Double Carbon Coated LiCoPO4 Nano Composite as High-Performance Cathode for Lithium Ion Batteries

Yong Yu, Huifang Zhao, Yao Chen, Zeng-kai Feng, Xiaomin Liu, Hui Yang


Polyacene(PAS)/carbon and acetylene black(AB)/carbon coated lithium cobalt phosphate composites were synthesized via the solid state reaction method using co-precipitated Co3(PO4)2·8H2O and Li3PO4 mixture as its precursor. X-ray powder diffraction (XRD) was performed to investigate the structure and phase of all the samples. The transmission electron microscopy (TEM) shows that the double carbon layers coated on the surface of LiCoPO4 successfully. The LiCoPO4/C, LiCoPO4/PAS and LiCoPO4/AB delivered a capacity of T 120.92, 121.07 and 138.06 mAh×g-1 at 0.1C, respectively. The double carbon coated LiCoPO4 electrode delivered an initial discharge capacity of 147.12, 143.51 mAh×g-1 after AB/glucose, PAS/glucose coating, which maintained at 59.5% and 61.7% after 15 cycles at the 0.1C rate, respectively.
Citiation: Yu, Y., Zhao, H., Chen, Y., Feng, Z.-k., Liu, X., and Yang, H. (2020). Double Carbon Coated LiCoPO4 Nano Composite as High-Performance Cathode for Lithium Ion Batteries. Trends in Renewable Energy, 6, 1-11. DOI: 10.17737/tre.2020.6.1.00108


Double carbon coated LiCoPO4 nano composite; High-performance cathode; Lithium ion battery

Full Text:



Truong, Q. D., Devaraju, M. K., Ganbe, Y., Tomai, T., and Honma, I. (2014). Controlling the shape of LiCoPO₄ nanocrystals by supercritical fluid process for enhanced energy storage properties. Scientific Reports, 4(2), 3975.

Tarascon, J. M., and Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359–367.

Mauger, A., Armand, M., Julien, C. M., and Zaghib, K. (2017). Challenges and issues facing lithium metal for solid-state rechargeable batteries. Journal of Power Sources, 353, 333-342. DOI: 10.1016/j.jpowsour.2017.04.018

Goodenough, J. B., and Park, K. S. (2013). The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society, 135(4), 1167-1176.

Wolfenstine, J., Lee, U., Poese, B., and Allen, J. L. (2005). Effect of oxygen partial pressure on the discharge capacity of LiCoPO4. Journal of Power Sources, 144(1), 226-230. DOI: 10.1016/j.jpowsour.2004.12.013

Morgan, D., Van der Ven, A., and Ceder, G. (2004). Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochemical and Solid State Letters, 7(2), A30-A32. DOI: 10.1149/1.1633511

Gangulibabu, Nallathamby, K., Meyrick, D., and Minakshi, M. (2013). Carbonate anion controlled growth of LiCoPO4/C nanorods and its improved electrochemical behavior. Electrochimica Acta, 101, 18-26. DOI: 10.1016/j.electacta.2012.09.115

Wang, F., Yang, J., NuLi, Y., and Wang, J. (2011). Novel hedgehog-like 5V LiCoPO4 positive electrode material for rechargeable lithium battery. Journal of Power Sources, 196(10), 4806-4810. DOI: 10.1016/j.jpowsour.2011.01.055

Liu, J., Conry, T. E., Song, X., Yang, L., Doeff, M. M., and Richardson, T. J. (2011). Spherical nanoporous LiCoPO4/C composites as high performance cathode materials for rechargeable lithium-ion batteries. Journal of Materials Chemistry, 21(27), 9984-9987. DOI: 10.1039/c1jm10793c

Laszczynski, N., Birrozzi, A., Maranski, K., Copley, M., Schuster, M. E., and Passerini, S. (2016). Effect of coatings on the green electrode processing and cycling behaviour of LiCoPO4. Journal of Materials Chemistry A, 4(43), 17121-17128. DOI: 10.1039/c6ta05262b

Wolfenstine, J., Read, J., and Allen, J. L. (2007). Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4. Journal of Power Sources, 163(2), 1070-1073. DOI: 10.1016/j.jpowsour.2006.10.010

The Nam Long, D., and Taniguchi, I. (2011). Preparation of LiCoPO4/C nanocomposite cathode of lithium batteries with high rate performance. Journal of Power Sources, 196(13), 5679-5684. DOI: 10.1016/j.jpowsour.2011.02.039

Di Lecce, D., Manzi, J., Vitucci, F. M., De Bonis, A., Panero, S., and Brutti, S. (2015). Effect of the iron doping in LiCoPO4 cathode materials for lithium cells. Electrochimica Acta, 185, 17-27. DOI: 10.1016/j.electacta.2015.10.107

Yang, S. M. G., Aravindan, V., Cho, W. I., Chang, D. R., Kim, H. S., and Lee, Y. S. (2012). Realizing the Performance of LiCoPO4 Cathodes by Fe Substitution with Off-Stoichiometry. Journal of the Electrochemical Society, 159(7), A1013-A1018. DOI: 10.1149/2.051207jes

Ni, J., Wang, H., Gao, L., and Lu, L. (2012). A high-performance LiCoPO4/C core/shell composite for Li-ion batteries. Electrochimica Acta, 70, 349-354. DOI: 10.1016/j.electacta.2012.03.080

Zhao, H., Yu, Y., Wang, G., Chen, Y., Liu, X., and Yang, H. (2018). Synthesis of nanosphere-like LiCoPO4 with excellent electrochemical performance via micro reactor assisted co-precipitation method. Functional Materials Letters, 11(05), 1850037. DOI: 10.1142/s1793604718500376



  • There are currently no refbacks.

Copyright (c) 2020 Yong Yu, Huifang Zhao, Yao Chen, Zeng-kai Feng, Xiaomin Liu, Hui Yang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2020 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)