A Review of the Effect of Compressed Natural Gas (CNG) on Combustion and Emission Performance of Internal Combustion Engines

Yufan Liang

Abstract


In order to reduce the environmental pollution caused by conventional internal combustion engines, the application of natural gas in internal combustion engines and the combustion and emission performance of natural gas internal combustion engines have been widely studied by scholars. Because the physical and chemical properties of natural gas are different from those of conventional gasoline or diesel, the operating performance of natural gas internal combustion engines in practical applications is also different from that of conventional internal combustion engines. This paper presents the physicochemical properties of compressed natural gas, the two combustion modes (premixed combustion and non-homogeneous diffusion combustion) in internal combustion engines and the effect of compressed natural gas on the performance of internal combustion engines. Compared with gasoline engines, natural gas internal combustion engines have relatively lower power and higher effective power loss; lower effective fuel consumption rate in terms of economy; and lower CO and NOx emissions than gasoline engines in terms of emissions.

Citation: Liang, Y. (2022). A Review of the Effect of Compressed Natural Gas (CNG) on Combustion and Emission Performance of Internal Combustion Engines. Trends in Renewable Energy, 8, 119-129. DOI: 10.17737/tre.2022.8.2.00144


Keywords


Clean Energy; Compressed Natural Gas (CNG); Combustion and Emission Performance; Improvement Methods

Full Text:

FULL TEXT (PDF)

References


Economides, M. J. and Wood, D. A. (2009). The state of natural gas. Journal of Natural Gas Science and Engineering, 1(1), 1-13. DOI: https://doi.org/10.1016/j.jngse.2009.03.005.

Pettifor, H., Wilson, C., Axsen, J., Abrahamse, W., and Anable, J. (2017). Social influence in the global diffusion of alternative fuel vehicles – A meta-analysis. Journal of Transport Geography, 62, 247-261. DOI: https://doi.org/10.1016/j.jtrangeo.2017.06.009

Kontses, A., Triantafyllopoulos, G., Ntziachristos, L., and Samaras, Z. (2020). Particle number (PN) emissions from gasoline, diesel, LPG, CNG and hybrid-electric light-duty vehicles under real-world driving conditions. Atmospheric Environment, 222, 117126. DOI: https://doi.org/10.1016/j.atmosenv.2019.117126

Yontar, A. A. and Doğu, Y. (2018). Investigation of the effects of gasoline and CNG fuels on a dual sequential ignition engine at low and high load conditions. Fuel, 232, 114-123. DOI: https://doi.org/10.1016/j.fuel.2018.05.156

Guo, L. X., Li, C. N., Shi, D. X., Liu, Y., and Ma, L. (2019). Study on optimization of natural gas engine EGR system. Automotive Engines, 2019(6), 51-57.

Tahir, M. M., Ali, M. S., Salim, M. A., Bakar, R. A., Fudhail, A. M., Hassan, M. Z., and Muhaimin, M. S. A. (2015). Performance Analysis of A Spark Ignition Engine Using Compressed Natural Gas (CNG) as Fuel. Energy Procedia, 68, 355-362. DOI: https://doi.org/10.1016/j.egypro.2015.03.266

Liu, S., Su, L. W., and Tian, Y. H. (2019). Study on the improvement of air intake inhomogeneity in natural gas engines. Automotive Engines, 2019 (5), 41-45.

Han, Z., Wu, Z., Huang, Y., Shi, Y., and Liu, W. (2021). Impact of Natural Gas Fuel Characteristics on the Design and Combustion Performance of a New Light-Duty CNG Engine. International Journal of Automotive Technology, 22(6), 1619-1631. DOI: 10.1007/s12239-021-0140-1

Sahoo, S., and Srivastava, D. K. (2021). Effect of compression ratio on engine knock, performance, combustion and emission characteristics of a bi-fuel CNG engine. Energy, 233, 121144. DOI: https://doi.org/10.1016/j.energy.2021.121144

Wu, W. (2021). Analysis of the current situation of China's automobile emission control level and comprehensive countermeasures. Internal Combustion Engine and Accessories, 2021(5), 148-149. DOI: 10.19475/j.cnki.issn1674-957x.2021.05.069

Jin Y. P. (2020). Research status and development prospect of CNG application on internal combustion engine. Modern Vehicle Power, 2020(4), 1-5+36.

Leng, X. Y., Ge, Q. Q., He, Z. X., He, D. Z. , and Long, W.Q. (2021). Combustion and emission simulation of pre-combustion chamber type natural gas doped hydrogen engine. Journal of Internal Combustion Engines, 2021(1), 26-33. DOI:10.16236/j.cnki.nrjxb.202101004.

