Research Progress of Nanofluid Heat Pipes in Automotive Lithium-ion Battery Heat Management Technology

Xinyu Wang, Yanan Zhao, Yezhu Jin


Power batteries are a crucial component of electric vehicles and other electric equipment. Their long-term high-rate discharge generates a lot of heat, which can lead to battery failure, shortened battery life, and even safety accidents if not managed properly. Due to its high thermal conductivity, the heat pipe can quickly conduct heat away from the battery and separate the heat source from the heat sink. In addition, due to its excellent isothermal performance, the heat pipe can also achieve the characteristics of low-temperature preheating and high-temperature cooling of the power battery by reducing the inhomogeneity of the battery temperature field to reduce the temperature difference. In this paper, we review the current state of the art in thermal management of automotive lithium-ion battery, and highlight the current state of thermal management of batteries based on the combination of nanofluids and heat pipes. Finally, the development of nanofluidic heat pipes in lithium-ion battery heat management systems is prospected.

Citation: Wang, X., Zhao, Y., & Jin, Y. (2023). Research Progress of Nanofluid Heat Pipes in Automotive Lithium-ion Battery Heat Management Technology. Trends in Renewable Energy, 9(2), 137-156. doi:


Battery heat management; Heat pipe; Nanofluid heat pipe; Lithium-ion battery

Full Text:



Subramanian, M., Hoang, A. T., B, K., Nižetić, S., Solomon, J. M., Balasubramanian, D., C, S., G, T., Metghalchi, H., & Nguyen, X. P. (2021). A technical review on composite phase change material based secondary assisted battery thermal management system for electric vehicles. Journal of Cleaner Production, 322, 129079. doi:

Zhang, D., He, Z., Guan, J., Tang, S., & Shen, C. (2022). Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. International Journal of Heat and Mass Transfer, 183, 122100. doi:

Cen, J., & Jiang, F. (2020). Li-ion power battery temperature control by a battery thermal management and vehicle cabin air conditioning integrated system. Energy for Sustainable Development, 57, 141-148. doi:

Shahid, S., & Agelin-Chaab, M. (2022). A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries. Energy Conversion and Management: X, 16, 100310. doi:

Zhang, T., Gao, Q., Gu, Y., & li, Y. (2021). Studies on thermal management of lithium-ion battery using non-metallic heat exchanger. Applied Thermal Engineering, 182, 116095. doi:

Behi, H., Karimi, D., Behi, M., Jaguemont, J., Ghanbarpour, M., Behnia, M., Berecibar, M., & Van Mierlo, J. (2020). Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles. Journal of Energy Storage, 32, 101893. doi:

Wu, W., Wang, S., Wu, W., Chen, K., Hong, S., & Lai, Y. (2019). A critical review of battery thermal performance and liquid based battery thermal management. Energy Conversion and Management, 182, 262-281. doi:

Jouhara, H., Delpech, B., Bennett, R., Chauhan, A., Khordehgah, N., Serey, N., & Lester, S. P. (2021). Heat pipe based battery thermal management: Evaluating the potential of two novel battery pack integrations. International Journal of Thermofluids, 12, 100115. doi:

Luo, J., Zou, D., Wang, Y., Wang, S., & Huang, L. (2022). Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chemical Engineering Journal, 430, 132741. doi:

Hamed, M. M., El-Tayeb, A., Moukhtar, I., El Dein, A. Z., & Abdelhameed, E. H. (2022). A review on recent key technologies of lithium-ion battery thermal management: External cooling systems. Results in Engineering, 16, 100703. doi:

Shen, X., Cai, T., He, C., Yang, Y., & Chen, M. (2023). Thermal analysis of modified Z-shaped air-cooled battery thermal management system for electric vehicles. Journal of Energy Storage, 58, 106356. doi:

Liu, H., Wei, Z., He, W., & Zhao, J. (2017). Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management, 150, 304-330. doi:

Madani, S. S., Swierczynski, M. J., & Kær, S. K. (2017). A review of thermal management and safety for lithium ion batteries. Paper presented at the 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER). Monte Carlo, Monaco, pp. 1-20, doi:

Li, Y., Zhou, Z., Hu, L., Bai, M., Gao, L., Li, Y., Liu, X., Li, Y., & Song, Y. (2022). Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions. Case Studies in Thermal Engineering, 34, 102034. doi:

Kalaf, O., Solyali, D., Asmael, M., Zeeshan, Q., Safaei, B., & Askir, A. (2021). Experimental and simulation study of liquid coolant battery thermal management system for electric vehicles: A review. International Journal of Energy Research, 45(5), 6495-6517. doi:

Jiaqiang, E., Han, D., Qiu, A., Zhu, H., Deng, Y., Chen, J., Zhao, X., Zuo, W., Wang, H., Chen, J., & Peng, Q. (2018). Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system. Applied Thermal Engineering, 132, 508-520. doi:

Maxwell, J. C. (1873). A treatise on electricity and magnetism (Vol. 1). Oxford: Clarendon Press.

