Process Design of Microalgae Slurry Pump

Jiayi Li, Yinhang Qu, Yu Gong, Changyan Yang, Bohan Yang, Peng Liu, Bo Zhang, Yigang Ding


Microalgae are a renewable source of dietary supplements, bioactive compounds, and potential energy. Once harvested, the microalgal medium is dewatered to form a slurry for downstream processing. This article outlines a process design for pumping the microalgae slurry. The pump requirements for delivering the Chlorella slurry with 5, 10 or 20 wt% solids at one tonne per hour (1,000 kg/h) and 10 bar were calculated. The 5 wt% microalgae slurry is a Newtonian fluid with a viscosity of 1.95 mPa×s. The 10 wt% and 20 wt% microalgae slurries are non-Newtonian fluids, whose viscosity depends on the shear rate (g). The viscosity of 10 wt% and 20 wt% microalgae slurries is 1.504 (g = 50 s-1)/1.155 (g = 100 s-1) and 1.844 (g = 50 s-1)/1.219 (g = 100 s-1) mPa×s, respectively. The pump power requirements are mainly governed by the delivery pressure. The effect of the pipe length and the number of elbows is negligible. The effective power of the pump is calculated as 0.267-0.275 kW. To fulfill this duty, a ZGB type single-stage single-suction centrifugal slurry pump can be selected, which would provide enough shear rate to reduce the viscosity of the microalgae slurry and give required shaft power. 

Citation: Li, J., Qu, Y., Gong, Y., Yang, C., Yang, B., Liu, P., Zhang, B., and Ding, Y. (2020). Process Design of Microalgae Slurry Pump. Trends in Renewable Energy, 6(3), 234-244. DOI: 10.17737/tre.2020.6.3.00120


Microalgae Slurry; Slurry Pump; Process Design; Viscosity; Pump Power

Full Text:



Barkia, I., Saari, N., and Manning, S. R. (2019). Microalgae for High-Value Products Towards Human Health and Nutrition. Marine Drugs, 17(5), 304. DOI: 10.3390/md17050304

Zhang, B., and Wang, Y. (2013). Biomass Processing, Conversion and Biorefinery, Nova Science Publishers, Inc., New York.

Davis, R., Markham, J., Kinchin, C., Grundl, N., Tan, E. C., and Humbird, D. (2016). Process design and economics for the production of algal biomass: algal biomass production in open pond systems and processing through dewatering for downstream conversion. National Renewable Energy Lab.(NREL), Golden, CO (United States).

Davis, R. E., Markham, J. N., Kinchin, C. M., Canter, C., Han, J., Li, Q., Coleman, A., Jones, S., Wigmosta, M., and Zhu, Y. (2018). 2017 Algae Harmonization Study: Evaluating the Potential for Future Algal Biofuel Costs, Sustainability, and Resource Assessment from Harmonized Modeling. National Renewable Energy Lab.(NREL), Golden, CO (United States).

Allnutt, F. C. T., and Kessler, B. A. (2015). Harvesting and Downstream Processing—and Their Economics. In: Biomass and Biofuels from Microalgae: Advances in Engineering and Biology, N. R. Moheimani, et al., eds., Springer International Publishing, Cham, pp: 289-310. DOI: 10.1007/978-3-319-16640-7_14

Hosseinizand, H., Sokhansanj, S., and Lim, C. J. (2018). Studying the drying mechanism of microalgae Chlorella vulgaris and the optimum drying temperature to preserve quality characteristics. Drying Technology, 36(9), 1049-1060. DOI: 10.1080/07373937.2017.1369986

Santoro, I., Nardi, M., Benincasa, C., Costanzo, P., Giordano, G., Procopio, A., and Sindona, G. (2019). Sustainable and Selective Extraction of Lipids and Bioactive Compounds from Microalgae. Molecules (Basel, Switzerland), 24(23), 4347. DOI: 10.3390/molecules24234347

Yang, C., Li, R., Cui, C., Liu, S., Qiu, Q., Ding, Y., Wu, Y., and Zhang, B. (2016). Catalytic hydroprocessing of microalgae-derived biofuels: a review. Green Chemistry, 18(13), 3684-3699. DOI: 10.1039/c6gc01239f

Yang, C., Li, R., Qiu, Q., Yang, H., Zhang, Y., Yang, B., Wu, J., Li, B., Wang, W., Ding, Y., and Zhang, B. (2020). Pyrolytic behaviors of Scenedesmus obliquus over potassium fluoride on alumina. Fuel, 263, 116724. DOI:

Yang, C., Li, R., Zhang, B., Qiu, Q., Wang, B., Yang, H., Ding, Y., and Wang, C. (2019). Pyrolysis of microalgae: A critical review. Fuel Processing Technology, 186, 53-72. DOI:

Zhang, B., Wu, J., Deng, Z., Yang, C., Cui, C., and Ding, Y. (2017). A Comparison of Energy Consumption in Hydrothermal Liquefaction and Pyrolysis of Microalgae. Trends in Renewable Energy, 3(1), 76-85. DOI: 10.17737/tre.2017.3.1.0013

Bolhouse, A. M. (2010). Rheology of algae slurries. Master Master Thesis, University of Texas at Austin

Cagney, N., Zhang, T., Bransgrove, R., Allen, M. J., and Balabani, S. (2017). Effects of cell motility and morphology on the rheology of algae suspensions. Journal of Applied Phycology, 29(3), 1145-1157. DOI: 10.1007/s10811-016-1033-y

Schneider, N., Fortin, T. J., Span, R., and Gerber, M. (2016). Thermophysical properties of the marine microalgae Nannochloropsis salina. Fuel Processing Technology, 152, 390-398. DOI:

Green, D. W., and Perry, R. H. (2019). Perry's Chemical Engineers' Handbook/edición Don W. Green y Robert H. Perry.

Wileman, A., Ozkan, A., and Berberoglu, H. (2012). Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production. Bioresource Technology, 104, 432-439. DOI:

Mettu, S., Yao, S., Law, S. Q. K., Sun, Z., Scales, P. J., Ashokkumar, M., and Martin, G. J. O. (2019). Rheological properties of concentrated slurries of harvested, incubated and ruptured Nannochloropsis sp. cells. BMC Chemical Engineering, 1(1), 8. DOI: 10.1186/s42480-019-0011-y



  • There are currently no refbacks.

Copyright (c) 2020 Jiayi Li, Yinhang Qu, Yu Gong, Changyan Yang, Bohan Yang, Peng Liu, Bo Zhang, Yigang Ding

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2023 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)