Exploring Cutting-Edge Approaches to Reduce Africa's Carbon Footprint through Innovative Technology Dissemination

Samuel Chukwujindu Nwokolo, Eyime Echeng Eyime, Anthony Umunnakwe Obiwulu, Julie C. Ogbulezie

Abstract


This paper investigates the possibility of revolutionizing Africa's carbon footprint through innovative technology dissemination strategies for GHG emission reduction.  It highlights the importance of harnessing renewable energy sources to mitigate climate change and promote sustainable development in Africa. This paper also examined several technology diffusion theories in order to unleash Africa's climate-smart potential by tying them to the recommended techniques for dealing with technological diffusion concerns. These theories varied from diffusion of innovation theory to planned behaviour theory. By analysing these theories, it was found that the most appropriate technology diffusion theory for the assessment of innovative technology dissemination strategies for GHG emission reduction in Africa would be the Diffusion of Innovations Theory. This is due to the theory's emphasis on the dissemination and adoption of new ideas, technologies, or innovations by people or groups within a social system. It would give useful insights into the variables influencing the adoption and dissemination of novel technology for reducing GHG emissions in Africa. The paper also discusses the challenges and barriers faced in the diffusion of renewable energy technologies across the continent while proposing innovative strategies to overcome these obstacles and unlock Africa's untapped climate-smart potential. These strategies include promoting policy and regulatory frameworks that incentivize investment in renewable energy, fostering partnerships between governments, private sector entities, and international organizations to support technology transfer and capacity building, and implementing financial mechanisms such as green bonds and carbon pricing to mobilize funding for renewable energy projects. These proposed strategies were also used to develop seven policies required for innovative technology dissemination strategies for GHG emission reduction in Africa. These policies aim to address the unique challenges faced by African countries in adopting and implementing innovative technologies for GHG emission reduction. By focusing on capacity building, financial incentives, and knowledge sharing, these strategies seek to promote the widespread adoption of sustainable technologies across the continent. They emphasize the importance of collaboration between governments, private sector entities, and international organizations to ensure the successful implementation and long-term sustainability of these policies.

Citation: Nwokolo, S. C., Eyime, E. E., Obiwulu, A. U., & Ogbulezie, J. C. (2023). Exploring Cutting-Edge Approaches to Reduce Africa's Carbon Footprint through Innovative Technology Dissemination. Trends in Renewable Energy, 10, 1-29. doi:10.17737/tre.2024.10.1.00163


Keywords


Renewable energy; Climate-smart potential; Technological diffusion; Sustainable renewable energy growth; Greenhouse gas (GHG) emissions; Revitalizing Africa

Full Text:

FULL TEXT (PDF)

References


Nwokolo, S. C., & Ogbulezie, J. C. (2018). A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 367-396. doi: https://doi.org/10.1016/j.bjbas.2017.05.001

Nwokolo, S. C., & Ogbulezie, J. C. (2018). A qualitative review of empirical models for estimating diffuse solar radiation from experimental data in Africa. Renewable and Sustainable Energy Reviews, 92, 353-393. doi: https://doi.org/10.1016/j.rser.2018.04.118

Nwokolo, S., & Otse, C. (2019). Impact of Sunshine Duration and Clearness Index on Diffuse Solar Radiation Estimation in Mountainous Climate. Trends in Renewable Energy, 5(3), 307-332. doi: http://dx.doi.org/10.17737/tre.2019.5.3.00107

Ogbulezie, J.C., Ushie, O.U., & Nwokolo, S.C. (2017). A review of regression models employed for predicting diffuse solar radiation in North-Western Africa. Trends in Renewable Energy, 3(2), 160-206. doi: http://dx.doi.org/10.17737/tre.2017.3.2.0042

Amadi, S. O., Dike, T., & Nwokolo, S. C. (2020). Global Solar Radiation Characteristics at Calabar and Port Harcourt Cities in Nigeria. Trends in Renewable Energy, 6(2), 111-130. doi: http://dx.doi.org/10.17737/tre.2020.6.2.00114.

