### Implementation of ANN technique for performance prediction of solar thermal systems: A Comprehensive Review

#### Abstract

Solar thermal systems (STS) are efficient and environmentally safe devices to meet the rapid increasing energy demand now a days. But it is very important to optimize their performance under required operating condition for efficient usage. Hence intelligent system-based techniques like artificial neural network (ANN) play an important role for system performance prediction in accurate and speedy way. In present paper, it is attempted to scrutinize the approach of ANN as an intelligent system-based method to accurately optimize the performance prediction of different solar thermal systems. Here, 25 research works related to various solar thermal systems have been reviewed and summarized to understand the impact of different ANN models and learning algorithms on performance prediction of STS. Using ANN, a brief stepwise summary of researchers’ work on various STS like solar air heaters, solar stills, solar cookers, solar dryers and solar hybrid systems, their predictions (results) and architectures (network and learning algorithms) in the literature till now, are also discussed here. This paper will genuinely help future researchers overview the work concisely related to solar thermal system performance prediction using various types of ANN models and learning algorithm and compare it with other global methods of machine learning.

**Citation: **Ahmad, A., Ghritlahre, H. K., and Chandrakar, P. (2020). Implementation of ANN technique for performance prediction of solar thermal systems: A Comprehensive Review. Trends in Renewable Energy, 6, 12-36. DOI: 10.17737/tre.2020.6.1.00110

#### Keywords

#### Full Text:

FULL TEXT (PDF)#### References

Sukhatme, S.P., Nayak, J.K. (1996). Solar Energy: Principles of thermal collection and storage. Tata McGraw Hill, New Delhi.

Garg, H.P., Prakash, J. (2006). Solar energy fundamentals and applications, Tata McGraw Hill publishing Co. Ltd.

Duffie, J.A., Beckman, W.A. (2006). Solar Engineering of Thermal Processes, third ed. Wiley Inter science, New York.

Goswami, D.Y. (2015). Principles of Solar Engineering, third ed., CRC Press, Taylor & Francis Group.

Haykin, S. (1994). Neural networks: a comprehensive foundation. New York: Macmillan.

Gardner, M.W., Dorling, S.R. (1998). Artificial Neural Networks (The Multilayer Perceptron): a review of applications in the atmospheric sciences. Atmos. Env., 32: 2627-2636.

Hussain, M.A. (1999). Review of the applications of neural networks in chemical process control- simulation and online implementation. Artif. Intell. Eng., 13: 55-68.

Kalogirou, S.A. (2000). Applications of artificial neural networks for energy systems. Appl. Energy, 67: 17-35.

Kalogirou, S.A. (2001). Artificial neural networks in renewable energy systems applications: a review. Renew. Sustain. Energy Rev., 5: 373-401.

Kalogirou, S.A. (2003). Artificial intelligence for the modeling and control of combustion processes: a review. Progress in Energy and Combustion Science, 29(6): 515-566.

Mellit, A., Kalogirou, S.A. (2008). Artificial intelligence techniques for photovoltaic applications: a review. Prog. Energy Combust. Sci., 34: 574-632.

Yang, K.T. (2008). Artificial neural networks (ANNs): A new paradigm for thermal science and engineering. ASME J. Heat Transf., 130(9): 093001-5–093001-19

Mellit, A., Kalogirou, S.A., Hontoria, L., Shaarid, S. (2009). Artificial intelligence techniques for sizing photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 13(2): 406-419.

Mohanraj, M., Jayaraj, S., Muraleedharan, C. (2012). Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—a review. Renew Sustain Energy Rev, 16: 1340–58.

Cong, T., Su, G., Qiu, S., Tian, W. (2013). Applications of ANN in fluid flow and heat transfer problems in nuclear engineering: a review work. Prog Nucl Energy, 62:54–71.

Karabacak, K., Cetin, N. (2014). Artificial neural networks for controlling wind–PV power systems: a review. Renew Sustain Energy Rev, 29:804–27.