Deng, Y., Feng, C., E, J., Zhu, H., Chen, J., Wen, M., & Yin, H. (2018). Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Applied Thermal Engineering, 142, 10-29. doi:

Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters, 78(6), 718-720. doi:

Angani, A., Kim, H.-W., Hwang, M.-H., Kim, E., Kim, K.-M., & Cha, H.-R. (2023). A comparison between Zig-Zag plated hybrid parallel pipe and liquid cooling battery thermal management systems for Lithium-ion battery module. Applied Thermal Engineering, 219, 119599. doi:

Wang, S., Zhang, D., Li, C., Wang, J., Zhang, J., Cheng, Y., Mei, W., Cheng, S., Qin, P., Duan, Q., Sun, J., & Wang, Q. (2023). Numerical optimization for a phase change material based lithium-ion battery thermal management system. Applied Thermal Engineering, 222, 119839. doi:

Bashirpour-Bonab, H. (2020). Thermal behavior of lithium batteries used in electric vehicles using phase change materials. International Journal of Energy Research, 44(15), 12583-12591. doi:

Zou, D., Ma, X., Liu, X., Zheng, P., & Hu, Y. (2018). Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. International Journal of Heat and Mass Transfer, 120, 33-41. doi:

Jiang, G., Huang, J., Fu, Y., Cao, M., & Liu, M. (2016). Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management. Applied Thermal Engineering, 108, 1119-1125. doi:

Weng, J., Yang, X., Zhang, G., Ouyang, D., Chen, M., & Wang, J. (2019). Optimization of the detailed factors in a phase-change-material module for battery thermal management. International Journal of Heat and Mass Transfer, 138, 126-134. doi:

Choudhari, V. G., Dhoble, A. S., & Panchal, S. (2020). Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. International Journal of Heat and Mass Transfer, 163, 120434. doi:

Li, Z., Sarafraz, M. M., Mazinani, A., Moria, H., Tlili, I., Alkanhal, T. A., Goodarzi, M., & Safaei, M. R. (2020). Operation analysis, response and performance evaluation of a pulsating heat pipe for low temperature heat recovery. Energy Conversion and Management, 222, 113230. doi:

Weragoda, D. M., Tian, G., Burkitbayev, A., Lo, K.-H., & Zhang, T. (2023). A comprehensive review on heat pipe based battery thermal management systems. Applied Thermal Engineering, 224, 120070. doi:

Mbulu, H., Laoonual, Y., & Wongwises, S. (2021). Experimental study on the thermal performance of a battery thermal management system using heat pipes. Case Studies in Thermal Engineering, 26, 101029. doi:

Zhang, Z., & Wei, K. (2020). Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries. Applied Thermal Engineering, 166, 114660. doi:

Mehta, B., Subhedar, D., Panchal, H., & Said, Z. (2022). Synthesis, stability, thermophysical properties and heat transfer applications of nanofluid – A review. Journal of Molecular Liquids, 364, 120034. doi:

Said, Z., Sundar, L. S., Tiwari, A. K., Ali, H. M., Sheikholeslami, M., Bellos, E., & Babar, H. (2022). Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Physics Reports, 946, 1-94. doi:

Baheta, A. T., Oumer, A. N., & Hailegiorgis, S. M. (2018). Analysing the thermal performance of heat pipe using copper nanofluids. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 45(1), 149-155.

Reji, A. K., Kumaresan, G., Sarathi, A., Saiganesh, A. G. P., Suriya Kumar, R., & Shelton, M. M. (2021). Performance analysis of thermosyphon heat pipe using aluminum oxide nanofluid under various angles of inclination. Materials Today: Proceedings, 45, 1211-1216. doi:

Riehl, R. R., & Murshed, S. M. S. (2022). Performance evaluation of nanofluids in loop heat pipes and oscillating heat pipes. International Journal of Thermofluids, 14, 100147. doi:

Zhang, D., He, Z., Guan, J., Tang, S., & Shen, C. (2022). Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. International Journal of Heat and Mass Transfer, 183, 122100. doi:

Ghorabaee, H., Emami, M. R. S., Moosakazemi, F., Karimi, N., Cheraghian, G., & Afrand, M. (2021). The use of nanofluids in thermosyphon heat pipe: A comprehensive review. Powder Technology, 394, 250-269. doi:

Nasir, F. M., Abdullah, M. Z., Majid, M. F. M. A., & Ismail, M. A. (2019). Nanofluid-filled heat pipes in managing the temperature of EV lithium-ion batteries. Journal of Physics: Conference Series, 1349(1), 012123. doi:

Zhou, Z., Lv, Y., Qu, J., Sun, Q., & Grachev, D. (2021). Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling. Applied Thermal Engineering, 196, 117300. doi:

Chen, M., & Li, J. (2020). Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles. Journal of Energy Storage, 32, 101715. doi:

Patel, A. K., Patel, T. V., Patel, P. D., & Patel, J. J. (2021). Experimental analysis of temperature control of lithium-ion battery by utilize heat pipe[J]. Vidyabharati International Interdisciplinary Research Journal, 13(1), 302-309.

Smaisim, G. F., Al-Madhhachi, H., & Abed, A. M. (2022). Study the thermal management of Li-ion batteries using looped heat pipes with different nanofluids. Case Studies in Thermal Engineering, 37, 102227. doi:

Narayanasamy, M. P., Gurusamy, S., Sivan, S., & Senthilkumar, A. P. (2021). Heat transfer analysis of looped micro heat pipes with graphene oxide nanofluid for Li-ion battery. Thermal Science, 25(1 Part A), 395-405.



  • There are currently no refbacks.

Copyright (c) 2023 Xinyu Wang, Yanan Zhao, Yezhu Jin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2024 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)