Virtual Indicative Broadband over Power Lines Topologies for Respective Subclasses by Adjusting Channel Attenuation Statistical Distribution Parameters of Statistical Hybrid Models (Class Maps) – Part 2: Numerical Results for the Overhead and Underground Medium-Voltage Power Grids

Athanasios G. Lazaropoulos

Abstract


With reference to the initial statistical hybrid model (iSHM) and modified statistical hybrid model (mSHM), the theory of the definition procedure of new virtual indicative distribution BPL topologies by appropriately adjusting the channel attenuation statistical distributions (CASDs) parameters of iSHM and mSHM has been presented in [1]. In this paper, the results of the definition procedure for the OV and UN MV BPL networks are first presented through the prism of the proposed class maps of iSHM and mSHM.

Citation: Lazaropoulos, A. G. (2019). Virtual Indicative Broadband over Power Lines Topologies for Respective Subclasses by Adjusting Channel Attenuation Statistical Distribution Parameters of Statistical Hybrid Models (Class Maps) – Part 2: Numerical Results for the Overhead and Underground Medium-Voltage Power Grids. Trends in Renewable Energy, 5, 258-281. DOI: 10.17737/tre.2019.5.3.00100


Keywords


Smart Grid; Broadband over Power Lines (BPL) networks; Power Line Communications (PLC); Distribution Power Grids; Capacity; Statistics; Modeling

Full Text:

FULL TEXT (PDF)

References


A. G. Lazaropoulos, “Virtual Indicative Broadband over Power Lines Topologies for Respective Subclasses by Adjusting Channel Attenuation Statistical Distribution Parameters of Statistical Hybrid Models – Part 1: Theory,†Trends in Renewable Energy, vol. 5, no. 3, pp 237-257, Aug. 2019. DOI: 10.17737/tre.2019.5.3.0099

A. G. Lazaropoulos, “Statistical Broadband over Power Lines Channel Modeling – Part 1: The Theory of the Statistical Hybrid Model,†Progress in Electromagnetics Research C, vol. 92, pp. 1-16, 2019. [Online]. Available: http://www.jpier.org/PIERC/pierc92/01.19012902.pdf

A. G. Lazaropoulos, “Statistical Broadband over Power Lines (BPL) Channel Modeling – Part 2: The Numerical Results of the Statistical Hybrid Model,†Progress in Electromagnetics Research C, vol. 92, pp. 17-30, 2019. [Online]. Available: http://www.jpier.org/PIERC/pierc92/02.19012903.pdf

A. G. Lazaropoulos, “Enhancing the Statistical Hybrid Model Performance in Overhead and Underground Medium Voltage Broadband over Power Lines Channels by Adopting Empirical Channel Attenuation Statistical Distribution,†Trends in Renewable Energy, vol. 5, no. 2, pp. 181-217, 2019. [Online]. Available: http://futureenergysp.com/index.php/tre/article/view/96/pdf

A. G. Lazaropoulos, “Towards Modal Integration of Overhead and Underground Low-Voltage and Medium-Voltage Power Line Communication Channels in the Smart Grid Landscape: Model Expansion, Broadband Signal Transmission Characteristics, and Statistical Performance Metrics (Invited Paper),†ISRN Signal Processing, vol. 2012, Article ID 121628, pp. 1-17, 2012. [Online]. Available: http://www.hindawi.com/isrn/sp/2012/121628/

A. G. Lazaropoulos, “Towards Broadband over Power Lines Systems Integration: Transmission Characteristics of Underground Low-Voltage Distribution Power Lines,†Progress in Electromagnetics Research B, vol. 39, pp. 89-114, 2012. [Online]. Available: http://www.jpier.org/PIERB/pierb39/05.12012409.pdf

A. G. Lazaropoulos and P. G. Cottis, “Transmission characteristics of overhead medium voltage power line communication channels,†IEEE Trans. Power Del., vol. 24, no. 3, pp. 1164-1173, Jul. 2009.

A. G. Lazaropoulos and P. G. Cottis, “Capacity of overhead medium voltage power line communication channels,†IEEE Trans. Power Del., vol. 25, no. 2, pp. 723-733, Apr. 2010.

A. G. Lazaropoulos and P. G. Cottis, “Broadband transmission via underground medium-voltage power lines-Part I: transmission characteristics,†IEEE Trans. Power Del., vol. 25, no. 4, pp. 2414-2424, Oct. 2010.

A. G. Lazaropoulos and P. G. Cottis, “Broadband transmission via underground medium-voltage power lines-Part II: capacity,†IEEE Trans. Power Del., vol. 25, no. 4, pp. 2425-2434, Oct. 2010.