Nwokolo, S. C., & Amadi, S. O. (2018). A Global Review of Empirical Models for Estimating Photosynthetically Active Radiation. Trends in Renewable Energy, 4(2), 236-327. doi: http://dx.doi.org/10.17737/tre.2018.4.2.0079

Nwokolo, S.C., Ogbulezie, J. C., & Umunnakwe Obiwulu, A. (2022). Impacts of climate change and meteo-solar parameters on photosynthetically active radiation prediction using hybrid machine learning with Physics-based models. Advances in Space Research, 70(11), 3614-3637. doi:https://doi.org/10.1016/j.asr.2022.08.010

Proutsos, N., Liakatas, A., Alexandris, S., Nwokolo, S.C., Solomou, A.D., & Amadi, S.O. (2023). Assessing the impact of atmospheric attributes on the effectiveness of solar irradiance for photosynthesis of urban vegetation in Attica, Greece. Theoretical and Applied Climatology, https://doi.org/10.1007/s00704-023-04700-0

Nwokolo, S. C., Obiwulu, A. U., & Ogbulezie, J. C. (2023). Machine learning and analytical model hybridization to assess the impact of climate change on solar PV energy production. Physics and Chemistry of the Earth, Parts A/B/C, 130, 103389. doi:https://doi.org/10.1016/j.pce.2023.103389

Nwokolo, S. C., Amadi, S. O., Obiwulu, A. U., Ogbulezie, J. C., & Eyibio, E. E. (2022). Prediction of global solar radiation potential for sustainable and cleaner energy generation using improved Angstrom-Prescott and Gumbel probabilistic models. Cleaner Engineering and Technology, 6, 100416. doi:https://doi.org/10.1016/j.clet.2022.100416

Nwokolo, S. C., Obiwulu, A. U., Ogbulezie, J. C., & Amadi, S. O. (2022). Hybridization of statistical machine learning and numerical models for improving beam, diffuse and global solar radiation prediction. Cleaner Engineering and Technology, 9, 100529. doi:https://doi.org/10.1016/j.clet.2022.100529

Agbor, M. E., Udo, S. O., Ewona, I. O., Nwokolo, S. C., Ogbulezie, J. C., Amadi, S. O., & Billy, U. A. (2023). Effects of Angstrom-Prescott and Hargreaves-Samani Coefficients on Climate Forcing and Solar PV Technology Selection in West Africa. Trends in Renewable Energy, 9(1), 78-106. doi:10.17737/tre.2023.9.1.00150

Agbor, M. E., Udo, S. O., Ewona, I. O., Nwokolo, S. C., Ogbulezie, J. C., & Amadi, S. O. (2023). Potential impacts of climate change on global solar radiation and PV output using the CMIP6 model in West Africa. Cleaner Engineering and Technology, 13, 100630. doi:https://doi.org/10.1016/j.clet.2023.100630

Nwokolo, S. C., Obiwulu, A. U., Amadi, S. O., & Ogbulezie, J. C. (2023). Assessing the Impact of Soiling, Tilt Angle, and Solar Radiation on the Performance of Solar PV Systems. Trends in Renewable Energy, 9(2), 120-136. doi:10.17737/tre.2023.9.2.00156

Obiwulu, A. U., Erusiafe, N., Olopade, M. A., & Nwokolo, S. C. (2020). Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance. Renewable Energy, 154, 404-431. doi:https://doi.org/10.1016/j.renene.2020.02.103

Obiwulu, A. U., Chendo, M. A. C., Erusiafe, N., & Nwokolo, S. C. (2020). Implicit meteorological parameter-based empirical models for estimating back temperature solar modules under varying tilt-angles in Lagos, Nigeria. Renewable Energy, 145, 442-457. doi:https://doi.org/10.1016/j.renene.2019.05.136

Obiwulu, A. U., Erusiafe, N., Olopade, M. A., & Nwokolo, S. C. (2022). Modeling and estimation of the optimal tilt angle, maximum incident solar radiation, and global radiation index of the photovoltaic system. Heliyon, 8(6), e09598. doi:https://doi.org/10.1016/j.heliyon.2022.e09598

Ituen, E. E., Esen, N. U., Nwokolo, S. C., & Udo, E. G. (2012). Prediction of global solar radiation using relative humidity, maximum temperature and sunshine hours in Uyo, in the Niger Delta Region, Nigeria. Advances in Applied Science Research, 3(4), 1923-1937.

