Application and Research Progress of Heat Pipe in Thermal Management of Lithium-Ion Battery

Yilin Ning, Renyi Tao, Jiaqi Luo, Qianchao Hu


Lithium-ion batteries have the advantages of high energy density, high average output voltage, long service life, and environmental protection, and are widely used in the power system of new energy vehicles. However, during the working process of the battery, the working temperature is too high or too low, which will affect the charging and discharging performance, battery capacity and battery safety. As a result, a battery thermal management system (BTMS) is essential to maintain the proper ambient temperature of the working battery. Thermal management of power batteries is a key technology to ensure maximum battery safety and efficiency. This paper discusses the significance of thermal management technology in the development of new energy vehicles, introduces the main technical means of thermal management of lithium-ion batteries for vehicle, and focuses on the current state of research on the use of various types of heat pipes in lithium-ion batteries. Finally, the use of heat pipes in the thermal control of lithium-ion batteries is promising.

Citation: Ning, Y., Tao, R., Luo, J., and Hu, Q. (2022). Application and Research Progress of Heat Pipe in Thermal Management of Lithium-Ion Battery. Trends in Renewable Energy, 8, 130-144. DOI: 10.17737/tre.2022.8.2.00145


Thermal management; Lithium-ion battery; Heat pipe; New energy vehicles

Full Text:



Jaguemont, J., Boulon, L., and Dubé, Y. (2016). A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Applied Energy, 164, 99-114. DOI:

Bodenes, L., Naturel, R., Martinez, H., Dedryvère, R., Menetrier, M., Croguennec, L., Pérès, J.-P., Tessier, C., and Fischer, F. (2013). Lithium secondary batteries working at very high temperature: Capacity fade and understanding of aging mechanisms. Journal of Power Sources, 236, 265-275. DOI:

Liu, H., Wei, Z., He, W., and Zhao, J. (2017). Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management, 150, 304-330. DOI:

Ramadass, P., Haran, B., White, R., and Popov, B. N. (2002). Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. Journal of Power Sources, 112(2), 606-613. DOI:

Wen, J., Yu, Y., and Chen, C. (2012). A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Materials Express, 2(3), 197-212. DOI: 10.1166/mex.2012.1075

Zhang, S., Zhou, Q., and Xia, Y. (2015). Influence of mass distribution of battery and occupant on crash response of small lightweight electric vehicle (No. 2015-01-0575). SAE Technical Paper. DOI:

Karulkar, M., Steele, L. A. M., Lamb, J., Orendorff, C. J., and Torres-Castro, L. (2018). High Precision Characterization of Lithium Plating and Abuse Response during Extreme Fast Charge (XFC) of Lithium Ion Batteries. ECS Meeting Abstracts, MA2018-01(1), 122-122. DOI: 10.1149/ma2018-01/1/122

Wang, Y., Gao, Q., Wang, G., Zhang, T., and Yuan, M. Simulation of mixed inner air-flow integrated thermal management with temperature uniformity of Li-ion battery. Journal of Jilin University (Engineering and Technology Edition), 48(5), 1339-1348. DOI: 10.13229/j.cnki.jdxbgxb20170860

Greve, L., and Fehrenbach, C. (2012). Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells. Journal of Power Sources, 214, 377-385. DOI:

Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., and Chen, C. (2012). Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 208, 210-224. DOI:

Azizi, Y., and Sadrameli, S. M. (2016). Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates. Energy Conversion and Management, 128, 294-302. DOI:

Ji, Y., and Wang, C. Y. (2013). Heating strategies for Li-ion batteries operated from subzero temperatures. Electrochimica Acta, 107, 664-674. DOI:

Pesaran, A., Santhanagopalan, S.,and Kim, G. H. (2013). Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation). United States.