A. G. Lazaropoulos, “Broadband transmission and statistical performance properties of overhead high-voltage transmission networks,†Hindawi Journal of Computer Networks and Commun., 2012, article ID 875632, 2012. [Online]. Available: http://www.hindawi.com/journals/jcnc/aip/875632/

P. Amirshahi and M. Kavehrad, “High-frequency characteristics of overhead multiconductor power lines for broadband communications,†IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1292-1303, Jul. 2006.

T. Sartenaer, “Multiuser communications over frequency selective wired channels and applications to the powerline access network†Ph.D. dissertation, Univ. Catholique Louvain, Louvain-la-Neuve, Belgium, Sep. 2004.

T. Calliacoudas and F. Issa, ““Multiconductor transmission lines and cables solver,†An efficient simulation tool for plc channel networks development,†presented at the IEEE Int. Conf. Power Line Communications and Its Applications, Athens, Greece, Mar. 2002.

T. Sartenaer and P. Delogne, “Deterministic modelling of the (Shielded) outdoor powerline channel based on the multiconductor transmission line equations,†IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1277-1291, Jul. 2006.

A. G. Lazaropoulos, “Virtual Indicative Broadband over Power Lines Topologies for Respective Subclasses by Adjusting Channel Attenuation Statistical Distribution Parameters of Statistical Hybrid Models – Part 3: The Case of Overhead Transmission Power Grids,†Trends in Renewable Energy, vol. 5, no. 3, pp 282-306, Aug. 2019. DOI: 10.17737/tre.2019.5.3.00101

S. Liu and L. J. Greenstein, “Emission characteristics and interference constraint of overhead medium-voltage broadband power line (BPL) systems,†in Proc. IEEE Global Telecommunications Conf., New Orleans, LA, USA, Nov./Dec. 2008, pp. 1-5.

A. G. Lazaropoulos, “Underground Distribution BPL Connections with (N + 1)-hop Repeater Systems: A Novel Capacity Mitigation Technique,†Elsevier Computers and Electrical Engineering, vol. 40, pp. 1813-1826, 2014.

A. G. Lazaropoulos, “Review and Progress towards the Capacity Boost of Overhead and Underground Medium-Voltage and Low-Voltage Broadband over Power Lines Networks: Cooperative Communications through Two- and Three-Hop Repeater Systems,†ISRN Electronics, vol. 2013, Article ID 472190, pp. 1-19, 2013. [Online]. Available: http://www.hindawi.com/isrn/electronics/aip/472190/

A. G. Lazaropoulos, “Broadband over Power Lines (BPL) Systems Convergence: Multiple-Input Multiple-Output (MIMO) Communications Analysis of Overhead and Underground Low-Voltage and Medium-Voltage BPL Networks (Invited Paper),†ISRN Power Engineering, vol. 2013, Article ID 517940, pp. 1-30, 2013. [Online]. Available: http://www.hindawi.com/isrn/power.engineering/2013/517940/

A. G. Lazaropoulos, “Deployment Concepts for Overhead High Voltage Broadband over Power Lines Connections with Two-Hop Repeater System: Capacity Countermeasures against Aggravated Topologies and High Noise Environments,†Progress in Electromagnetics Research B, vol. 44, pp. 283-307, 2012. [Online]. Available: http://www.jpier.org/PIERB/pierb44/13.12081104.pdf

N. Suljanović, A. MujÄić, M. Zajc, and J. F. TasiÄ, “Approximate computation of high-frequency characteristics for power line with horizontal disposition and middle-phase to ground coupling,†Elsevier Electr. Power Syst. Res., vol. 69, pp. 17-24, Jan. 2004.

OPERA1, D5: Pathloss as a function of frequency, distance and network topology for various LV and MV European powerline networks. IST Integrated Project No 507667, Apr. 2005.

N. Suljanović, A. MujÄić, M. Zajc, and J. F. TasiÄ, “High-frequency characteristics of high-voltage power line,†in Proc. IEEE Int. Conf. on Computer as a Tool, Ljubljana, Slovenia, Sep. 2003, pp. 310-314.

N. Suljanović, A. MujÄić, M. Zajc, and J. F. TasiÄ, “Power-line high-frequency characteristics: analytical formulation,†in Proc. Joint 1st Workshop on Mobile Future & Symposium on Trends in Communications, Bratislava, Slovakia, Oct. 2003, pp. 106-109.

W. Villiers, J. H. Cloete, and R. Herman, “The feasibility of ampacity control on HV transmission lines using the PLC system,†in Proc. IEEE Conf. Africon, George, South Africa, Oct. 2002, vol. 2, pp. 865-870.