Nwokolo, S.C. (2017). A comprehensive review of empirical models for estimating global solar radiation in Africa. Renewable and Sustainable Energy Reviews, 78, 955-995. doi:https://doi.org/10.1016/j.rser.2017.04.101

Nwokolo, S. C., Ogbulezie, J. C., & Ushie, O. J. (2023). A multi-model ensemble-based CMIP6 assessment of future solar radiation and PV potential under various climate warming scenarios. Optik, 285, 170956. doi:https://doi.org/10.1016/j.ijleo.2023.170956

Hassan, M. A., Bailek, N., Bouchouicha, K., & Nwokolo, S. C. (2021). Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renewable Energy, 171, 191-209. doi:https://doi.org/10.1016/j.renene.2021.02.103

Hassan, M. A., Bailek, N., Bouchouicha, K., Ibrahim, A., Jamil, B., Kuriqi, A., Nwokolo, S. C., & El-kenawy, E.-S. M. (2022). Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions. Theoretical and Applied Climatology, 150(1), 715-729. doi: https://doi.org/10.1007/s00704-022-04166-6

Rogers, E. M. (1982). Diffusion of Innovations, Free Press, ISBN 978-0-02-926650-2

Valente, T.W. (1995). Network Models of the Diffusion of Innovations, Quantitative Methods in Communication, Ser.; ISBN 978-1-881303-22-0.

Meyer, J.W., & Jepperson, R.L. (2021). Institutional Theory: The Cultural Construction of Organizations, States, and Identities, ISBN 978-1-107-43528-5.

Kock, J. (2017) The Technology Acceptance Model (Tam). An Overview, ISBN 978-3-668-55502-0.

Kan, M. P. H., & Fabrigar, L. R. (2017). Theory of Planned Behavior. In V. Zeigler-Hill & T. K. Shackelford (Eds.), Encyclopedia of Personality and Individual Differences (pp. 1-8). Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-28099-8_1191-1

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition: Springer Nature Switzerland.

Mengi-Dinçer, H., Ediger, V. Ş., & Yesevi, Ç. G. (2021). Evaluating the International Renewable Energy Agency through the lens of social constructivism. Renewable and Sustainable Energy Reviews, 152, 111705. doi:https://doi.org/10.1016/j.rser.2021.111705

Nemet, G. F., Jakob, M., Steckel, J. C., & Edenhofer, O. (2017). Addressing policy credibility problems for low-carbon investment. Global Environmental Change, 42, 47-57. doi:https://doi.org/10.1016/j.gloenvcha.2016.12.004

NIGERIA: World Bank Economic Update. (2018). Africa Research Bulletin: Economic, Financial and Technical Series, 55(4), 22106C-22107A. doi:https://doi.org/10.1111/j.1467-6346.2018.08300.x

Agula, C., Akudugu, M. A., Dittoh, S., & Mabe, F. N. (2018). Promoting sustainable agriculture in Africa through ecosystem-based farm management practices: evidence from Ghana. Agriculture & Food Security, 7(1), 5. doi: https://doi.org/10.1186/s40066-018-0157-5

Opeke, R., Allen, L. F., & Opele, J. (2019). Interaction between knowledge management practices, innovation and job creation in the Niger Delta Development Commission (NDDC), Nigeria. Interaction, 9(2), 47-55. doi: https://doi.org/10.7176/ikm/9-2-05

Proutsos, N., Tigkas, D., Tsevreni, I., Alexandris, S.G., Solomou, A.D., Bourletsikas, A., Stefanidis, S., & Nwokolo, S.C. (2023). A Thorough Evaluation of 127 Potential Evapotranspiration Models in Two Mediterranean Urban Green Sites. Remote Sens. 15, 3680. https://doi.org/10.3390/rs15143680




DOI: http://dx.doi.org/10.17737/tre.2024.10.1.00163

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Samuel Chukwujindu Nwokolo, Eyime Echeng Eyime, Anthony Umunnakwe Obiwulu, Julie C. Ogbulezie

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2024 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)