Gao, Q., Liu, Y., Wang, G., Deng, F., and Zhu, J. (2019). An experimental investigation of refrigerant emergency spray on cooling and oxygen suppression for overheating power battery. Journal of Power Sources, 415, 33-43. DOI:

Chen, K., Chen, Y., Li, Z., Yuan, F., and Wang, S. (2018). Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system. International Journal of Heat and Mass Transfer, 127, 393-401. DOI:

Hong, S., Zhang, X., Chen, K., and Wang, S. (2018). Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent. International Journal of Heat and Mass Transfer, 116, 1204-1212. DOI:

Saw, L. H., Ye, Y., Tay, A. A. O., Chong, W. T., Kuan, S. H., and Yew, M. C. (2016). Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Applied Energy, 177, 783-792. DOI:

Yang, N., Zhang, X., Li, G., and Hua, D. (2015). Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements. Applied Thermal Engineering, 80, 55-65. DOI:

Zhang, J., Wu, X., Chen, K., Zhou, D., and Song, M. (2021). Experimental and numerical studies on an efficient transient heat transfer model for air-cooled battery thermal management systems. Journal of Power Sources, 490, 229539. DOI:

Chen, K., Chen, Y., She, Y., Song, M., Wang, S., and Chen, L. (2020). Construction of effective symmetrical air-cooled system for battery thermal management. Applied Thermal Engineering, 166, 114679. DOI:

Madani, S. S., Swierczynski, M. J., and Kær, S. K. A review of thermal management and safety for lithium ion batteries. In: Proc., 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), pp: 1-20. DOI: 10.1109/EVER.2017.7935914

Mondal, B., Lopez, C. F., and Mukherjee, P. P. (2017). Exploring the efficacy of nanofluids for lithium-ion battery thermal management. International Journal of Heat and Mass Transfer, 112, 779-794. DOI:

Madani, S. S., Schaltz, E., and Kær, S. K. (2020). Thermal Analysis of Cold Plate with Different Configurations for Thermal Management of a Lithium-Ion Battery. 6(1), 17. DOI:

Mo, X., Zhi, H., Xiao, Y., Hua, H., and He, L. (2021). Topology optimization of cooling plates for battery thermal management. International Journal of Heat and Mass Transfer, 178, 121612. DOI:

Lazrak, A., Fourmigué, J.-F., and Robin, J.-F. (2018). An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations. Applied Thermal Engineering, 128, 20-32. DOI:

Khateeb, S. A., Farid, M. M., Selman, J. R., and Al-Hallaj, S. (2004). Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter. Journal of Power Sources, 128(2), 292-307. DOI:

Wang, J., Huang, Q., Li, X., Zhang, G., and Wang, C. (2021). Experimental and numerical simulation investigation on the battery thermal management performance using silicone coupled with phase change material. Journal of Energy Storage, 40, 102810. DOI:

Liu, H., Ahmad, S., Shi, Y., and Zhao, J. (2021). A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling. Energy, 231, 120869. DOI:

Huang, Y., Tang, Y., Yuan, W., Fang, G., Yang, Y., Zhang, X., Wu, Y., Yuan, Y., Wang, C., and Li, J. (2021). Challenges and recent progress in thermal management with heat pipes for lithium-ion power batteries in electric vehicles. Science China Technological Sciences, 64(5), 919-956. DOI: 10.1007/s11431-020-1714-1

Gao, X., Wu, W., Meng, Z., Liu, P., Zhao, W., and Wang, X. (2017). Thermal performance of solar collector with energy storage materials and oscillating heat pipe. Transactions of the Chinese Society of Agricultural Engineering, 33(16), 234-240.

