Cover Image

A Comparison of Energy Consumption in Hydrothermal Liquefaction and Pyrolysis of Microalgae

Bo Zhang, Jinsheng Wu, Zhao Deng, Changyan Yang, Chang Cui, Yigang Ding


The energy requirements for converting one tonne (1,000 kg) of Chlorella slurry of 20 wt% solids via fast pyrolysis, microwave-assisted pyrolysis (MAP), and hydrothermal liquefaction (HTL) were compared. Drying microalgae prior to pyrolysis by using a spray drying process with a 50% energy efficiency required an energy input of 4,107 MJ, which is higher than the energy content (4,000 MJ) of raw microalgae. The energy inputs to conduct fast pyrolysis, MAP, and HTL reactions were 504 MJ (50% efficient), 1,057 MJ (~25% efficient), and 2,776 MJ (50% efficient), respectively. The overall energy requirement of fast pyrolysis is theoretically about 1.6 times more than that of HTL. The energy recovery ratios for fast pyrolysis, MAP, and HTL of microalgae were 78.7%, 57.2%, and 89.8%, respectively. From the energy balance point of view, hydrothermal liquefaction is superior, and it achieved a higher energy recovery with a less energy cost. To improve the pyrolysis process, developing drying devices powered by renewable energies, optimizing the pyrolysis process (specifically microwave-assisted), and improving the energy efficiency of equipment are options.

Citation: Zhang, B., Wu, J., Deng, Z.,  Yang, C., Cui, C., and Ding, Y. (2017). A Comparison of Energy Consumption in Hydrothermal Liquefaction and Pyrolysis of Microalgae. Trends in Renewable Energy, 3(1), 76-85. DOI: 10.17737/tre.2017.3.1.0013


Microalgae; Energy Consumption; Pyrolysis; Hydrothermal Liquefaction (HTL); Microwave-assisted pyrolysis; Thermal Drying

Full Text:



Yang, C., Li, R., Cui, C., Liu, S., Qiu, Q., Ding, Y., Wu, Y., and Zhang, B. (2016). Catalytic hydroprocessing of microalgae-derived biofuels: a review. Green Chemistry, 18(13), 3684-3699. DOI: 10.1039/c6gc01239f

Chen, Y., Wu, Y., Hua, D., Li, C., Harold, M. P., Wang, J., and Yang, M. (2015). Thermochemical conversion of low-lipid microalgae for the production of liquid fuels: challenges and opportunities. RSC Advances, 5(24), 18673-18701. DOI: 10.1039/c4ra13359e

Elliott, D. C. (2016). Review of recent reports on process technology for thermochemical conversion of whole algae to liquid fuels. Algal Research, 13, 255-263. DOI:

Raheem, A., Wan Azlina, W. A. K. G., Taufiq Yap, Y. H., Danquah, M. K., and Harun, R. (2015). Thermochemical conversion of microalgal biomass for biofuel production. Renewable and Sustainable Energy Reviews, 49, 990-999. DOI:

Saber, M., Nakhshiniev, B., and Yoshikawa, K. (2016). A review of production and upgrading of algal bio-oil. Renewable and Sustainable Energy Reviews, 58, 918-930. DOI:

Yang, C., Li, R., Cui, C., Wu, J., Ding, Y., Wu, Y., and Zhang, B. (2017). The Pyrolysis of Duckweed over a Solid Base Catalyst: Py-GC/MS and TGA Analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(2), 177-183. DOI: 10.1080/15567036.2016.1214641

Jones, S. B., Zhu, Y., Anderson, D. M., Hallen, R. T., Elliott, D. C., Schmidt, A., Albrecht, K., Hart, T., Butcher, M., and Drennan, C. (2014). Process design and economics for the conversion of algal biomass to hydrocarbons: whole algae hydrothermal liquefaction and upgrading, Pacific Northwest National Laboratory.

Jones, S. B., Zhu, Y., Snowden-Swan, L. J., Anderson, D., Hallen, R. T., Schmidt, A. J., Albrecht, K., and Elliott, D. C. (2014). Whole Algae Hydrothermal Liquefaction: 2014 State of Technology. Pacific Northwest National Laboratory (PNNL), Richland, WA (US).

