative ad-hoc OV LV BPL topologies  

(i.e., the number of concatenation is equal to v) is first installed by the  

Information Technology department and collect the required reference data.  

After the uninstallation, a hook style energy theft occurs by using a hook of length  

that is hung at distance  from the transmitting end.  

Information Technology department reinstalls the same concatenated  

ad-hoc OV LV BPL topology without any measurement location deviations.  

In Fig. 8,  is plotted with respect to the number of concatenation v when  

and  are assumed for the five concatenated ad-hoc OV LV BPL topologies as 

described in Table 3. In Fig. 9, same curves with Fig. 8 are given but for  and 

 while same curves with Fig. 8 are given in Fig. 10 but for 

 and .  

 From Figs. 8-10, interesting findings can be reported concerning the detection of 

hook style energy theft when longer ad-hoc OV LV BPL topologies are installed by the 

Information Technology department. More specifically: 

• The length and the class of the ad-hoc OV LV BPL topologies play critical role 

towards the hook style energy theft detection by ΔPES. However, the adoption of 

the conservative 1000 m typical length of OV LV BPL topologies remains an 

extremely safe decision regardless of the applied ad-hoc OV LV BPL topology 

class. Anyway, the hook style energy theft detection performance inversely 

depends on the length of the installed ad-hoc OV LV BPL topology. 

• Depending on the examined OV LV BPL topology class,  

Information Technology department can adaptively install  

ad-hoc OV LV BPL topologies of different lengths. On the basis of a  

safe hook style energy theft detection that is assured by the strict 10% ΔPES 

threshold, Information Technology department can install: 

o ad-hoc “LOS” OV LV BPL topologies whose length may exceed 10 km; 

o ad-hoc rural OV LV BPL topologies whose length may reach up to 8 km; 

o ad-hoc suburban OV LV BPL topologies whose length may reach up to 4 

km; and 

o ad-hoc urban OV LV BPL topologies whose length may reach up to 2 km 

(aggravated cases) even to 3 km (typical cases). 

• Comparing Figs. 8-10, small ΔPES differences are observed for given ad-hoc OV 

LV BPL topology. This is due to the fact the hook length and the hook distance 

from the transmitting end has smaller effect on ΔPES rather than the number of  
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Fig. 8.  of HS-DET method for the five concatenated OV LV BPL topologies of Table 3 when hook 

length of 5 m and hook distance from the transmitting end of 50 m is assumed for different numbers of 

concatenations (y-axis is in logarithmic scale). 
 

 
Fig. 9. Same curves with Fig. 8 but for hook length of 40 m and hook distance from the transmitting end of 

m. 
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Fig. 10. Same curves with Fig. 8 but for hook length of 20 m and hook distance from the transmitting end 

of m. 

 

 

concatenations. Anyway, a high number of concatenations implies that stronger 

multipath environments are created where the channel attenuation imposed by the 

hook remains smaller than the channel attenuation by the multipath environment 

because of the v multiple branches.  

• In accordance with the findings of Secs. 4.1.1 and 4.1.2,  

Information Technology department can exploit the longer ad-hoc OV LV BPL 

topologies even if high accuracy regarding the installation positions lacks. 

Practically, Information Technology department should carefully report the first 

and the last branch of the ad-hoc OV LV BPL topology from which the reference 

measurements had been collected as the effect of additional or fewer MTL cable 

segments outside the topology range of the first and last branch on ΔPES remains 

negligible. 

• In accordance with [20]-[22], measurement differences and various jamming 

techniques, which are not taken into consideration in this paper, have as impact 

the reduction of ΔPES values. In order to comply with the strict 10% ΔPES 

threshold, a small reduction of the number of concatenations can counteract this 

ΔPES aggravation. 

Concluding this Section, an important remark is that there is no need for 

deploying a complete OV LV BPL network but a careful installation of an ad-hoc OV LV 

BPL topology for a hook style energy theft detection. In order to detect a hook style 

energy theft, longer ad-hoc OV LV BPL topologies than the typical OV LV BPL 

topologies can be installed by Information Technology department and  

the hook style energy theft detection can be successfully and easily made even with the 

strict 10% ΔPES threshold. Successful hook style energy theft detections can be made 

even if the lengths of the ad-hoc OV LV BPL topologies exceed 10km in “LOS” cases. 

But among the most critical topics of this Section is that there is no need for absolute 
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accuracy regarding the installation of the original and modified ad-hoc OV LV BPL 

topology. Even if measurement deviations occur at the transmitting and receiving end, the 

length should be assured by the Information Technology department that remains the 

same. Even if the length between the original and modified ad-hoc OV LV BPL topology 

is not the same, the influence of measurement deviations of transmitting and receiving 

end can be negligible if these measurement deviations are small fractions of the length of 

the examined ad-hoc OV LV BPL topology. 

 

 

5. Conclusions 
 

 This paper has focused on the performance of HS-DET method when  

ad-hoc OV LV BPL topologies are installed by Information Technology departments of 

power utilities. In fact, two critical issues regarding the operation of ad-hoc OV LV BPL 

topologies have been discussed in this paper while their impact on the hook style energy 

theft detection by ΔPES of HS-DET method has been assessed;  

first, two scenarios regarding the measurement location deviation of the transmitting and 

receiving ends of the ad-hoc OV LV BPL topologies from the initial reference  

ad-hoc OV LV BPL topologies have been identified. In Scenario A, it has been proven 

that small measurement location deviations from the initial positions of the transmitting 

and receiving ends of the ad-hoc OV LV BPL topologies (i.e., measurement location 

deviations up to 10 m) negligibly affect the hook style energy theft detection due to the 

symmetry attribute of BPL networks when the length of the original and the  

shifted ad-hoc OV LV BPL topology remains the same. In Scenario B, the effect of the 

measurement location deviations from the initial positions of the transmitting and 

receiving ends of the ad-hoc OV LV BPL topologies has been assessed but without the 

same length between the original and the shifted ad-hoc OV LV BPL topologies.  

Again, the hook style energy theft detection practically remains unaffected since  

ΔPES aggravation remains below 1% in the vast majority of the cases, which is 

significantly lower than the strict 10% ΔPES threshold for a safe hook style energy theft 

decision, when small measurement location deviations from the initial positions of the 

transmitting and receiving ends of the ad-hoc OV LV BPL topologies occur.  

Second, the impact of longer ad-hoc OV LV BPL topologies on the performance of  

hook style energy theft detection has been assessed. It has been proven that  

Information Technology department can deploy ad-hoc OV LV BPL topologies whose 

length can comfortably exceed 2 km and even 10 km depending on the examined OV LV 

BPL topology class; say, the smart grid environment. In conclusion, a wise management 

of ad-hoc OV LV BPL topologies by Information Technology department,  

e.g., an accurate installation plan and an updated database management system,  

can secure extremely safe decisions concerning the hook style energy theft detection in 

all the cases examined without the need of additional costs concerning either specialized 

equipment or a complete BPL network.  
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