Yadav, A.K., Chandel, S.S. (2014). Solar radiation prediction using Artificial Neural Network techniques: a review. Renew Sustain Energy Rev, 33: 772–81.

Mohanraj, M., Jayaraj, S., Muraleedharan, C. (2015). Applications of artificial neural networks for thermal analysis of heat exchangers- A review. International Journal of Thermal Sciences, 90: 150-172.

Ata, R. (2015). Artificial neural networks applications in wind energy systems: a review. Renewable and Sustainable Energy Reviews, 49: 534–562.

Qazi, A., Fayaz, H., Wadi, A., Raj, R.G., Rahim, N.A., Khan, W.A. (2015). The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review. J Clean Prod; 104:1–12

Zahraee, S.M., Assadi, M.K., Saidur, R. (2016). Application of Artificial Intelligence Methods for Hybrid Energy System Optimization. Renew Sustain Energy Rev, 66: 617–30.

Jani, D.B., Mishra, M., Sahoo, P.K. (2017). Application of artificial neural network for predicting performance of solid desiccant cooling systems – a review. Renew Sustain Energy Rev, 80: 352–66.

Ghritlahre, H.K., Prasad, R.K. (2018). Application of ANN technique to predict the performance of solar collector systems – a review. Renew Sustain Energy Rev, 84: 75–88.

Pacheco-Vega, A., Sen, M., Yang, K.T., McClain, R.L. (2001). Neural network analysis of an-tube refrigerating heat exchanger with limited experimental data. International Journal of Heat and Mass Transfer, 44: 763–70.

Arcaklioglu, E., Erisen, A., Yilmaz, R. (2004). Artificial neural network analysis of heat pumps using refrigerant mixtures. Energy Conversion Management, 45 (11-12): 1917–1929.

Abbassi, A., Bahar, L. (2005). Application of neural network for the modeling and control of evaporative condenser cooling load. Applied Thermal Engineering , 25 (17-18): 3176–86.

Yigit, K.S., Ertunc, H.M. (2006). Prediction of the air temperature and humidity at the outlet of a cooling coil using neural networks. International Communications in Heat and Mass Transfer, 33: 898–907.

Hosoz, M.H., Ertunc, M. (2006). Modeling of a cascade refrigeration system using artificial neural networks. International Journal of Energy Research, 30: 1200–15.

Ertunc, H.M., Hosoz, M. (2006). Artificial neural network analysis of a refrigeration system with an evaporative condenser. Applied Thermal Engineering, 26: 627–35.

Movagharnejad, K., Nikzad, M. (2007). Modeling of tomato drying using artificial neural network. Computers and electronics in agriculture, 59: 78-85.

Hosoz, M., Ertunc, H.M., Bulgurcu, H. (2007). Performance prediction of a cooling tower using artificial neural network. Energy Conversion and Management, 48: 1349–59.

Hosoz, M., Ertun, H.M., Ozguc, A.F. (2008). Modelling of a direct evaporative air cooler using artificial neural network. International Journal of Energy Research, 32: 83–89.

Sanaye, S., Dehghandokht, M., Beigi, M.H., Bahrami, S. (2011). Modeling of rotary vane compressor applying artificial neural network. International Journal of Refrigeration, 34:764–772.

Jani, D.B., Mishra, M., Sahoo, P.K. (2016). Performance prediction of solid desiccant - vapor compression hybrid air-conditioning system using artificial neural network. Energy ,103: 618-629.

Jani, D.B., Mishra, M., Sahoo, P.K. (2016). Performance prediction of rotary solid desiccant dehumidifier in hybrid air-conditioning system using artificial neural network. Applied Thermal Engineering, 98:1091-1103.

Kalogirou, S.A., Sophia, P., Argiris, D. (1999). Modeling of solar domestic water heating system using artificial neural network. Solar energy, 65; 335-342.

Farkas, I., Geczy Vig., P. (2003). Neural network modeling of flat plate solar collectors. Computers and Electronics in Agriculture, 40 (1–3): 87-102.

