Energy Conversion and Conservation Technology in Facing Net Zero-Emission Conditions and Supporting National Defense

Abdi Manab Idris, Nugroho Adi Sasongko, Yanif Dwi Kuntjoro


Conversion technology is a solution that was born to solve energy problems and human needs. Without energy, all human activities ranging from households and jobs to the industry cannot work as they should, but energy conversion that uses conventional fuels will cause new issues such as climate changes. Therefore, energy conservation is very important for sustainability and energy saving. So, by reducing energy use, the pollution produced will decrease. This paper focuses on the introduction of energy conversion and conservation technology based on a qualitative literature review to deal with net-zero emission conditions. The conversion technology is environmentally friendly and efficient, and is committed to following the international Net Zero Emissions (NZE) agreement, renewable energy conversion technology and new technologies (fuel cells) to meet Indonesia's defense equipment and defense needs. Indonesia's energy use (2019) consists of oil 35%, coal 37.3%, gas 18.5%, hydropower 2.5%, geothermal 1.7%, biofuel 3%, and other renewables at nearly 2%. In 2013 Indonesia's recoverable shale resources obtained a value of 8 Billion Barrels. Because of that the total CO2 emissions resulting from energy use in Indonesia are 581 MtCO2 in 2019. Efforts to fulfil Indonesia's Nationally Determined Contribution (NDC) continue to be carried out, so that Indonesia's target is to enter a state of net-zero emission by 2060. Fuel cell technology has the potential to be applied in the Indonesian National Army, because of its relatively small size, light weight, zero-emission, high specific energy and zero-noise.

Citation: Idris, A. M., Sasongko, N. A., and Kuntjoro, Y. D. (2022). Energy Conversion and Conservation Technology in Facing Net Zero-Emission Conditions and Supporting National Defense. Trends in Renewable Energy, 8(1), 49-66. DOI: 10.17737/tre.2022.8.1.00139


Energy Conservation; Conversion Technology; Net Zero Emission; Supporting National Defense; Fuel Cells Technology

Full Text:



Fang, D., Shi, S., and Yu, Q. (2018). Evaluation of Sustainable Energy Security and an Empirical Analysis of China. Sustainability, 10(5), 1685. DOI:

Sapanji, R. V. T., and Hamdani, D. (2020). Perancangan Desain Sistem Informasi Geografis Pemetaan Desa Mandiri Energi Kec. Pangalengan Kab. Bandung. Jurnal Manajemen Informatika (JAMIKA), 10(1), 96-109. DOI:

Meilani, H., and Wuryandani, D. (2010). Potensi panas bumi sebagai energi alternatif pengganti bahan bakar fosil untuk pembangkit tenaga listrik di Indonesia. Jurnal Ekonomi & Kebijakan Publik, 1(1), 47-74. DOI:

Davidson, D. J. (2019). Exnovating for a renewable energy transition. Nature Energy, 4(4), 254-256. DOI: 10.1038/s41560-019-0369-3

Seo, S. N. (2017). Beyond the Paris Agreement: Climate change policy negotiations and future directions. Regional Science Policy & Practice, 9(2), 121-140. DOI:

Vicedo-Cabrera, A. M., Guo, Y., Sera, F., Huber, V., Schleussner, C.-F., Mitchell, D., Tong, S., Coelho, M. d. S. Z. S., Saldiva, P. H. N., Lavigne, E., Correa, P. M., Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A., Jaakkola, J. J. K., Ryti, N. R. I., Pascal, M., Goodman, P. G., Zeka, A., Michelozzi, P., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Diaz, M., Cruz, J., Seposo, X., Kim, H., Tobias, A., Íñiguez, C., Forsberg, B., Åström, D. O., Ragettli, M. S., Röösli, M., Guo, Y. L., Wu, C.-f., Zanobetti, A., Schwartz, J., Bell, M. L., Dang, T. N., Do Van, D., Heaviside, C., Vardoulakis, S., Hajat, S., Haines, A., Armstrong, B., Ebi, K. L., and Gasparrini, A. (2018). Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Climatic Change, 150(3), 391-402. DOI: 10.1007/s10584-018-2274-3

Falkner, R. (2016). The Paris Agreement and the new logic of international climate politics. International Affairs, 92(5), 1107-1125. DOI: 10.1111/1468-2346.12708

Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., and Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534(7609), 631-639. DOI: 10.1038/nature18307

Razzaq, A., Sharif, A., Najmi, A., Tseng, M.-L., and Lim, M. K. (2021). Dynamic and causality interrelationships from municipal solid waste recycling to economic growth, carbon emissions and energy efficiency using a novel bootstrapping autoregressive distributed lag. Resources, Conservation and Recycling, 166, 105372. DOI:

Callan, S. J., and Thomas, J. M. (1999). Adopting a Unit Pricing System for Municipal Solid Waste: Policy and Socio-Economic Determinants. Environmental and Resource Economics, 14(4), 503-518. DOI: 10.1023/A:1008315305404

Lee, R. P., Keller, F., and Meyer, B. (2017). A concept to support the transformation from a linear to circular carbon economy: net zero emissions, resource efficiency and conservation through a coupling of the energy, chemical and waste management sectors. Clean Energy, 1(1), 102-113. DOI: 10.1093/ce/zkx004

Srigiri, S., and Reddy, M. V. (2012). Municipal solid waste–A potential latent resource for non-conventional energy in India: Needs and challenges. Journal of Applied Geochemistry, 14(3), 337-350.

Hemery, Y., Rouau, X., Lullien-Pellerin, V., Barron, C., and Abecassis, J. (2007). Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science, 46(3), 327-347. DOI:

Parinduri, L., and Parinduri, T. (2020). Konversi biomassa sebagai sumber energi terbarukan. JET (Journal of Electrical Technology), 5(2), 88-92.

Nemitallah, M. A., Rashwan, S. S., Mansir, I. B., Abdelhafez, A. A., and Habib, M. A. (2018). Review of Novel Combustion Techniques for Clean Power Production in Gas Turbines. Energy & Fuels, 32(2), 979-1004. DOI: 10.1021/acs.energyfuels.7b03607

So, P. Y. (2014). Implementasi kebijakan konservasi energi di Indonesia. E-Journal Graduate Unpar, 1(1), 1-13.

Gür, T. M. (2018). Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science, 11(10), 2696-2767. DOI: 10.1039/C8EE01419A

Onwuegbuzie, A. J., and Weinbaum, R. K. (2016). Mapping Miles and Huberman's Within-Case and Cross-Case Analysis Methods onto the Literature Review Process. Journal of Educational Issues, 2(1), 265-288.

Syamruddin, P., Saputra, J., and Rialmi, Z. A qualitative study of e-commerce growth during Corona virus disease (COVID-19) pandemic in Indonesia. In: Proc., 11th Annual International Conference on Industrial Engineering and Operations Management, IEOM 2021, pp: 3208-3216.

Caesaron, D., and Maimury, Y. (2017). Evaluasi dan Usulan Pengembangan Energi Terbarukan untuk Keberlangsungan Energi Nasional. JIEMS (Journal of Industrial Engineering and Management Systems), 7(2), 132-139. DOI:

Zittel, W., Zerhusen, J., Zerta, M., and Arnold, N. (2013). Fossil and nuclear fuels–the supply outlook, Berlin: Energy Watch Group.

Wagner, H. L. (2009). The Organization of the Petroleum Exporting Countries, Infobase Publishing.

Höök, M., and Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52, 797-809. DOI:

Abas, N., Kalair, A., and Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69, 31-49. DOI:

Abas, N., Kalair, A., Khan, N., and Kalair, A. R. (2017). Review of GHG emissions in Pakistan compared to SAARC countries. Renewable and Sustainable Energy Reviews, 80, 990-1016. DOI:

Pearson, R. J., Eisaman, M. D., Turner, J. W. G., Edwards, P. P., Jiang, Z., Kuznetsov, V. L., Littau, K. A., Marco, L. d., and Taylor, S. R. G. (2012). Energy Storage via Carbon-Neutral Fuels Made From CO2, Water, and Renewable Energy. Proceedings of the IEEE, 100(2), 440-460. DOI: 10.1109/JPROC.2011.2168369

Leung, D. Y. C., Caramanna, G., and Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426-443. DOI:

Sifat, N. S., and Haseli, Y. (2019). A Critical Review of CO2 Capture Technologies and Prospects for Clean Power Generation. Energies, 12(21), 4143.

Sun, W., Kherani, N. P., Hirschman, K. D., Gadeken, L. L., and Fauchet, P. M. (2005). A Three-Dimensional Porous Silicon p–n Diode for Betavoltaics and Photovoltaics. Adv. Mater., 17(10), 1230-1233. DOI:

Yamegueu, D., Azoumah, Y., Py, X., and Zongo, N. (2011). Experimental study of electricity generation by Solar PV/diesel hybrid systems without battery storage for off-grid areas. Renewable Energy, 36(6), 1780-1787. DOI:

Suyanto, M., Rusianto, T., and Subandi (2020). Development of a Household Solar Power Plant: System Using Solar Panels. IOP Conference Series: Materials Science and Engineering, 807(1), 012007. DOI: 10.1088/1757-899x/807/1/012007

Anagnostopoulos, J. S., and Papantonis, D. E. (2007). Pumping station design for a pumped-storage wind-hydro power plant. Energy Conversion and Management, 48(11), 3009-3017. DOI:

Kananda, K., Corio, D., Aziz, H., and Diah, A. (2019). Potential Analysis of Hydro Power Plants in Pesisir Barat District, Lampung Province. Journal of Science and Applicative Technology, 2(1), 100-106.