Du, Z., Li, Y., Wang, X., Wan, Y., Chen, Q., Wang, C., Lin, X., Liu, Y., Chen, P., and Ruan, R. (2011). Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresource Technology, 102(7), 4890-4896. DOI: 10.1016/j.biortech.2011.01.055

Borges, F. C., Xie, Q., Min, M., Muniz, L. A. R., Farenzena, M., Trierweiler, J. O., Chen, P., and Ruan, R. (2014). Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresource Technology, 166, 518-526. DOI:

Gong, X., Zhang, B., Zhang, Y., Huang, Y., and Xu, M. (2014). Investigation on Pyrolysis of Low Lipid Microalgae Chlorella vulgaris and Dunaliella salina. Energy & Fuels, 28(1), 95-103. DOI: 10.1021/ef401500z

Thangalazhy-Gopakumar, S., Adhikari, S., Chattanathan, S. A., and Gupta, R. B. (2012). Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresource Technology, 118, 150-157. DOI:

Grierson, S., Strezov, V., Ellem, G., McGregor, R., and Herbertson, J. (2009). Thermal characterisation of microalgae under slow pyrolysis conditions. Journal of Analytical and Applied Pyrolysis, 85(1–2), 118-123. DOI:

Lin, L. (1985). Microstructure of spray-dried and freeze-dried microalgal powders. Food Structure, 4(2), 17.

Zhang, B., Yang, C., Moen, J., Le, Z., Hennessy, K., Wan, Y., Liu, Y., Lei, H., Chen, P., and Ruan, R. (2010). Catalytic Conversion of Microwave-assisted Pyrolysis Vapors. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(18), 1756-1762. DOI: 10.1080/15567030902842285

Yang, C., Zhang, B., Moen, J., Hennessy, K., Liu, Y., Lin, X., Wan, Y., Lei, H., Chen, P., and Ruan, R. (2010). Fractionation and characterization of bio-oil from microwave-assisted pyrolysis of corn stover. Int J Agric & Biol Eng, 3(3), 54-61. DOI: 10.3965/j.issn.1934-6344.2010.03.054-061

Ruan, R., Chen, P., Hemmingsen, R., Morey, V., and Tiffany, D. (2008). Size matters: small distributed biomass energy production systems for economic viability. International Journal of Agricultural and Biological Engineering, 1(1), 64-68. DOI: 10.3965/j.issn.1934-6344.2008.01.064-068

Elliott, D. C., Hart, T. R., Schmidt, A. J., Neuenschwander, G. G., Rotness, L. J., Olarte, M. V., Zacher, A. H., Albrecht, K. O., Hallen, R. T., and Holladay, J. E. (2013). Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Research, 2(4), 445-454. DOI:

Doran, P. M. (2013). Bioprocess engineering principles, Academic Press.

U.S. EIA (2016). How much electricity does an American home use?

Earle, R. L. (2013). Unit operations in food processing, Elsevier.

APV (2000). APV Dryer Handbook.

Waldheim, L., and Nilsson, T. (2001). Heating value of gases from biomass gasification. Report prepared for: IEA bioenergy agreement, Task, 20.

Zhang, R., Li, L., Tong, D., and Hu, C. (2016). Microwave-enhanced pyrolysis of natural algae from water blooms. Bioresource Technology, 212, 311-317. DOI:

Holladay, M. (2014). All About Microwave Ovens.

Perry, R. H., and Green, D. W. (1999). Perry's chemical engineers' handbook, McGraw-Hill Professional.

Biller, P., Sharma, B. K., Kunwar, B., and Ross, A. B. (2015). Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae. Fuel, 159, 197-205. DOI:

Xie, Q., Addy, M., Liu, S., Zhang, B., Cheng, Y., Wan, Y., Li, Y., Liu, Y., Lin, X., Chen, P., and Ruan, R. (2015). Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production. Fuel, 160, 577-582. DOI:



  • There are currently no refbacks.

Copyright (c) 2017 Bo Zhang, et al.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2019 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)