He, L., Tang, X., Luo, Q., Liao, Y., Luo, X., Liu, J., Ma, L., Dong, D., Gan, Y., and Li, Y. (2022). Structure optimization of a heat pipe-cooling battery thermal management system based on fuzzy grey relational analysis. International Journal of Heat and Mass Transfer, 182, 121924. DOI:

Liang, J., Gan, Y., and Li, Y. (2018). Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Conversion and Management, 155, 1-9. DOI:

Liang, L., Zhao, Y., Diao, Y., Ren, R., and Jing, H. (2021). Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles. Energy, 235, 121433. DOI:

Mbulu, H., Laoonual, Y., and Wongwises, S. (2021). Experimental study on the thermal performance of a battery thermal management system using heat pipes. Case Studies in Thermal Engineering, 26, 101029. DOI:

Yang, S., Ling, C., Fan, Y., Yang, Y., Tan, X., and Dong, H. (2019). A review of lithium-ion battery thermal management system strategies and the evaluate criteria. International Journal of Electrochemical Science, 14(7), 6077-6107.

Zhao, J., Rao, Z., Liu, C., and Li, Y. (2016). Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management. International Journal of Heat and Mass Transfer, 99, 252-260. DOI:

Chi, R.-G., Chung, W.-S., and Rhi, S.-H. (2018). Thermal Characteristics of an Oscillating Heat Pipe Cooling System for Electric Vehicle Li-Ion Batteries. 11(3), 655. DOI:

Jouhara, H., Delpech, B., Bennett, R., Chauhan, A., Khordehgah, N., Serey, N., and Lester, S. P. (2021). Heat pipe based battery thermal management: Evaluating the potential of two novel battery pack integrations. International Journal of Thermofluids, 12, 100115. DOI:

Bernagozzi, M., Georgoulas, A., Miché, N., Rouaud, C., and Marengo, M. (2021). Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts. Applied Thermal Engineering, 194, 117061. DOI:

Mbulu, H., Laoonual, Y., and Wongwises, S. (2021). Experimental study on the thermal performance of a battery thermal management system using heat pipes. Case Studies in Thermal Engineering, 26, 101029. DOI:

Chen, M., and Li, J. (2020). Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles. Journal of Energy Storage, 32, 101715. DOI:

Gan, Y., He, L., Liang, J., Tan, M., Xiong, T., and Li, Y. (2020). A numerical study on the performance of a thermal management system for a battery pack with cylindrical cells based on heat pipes. Applied Thermal Engineering, 179, 115740. DOI:

Wei, A., Qu, J., Qiu, H., Wang, C., and Cao, G. (2019). Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management. International Journal of Heat and Mass Transfer, 135, 746-760. DOI:

Dan, D., Yao, C., Zhang, Y., Zhang, H., Zeng, Z., and Xu, X. (2019). Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Applied Thermal Engineering, 162, 114183. DOI:

Chen, H. B., Cao, H. Z., Li, H. X., Zhao, X. W., and Liu, X. F. Experimental Study on Coupled Cooling System of PCM-Heat Pipe for Vehicle Power Battery Pack. In: Proc., Proceedings of the 2015 International Conference on Electrical, Automation and Mechanical Engineering, Atlantis Press, pp: 448-451. DOI:

Jiang, Z. Y., and Qu, Z. G. (2019). Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study. Applied Energy, 242, 378-392. DOI:

Chen, K., Hou, J., Song, M., Wang, S., Wu, W., and Zhang, Y. (2021). Design of battery thermal management system based on phase change material and heat pipe. Applied Thermal Engineering, 188, 116665. DOI:

Nazari, M. A., Ahmadi, M. H., Sadeghzadeh, M., Shafii, M. B., and Goodarzi, M. (2019). A review on application of nanofluid in various types of heat pipes. Journal of Central South University, 26(5), 1021-1041. DOI: 10.1007/s11771-019-4068-9

Shuoman, L. A., Abdelaziz, M., and Abdel-Samad, S. (2021). Thermal performances and characteristics of thermosyphon heat pipe using alumina nanofluids. Heat and Mass Transfer, 57(8), 1275-1287. DOI: 10.1007/s00231-021-03031-y



  • There are currently no refbacks.

Copyright (c) 2022 Yilin Ning, Renyi Tao, Jiaqi Luo, Qianchao Hu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2024 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)