Pambudi, N. A. (2018). Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy. Renewable and Sustainable Energy Reviews, 81, 2893-2901. DOI:

Eliasson, E. T., Thorhallsson, S., and Steingrímsson, B. (2011). Geothermal power plants. Short Course on Geothermal Drilling, Resource Development and Power Plants, Santa Tecla, El Salvador.

Qurrahman, A. H., Wilopo, W., Susanto, S. P., and Petrus, H. T. B. M. (2021). Energy and Exergy Analysis of Dieng Geothermal Power Plant. International Journal of Technology, 12(1), 291-319. DOI:

Watson, S., Moro, A., Reis, V., Baniotopoulos, C., Barth, S., Bartoli, G., Bauer, F., Boelman, E., Bosse, D., Cherubini, A., Croce, A., Fagiano, L., Fontana, M., Gambier, A., Gkoumas, K., Golightly, C., Latour, M. I., Jamieson, P., Kaldellis, J., Macdonald, A., Murphy, J., Muskulus, M., Petrini, F., Pigolotti, L., Rasmussen, F., Schild, P., Schmehl, R., Stavridou, N., Tande, J., Taylor, N., Telsnig, T., and Wiser, R. (2019). Future emerging technologies in the wind power sector: A European perspective. Renewable and Sustainable Energy Reviews, 113, 109270. DOI:

Gebreegziabher, T., Oyedun, A. O., Luk, H. T., Lam, T. Y. G., Zhang, Y., and Hui, C. W. (2014). Design and optimization of biomass power plant. Chemical Engineering Research and Design, 92(8), 1412-1427. DOI:

Barz, M. (2014). Biomass Technology for Electricity Generation in Community. Journal of Renewable Energy and Smart Grid Technology, 3(1), 1-10.

Lele, U., and Goswami, S. (2017). The fourth industrial revolution, agricultural and rural innovation, and implications for public policy and investments: a case of India. Agricultural Economics, 48(S1), 87-100. DOI:

Roberts, A., Brooks, R., and Shipway, P. (2014). Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions. Energy Conversion and Management, 82, 327-350. DOI:

Briefing, U. S. (2013). International energy outlook 2013. US Energy Information Administration, 506, 507.

Wijaya, A., Chrysolite, H., Ge, M., Wibowo, C. K., Pradana, A., Utami, A. F., and Austin, K. (2017). How can Indonesia achieve its climate change mitigation goal? An analysis of potential emissions reductions from energy and land-use policies. World Resources Institute. World Resour Inst Work Pap, 1-36.

Wieszczycka, K., Staszak, K., Woźniak-Budych, M. J., Litowczenko, J., Maciejewska, B. M., and Jurga, S. (2021). Surface functionalization – The way for advanced applications of smart materials. Coordination Chemistry Reviews, 436, 213846. DOI:

Milićević, A., Belošević, S., Crnomarković, N., Tomanović, I., Stojanović, A., Tucaković, D., Lei, D., and Che, D. (2021). Numerical study of co-firing lignite and agricultural biomass in utility boiler under variable operation conditions. International Journal of Heat and Mass Transfer, 181, 121728. DOI:

Tozlu, A., Gençaslan, B., and Özcan, H. (2021). Thermoeconomic analysis of a hybrid cogeneration plant with use of near-surface geothermal sources in Turkey. Renewable Energy, 176, 237-250. DOI:

Cahay, M., Luquiau, E., Smadja, C., and Silvert, F. (2011). Use of a Vertical Wind Turbine in an Offshore Floating Wind Farm. Offshore Technology ConferenceHouston, Texas, USA. DOI: 10.4043/21705-ms

Chen, J., Yang, H. X., Liu, C. P., Lau, C. H., and Lo, M. (2013). A novel vertical axis water turbine for power generation from water pipelines. Energy, 54, 184-193. DOI:

Arefin, M. A., Nabi, M. N., Akram, M. W., Islam, M. T., and Chowdhury, M. W. (2020). A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses. Energies, 13(22), 6127.

Narayana Das, J. Fuel Cell Technologies for Defence Applications. Springer Singapore, pp: 9-18.

Climate Transparency Report. 2020. Indonesia Climate Transparency Report Comparing G20 Climate Action and Responses to The COVID-19 Crisis.

Asian Development Bank. 2020. Indonesia Energy Sector Assessment, Strategy, and Road Map Update.



  • There are currently no refbacks.

Copyright (c) 2022 Abdi Manab Idris, Nugroho Adi Sasongko, Yanif Dwi Kuntjoro

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2022 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)