Facao, J., Varga, S., Oliviera, A. (2004). Evaluation of the Use of Artificial Neural Networks for the Simulation of Hybrid Solar Collectors. International journal of green energy, 1(3): 337-352.

Kalogirou, S.A. (2006). Prediction of flat plate collector performance parameters using ANN. Solar energy, 80 (3): 248-259.

Sozen, A., Menlik, T., Unvar, S. (2008). Determination of efficiency of flat plate solar collector using ANN approach, Expert system with applications, 35: 1533-1539. DOI: 10.1016/j.eswa.2007.08.080

Tripathy, P., Kumar, S. (2009). ANN approach for food temp. prediction during solar drying. International journal of thermal sciences, 48 : 1452-1459.

Xie, H., Lui, L., Ma, F., Fan, H, (2009). Performance prediction of solar collectors using artificial neural networks. DOI: 10.1109/AICI.2009.344

Varol, Y., Koca, A., Oztop, H., Avci, E. (2010). Forecasting of thermal energy storage performance of phase change material in a solar collector using soft computing technique. Expert Systems with Applications, 37(4): 2724–2732.

Nazghelichi, T., Aghbaslo, M., Kianmehr, M., Omid, M. (2011). Prediction of energy and exergy of carrot cubes in a fluidized bed dryer by ANN. Drying technology: An international journal, 29(3): 295-307.

Fischer, S., Frey, P., Druck, H. (2012). A comparison between state of the art and neural network modeling of solar collectors. Solar Energy, 86: 3268–3277.

Ammar, M., Chaabene, M., Chtourou, Z. (2013). ANN based control for PV/T to track optimum thermal and electrical power. Energy Conversion and Management 65: 372–380.

Kalogirou, S.A. Panteliou, S., Dentsoras, A. (1999). Artificial neural network used for performance prediction of thermosiphon solar water heater. Renewable energy 18: 87-99.

Kisi, O., Tombul, M., Kermani, M.Z. (2014). Modeling soil temperatures at different depths by using three different neural computing techniques. Theoretical and Applied Climatology, 121(1–2): 377–387.

Wang, L., Kisi, O., Kermani, M.Z., Salazar, G.A., Zhu, Z., Gong, W. (2016). Solar radiation prediction using different techniques: model evaluation and comparison. Renewable and Sustainable Energy Reviews, 61: 384-397.

Esen, H., Ozgen, F., Esen, M., Sengur, A. (2009). Artificial neural network and wavelet neural network approaches for modeling of a solar air heater. Expert Systems with Applications, 36:11240–11248.

Cakmak, G., Yıldız, C. (2011). The prediction of seedy grape drying rate using a neural network method. Computers and Electronics in Agriculture, 75 :132–138.

Caner, M., Gedik, E., Keçebas, A. (2011). Investigation on thermal performance calculation of two type solar air collectors using artificial neural network. Expert Systems with Applications, 38:1668–1674.

Kamthania, D., Tiwari, G.N. (2012). Performance Analysis of a Hybrid Photovoltaic Thermal Double Pass Air Collector Using ANN. Applied Solar Energy, 48(3): 186–192.

Benli, H. (2013). Determination of thermal performance calculation of two different types of solar air collectors with the use of artificial neural networks. International Journal of Heat and Mass Transfer, 60: 1–7.

Hamdan, M.A., Abdelhafez, E.A., HajKhalil, R.A. (2014). Heat Transfer Analysis of a Flat-Plate Solar Air Collector by Using an Artificial Neural Network. J. Infrastruct. Syst., doi/abs/10.1061/(ASCE)IS.1943-555X.0000213

Ghritlahre, H.K., Prasad, R.K. (2017). Prediction of thermal performance of unidirectional flow porous bed solar air heater with optimal training function using Artificial Neural Network. Energy Procedia, 109:369 – 376.