Wang, Y., Ma, F. H., and Liu, H. Q. (2007). Analysis of natural gas engine combustion mode. Automotive Engines, 2007(5), 18-21+26.

Deng, J., Ma, F., Li, S., He, Y., Wang, M., Jiang, L., and Zhao, S. (2011). Experimental study on combustion and emission characteristics of a hydrogen-enriched compressed natural gas engine under idling condition. International Journal of Hydrogen Energy, 36(20), 13150-13157. DOI: https://doi.org/10.1016/j.ijhydene.2011.07.036

Yang, L.P., Song, E.Z., Ding, S.L., Brown, R. J., Marwan, N., and Ma, X.Z. (2016). Analysis of the dynamic characteristics of combustion instabilities in a pre-mixed lean-burn natural gas engine. Applied Energy, 183, 746-759. DOI: https://doi.org/10.1016/j.apenergy.2016.09.037

Jiao, Y.J., Zhang, H.M., Si, P.K., Yang, Z.Y., Zhang, Z.L., and Cheng, H. (2009). Combustion characteristics of dilute ignition natural gas engines. Combustion Science and Technology, 2009(6), 541-545.

Zhang, Q., Wang, X., Song, G., and Li, M. (2022). Performance and emissions of a pilot ignited direct injection natural gas engine operating at slightly premixed combustion mode. Fuel Processing Technology, 227, 107128. DOI: https://doi.org/10.1016/j.fuproc.2021.107128

Yang, M., Lin, X. D., Xu, T., Li, D. G., Jiang, T., and Guo, L. (2019). Combustion chamber selection and its mixture formation mechanism for in-cylinder direct injection natural gas engines. Journal of Jilin University (Engineering), 2019(2), 426-433. DOI:10.13229/j.cnki.jdxbgxb20180326

Chauhan, B. S. and Cho, H. M. (2011). The performance and emissions analysis of a multi cylinder spark ignition engine with gasoline LPG & CNG. Journal of the Korean Institute of Gas, 15(4), 33-38. DOI:10.7842/kigas.2011.15.4.033

Lather, R. S., and Das, L. M. (2019). Performance and emission assessment of a multi-cylinder S.I engine using CNG & HCNG as fuels. International Journal of Hydrogen Energy, 44(38), 21181-21192. DOI: https://doi.org/10.1016/j.ijhydene.2019.03.137

Verma, S., Das, L. M., Kaushik, S. C., and Tyagi, S. K. (2019). An Experimental Comparison of Enriched Biogas and CNG on Dual Fuel Operation of a Diesel Engine. IOP Conference Series: Earth and Environmental Science, 264(1), 012004. DOI: 10.1088/1755-1315/264/1/012004

Zheng, J., Zhou, R., Zhan, R., and Lin, H. (2022). Combustion and emission characteristics of natural gas engine with partial-catalytic oxidation of the fuel. Fuel, 312, 122796. DOI: https://doi.org/10.1016/j.fuel.2021.122796

Hou, X.J., Lu J.Y., Zou, B., Liu, Z.E., and Cheng, C. (2020). Effect of alternative fuels on engine dynamics and emissions. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2020(3), 409-413.

Sun, X. N., Zhang, H. G., Wang, X. X., Wang, D. J., Zheng, G. Y., and Sun, X. N. (2011). Effect of spark advance angle on combustion and emission characteristics of compressed natural gas engines. Advanced Materials Research, 383, 6085-6090. DOI:10.4028/WWW.SCIENTIFIC.NET/AMR.383-390.6085.

Fan, J. M., Yang, Z. C., and Yun, H. L. (2020). Effect of compressed natural gas on the performance of internal combustion engines. Automotive Practical Technology, 2020 (2), 34-36. DOI:10.16638/j.cnki.1671-7988.2020.02.012

Verma, G., Prasad, R. K., Agarwal, R. A., Jain, S., and Agarwal, A. K. (2016). Experimental investigations of combustion, performance and emission characteristics of a hydrogen enriched natural gas fuelled prototype spark ignition engine. Fuel, 178, 209-217. DOI: https://doi.org/10.1016/j.fuel.2016.03.022

Sabri Kül, V., and Orhan Akansu, S. (2022). Experimental Investigation of the impact of boron nanoparticles and CNG on performance and emissions of Heavy-Duty diesel engines. Fuel, 324, 124470. DOI: https://doi.org/10.1016/j.fuel.2022.124470




DOI: http://dx.doi.org/10.17737/tre.2022.8.2.00144

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Yufan Liang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2022 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)