P. Amirshahi, “Broadband access and home networking through powerline networks†Ph.D. dissertation, Pennsylvania State Univ., University Park, PA, May 2006.

OPERA1, D44: Report presenting the architecture of plc system, the electricity network topologies, the operating modes and the equipment over which PLC access system will be installed, IST Integr. Project No 507667, Dec. 2005.

J. Anatory, N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, “The influence of load impedance, line length, and branches on underground cable Power-Line Communications (PLC) systems,†IEEE Trans. Power Del., vol. 23, no. 1, pp. 180-187, Jan. 2008.

J. Anatory, N. Theethayi, and R. Thottappillil, “Power-line communication channel model for interconnected networks-Part II: Multiconductor system,†IEEE Trans. Power Del., vol. 24, no. 1, pp. 124-128, Jan. 2009.

J. Anatory, N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, “The effects of load impedance, line length, and branches in typical low-voltage channels of the BPLC systems of developing countries: transmission-line analyses,†IEEE Trans. Power Del., vol. 24, no. 2, pp. 621-629, Apr. 2009.

T. Banwell and S. Galli, “A novel approach to accurate modeling of the indoor power line channel—Part I: Circuit analysis and companion model,†IEEE Trans. Power Del., vol. 20, no. 2, pp. 655-663, Apr. 2005.

W. Villiers, J. H. Cloete, L. M. Wedepohl, and A. Burger, “Real-time sag monitoring system for high-voltage overhead transmission lines based on power-line carrier signal behavior,†IEEE Trans. Power Del., vol. 23, no. 1, pp. 389-395, Jan. 2008.

A. G. Lazaropoulos, “Smart Energy and Spectral Efficiency (SE) of Distribution Broadband over Power Lines (BPL) Networks – Part 1: The Impact of Measurement Differences on SE Metrics,†Trends in Renewable Energy, vol. 4, no. 2, pp. 125-184, Aug. 2018. [Online]. Available: http://futureenergysp.com/index.php/tre/article/view/76/pdf

A. G. Lazaropoulos, “Broadband Performance Metrics and Regression Approximations of the New Coupling Schemes for Distribution Broadband over Power Lines (BPL) Networks,†Trends in Renewable Energy, vol. 4, no. 1, pp. 43-73, Jan. 2018. [Online]. Available: http://futureenergysp.com/index.php/tre/article/view/59/pdf

A. G. Lazaropoulos, “New Coupling Schemes for Distribution Broadband over Power Lines (BPL) Networks,†Progress in Electromagnetics Research B, vol. 71, pp. 39-54, 2016. [Online]. Available: http://www.jpier.org/PIERB/pierb71/02.16081503.pdf

A. G. Lazaropoulos, “A Panacea to Inherent BPL Technology Deficiencies by Deploying Broadband over Power Lines (BPL) Connections with Multi-Hop Repeater Systems,†Bentham Recent Advances in Electrical & Electronic Engineering, vol. 10, no. 1, pp. 30-46, 2017.

A. G. Lazaropoulos, “The Impact of Noise Models on Capacity Performance of Distribution Broadband over Power Lines Networks,†Hindawi Computer Networks and Communications, vol. 2016, Article ID 5680850, 14 pages, 2016. doi:10.1155/2016/5680850. [Online]. Available: http://www.hindawi.com/journals/jcnc/2016/5680850/

A. G. Lazaropoulos, “Capacity Performance of Overhead Transmission Multiple-Input Multiple-Output Broadband over Power Lines Networks: The Insidious Effect of Noise and the Role of Noise Models (Invited Paper),†Trends in Renewable Energy, vol. 2, no. 2, pp. 61-82, Jun. 2016. [Online]. Available: http://futureenergysp.com/index.php/tre/article/view/23

A. G. Lazaropoulos, “Smart Energy and Spectral Efficiency (SE) of Distribution Broadband over Power Lines (BPL) Networks – Part 2: L1PMA, L2WPMA and L2CXCV for SE against Measurement Differences in Overhead Medium-Voltage BPL Networks,†Trends in Renewable Energy, vol. 4, no. 2, pp. 185-212, Aug. 2018. [Online]. Available: http://futureenergysp.com/index.php/tre/article/view/77/pdf

A. G. Lazaropoulos, “Factors Influencing Broadband Transmission Characteristics of Underground Low-Voltage Distribution Networks,†IET Commun., vol. 6, no. 17, pp. 2886-2893, Nov. 2012.




DOI: http://dx.doi.org/10.17737/tre.2019.5.3.00100

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Athanasios G. Lazaropoulos

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2024 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)