Ghritlahre, H.K., Prasad, R.K. (2017). Energetic and exergetic performance prediction of roughened solar air heater using artificial neural network. Ciência e TécnicaVitivinícola, 32 (11): 2-24.

Ghritlahre, H.K., Prasad, R.K. (2018). Investigation on heat transfer characteristics of roughened solar air heater using ANN technique. International Journal of Heat and Technology, 36 (1): 102-110.

Ghritlahre, H.K., Prasad, R.K. (2018). Exergetic Performance Prediction of roughened Solar Air Heater Using Artificial Neural Network. Strojniškivestnik - Journal of Mechanical Engineering, 64 (3):195–206.

Ghritlahre, H.K., Prasad, R.K. (2018). Investigation of thermal performance of unidirectional flow porous bed solar air heater using MLP, GRNN, and RBF models of ANN technique. Thermal Science and Engineering Progress, 6: 226-235. DOI: 10.1016/j.tsep.2018.04.006

Ghritlahre, H.K., Prasad, R.K. (2018). Development of Optimal ANN Model to Estimate the Thermal Performance of Roughened Solar Air Heater Using Two Different Learning Algorithms. Annals of Data Science, 5(3):453–467.

Ghritlahre, H.K., Prasad, R.K. (2018). Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique. Journal of Environmental Management, 223: 566-575.

Witten, I.H., Frank, E. (2005). Data mining: Practical machine learning tools and techniques, Morgan Kaufmann, San Francisco, CA: 560.

Shibata, K., Ikeda, Y. (2009). Effect of number of hidden neurons on learning in large-scale layered neural networks. In Proceedings of the ICROS-SICE International Joint Conference: 5008–5013.

Ghritlahre, H.K. (2018). Development of feed-forward back-propagation neural model to predict the energy and exergy analysis of solar air heater. Trends Renew Energy, 4:213–235. DOI: 10.17737/tre.2018.4.2.0078

Cetiner, C., Halici, F., Cacur, H., Taymaz, I. (2005). Generating hot water by solar energy and application of neural network. Applied Thermal Engineering, 25 :1337–1348.

Kalogirou, S.A, (2014). Artificial neural networks for the performance prediction of large solar systems. Renewable Energy, 63: 90-97.

Kurt, H., Atik, K., Ozkaymak, M., Recebli, Z. (2008). Thermal performance parameters estimation hot box type solar cooker by using ANN. International Journal of Thermal Sciences, 47: 192–200.

Mashaly, A., Alazba, A. (2016). MLP and MLR models for instantaneous thermal efficiency prediction of solar still under hyper-arid environment. Computers and Electronics in Agriculture, 122: 146–155.

Hidouri, K., Mishra, D., Benhmidini, A., Chouachi, B. (2017). Experimental and theoretical evaluation of a hybrid solar still integrated with an air compressor using ANN. Desalination and Water Treatment, 88: 52–59. DOI:10.5004/dwt.2017.21333

Ghritlahre, H.K., Chandrakar, P., Ahmad, A. (2019). A comprehensive review on performance prediction of solar air heater using ANN. Annals of data science, DOI:10.1007/s40745-019-00236-1.

Ghritlahre, H.K., Prasad, R.K. (2018). Prediction of exergetic efficiency of arc shaped wire roughened solar air heater using ANN model. Int J Heat Technol, 36(3):1107–1115.

Ghritlahre, H.K., Prasad, R.K. (2018). Prediction of heat transfer of two different types of roughened solar air heater using Artificial Neural Network technique. Thermal Science and Engineering Progress, 8: 145-153. DOI:10.1016/j.tsep.2018.08.014

DOI: http://dx.doi.org/10.17737/tre.2020.6.1.00110

### Refbacks

- There are currently no refbacks.

Copyright (c) 2020 Ashfaque Ahmad, Harish Kumar Ghritlahre, Purvi Chandrakar

This work is licensed under a Creative Commons Attribution 4.0 International License.

This work is licensed under a Creative Commons Attribution 4.0 License.

Copyright @2014-2020 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)