Assessment of Temporal Trend in Surface Air Temperatures across Some Selected Eco-Climatic Zones in Nigeria

L.E. KING, S.O. Udo, I.O. Ewona, S.O. Amadi, E.D. Ebong, M.D. Umoh

Abstract


Temporal trends in surface air temperatures across some selected eco-climatic zones in Nigeria from 1981 to 2018 were assessed using the Merra-2 reanalysis dataset. A total of 15 stations spread across the eco-climatic zones in Nigeria were used for this study. The Mann-Kendall (M-K) trend test was used to detect direction, significance, coefficients of time trends, while the linear regression and the Sen’s slope trend tests were used to estimate the trend magnitudes. The M-K trend test showed that the surface air maximum temperature of 14 stations had monotonic increasing trends, of which 13 stations were statistically significant at the 0.01 significance level, and 1 station was statistically significant at the 0.05 significance level. However, the M-K trend test also showed that surface air minimum temperature for all the 15 stations (representing 100%), showed monotonic upward trends, statistically significant at the 0.01 significance level. The Sen's slope and linear trend tests showed higher trend magnitudes at most stations, particularly stations in the Guinea-wooded, Sudan and Sahel savannas. The estimated mean trend magnitudes of maximum and minimum air surface temperatures increased by approximately 0.035°C/year and 0.036°C/year, respectively. The estimated mean air surface temperature increased by approximately 0.036°C/year and approximately 1.4°C for Nigeria over the 38-year period. The study then presents a linear trend projection of mean air surface temperature increase in Nigeria of approximately 4.3°C by 2100. This is 0.2°C below maximum levels and within the range of approximately 1.5 to 4.5°C that global air surface temperature is projected to rise by 2100 in the Intergovernmental Panel on Climate Change (IPCC) 2007 report. The M-K and linear trend tests were fully consistent with the standardized time series anomaly plots. Mean annual values of the air surface temperatures showed latitudinal dependence. The manifestation of significant long-term trends at high confidence levels in the air surface temperatures over the period, provides a clear evidence that the climate of Nigeria is witnessing a possible human-induced radiative forcing and a strong tendency for the occurrences of climate-related extreme events and their resulting adverse implications. 

Citation: KING, L.E., Udo, S.O., Ewona, I.O., Amadi, S.O., Ebong, E.D., & Umoh, M.D. (2024). Assessment of Temporal Trend in Surface Air Temperatures across Some Selected Eco-Climatic Zones in Nigeria. Trends in Renewable Energy, 10, 132-158. doi:http://dx.doi.org/10.17737/tre.2024.10.1.00169


Keywords


Trend; Temporal, Maximum temperature; Minimum temperature; Radiative forcing; Nigeria

Full Text:

FULL TEXT (PDF)

References


Stephenson, D. B. (2005). Data analysis methods in weather and climate research. Course in University of Reading, https://empslocal.ex.ac.uk/people/staff/dbs202/cat/courses/MT237C/course-d.pdf (Accessed 02/24/2024)

Yue, S., & Hashino, M. (2003). LONG TERM TRENDS OF ANNUAL AND MONTHLY PRECIPITATION IN JAPAN1. JAWRA Journal of the American Water Resources Association, 39(3), 587-596. doi: https://doi.org/10.1111/j.1752-1688.2003.tb03677.x

Abiodun, B., Salami, A., & Tadross, M. (2011). Climate change scenarios for Nigeria: understanding biophysical impacts. Climate Systems Analysis Group, Cape Town, for Building Nigeria's Response to Climate Change Project. Ibadan, Nigeria: Nigerian Environmental Study/Action Team (NEST).

Thomas, T., Sudheer, K., Ghosh, N., & Gunte, S. (2013). Spatio-temporal variation of temperature characteristics over narmada basin–is the consistent warming trend a possible climate change signal. Paper presented at the 20th International Congress on Modeling and Simulation, Adelaide, Australia.

Magawata, U. Z., & Yahaya, A. A. (2019). Trends and Variations of Monthly Solar Radiation, Temperature and Rainfall Data over Birnin Kebbi Metropolis for the Period of 2014-2016. Journal of Geography, Environment and Earth Science International, 21(2), 1-10.

Peterson, T. C., & Vose, R. S. (1997). An overview of the Global Historical Climatology Network temperature database. Bulletin of the American Meteorological Society, 78(12), 2837-2850.

Abatzoglou, J. T., Redmond, K. T., & Edwards, L. M. (2009). Classification of regional climate variability in the state of California. Journal of Applied Meteorology and Climatology, 48(8), 1527-1541. doi: https://doi.org/10.1175/2009JAMC2062.1

Liu, X., Yin, Z.-Y., Shao, X., & Qin, N. (2006). Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. Journal of Geophysical Research: Atmospheres, 111(D19). doi: https://doi.org/10.1029/2005JD006915

Abudaya, M. (2013). Seasonal and spatial variation in sea surface temperature in the South-East Mediterranean Sea. Journal of Environmental and Earth Science, 3(2), 42 – 52.

Akinsanola, A. A., & Ogunjobi, K. O. (2014). Analysis of rainfall and temperature variability over Nigeria. Global Journal of Human-Social Science: B Geography, Geo-Sciences, Environmental Disaster Management, 14(3), 1-17.

Oguntunde, P. G., Abiodun, B. J., & Lischeid, G. (2012). Spatial and temporal temperature trends in Nigeria, 1901–2000. Meteorology and Atmospheric Physics, 118(1), 95-105. doi:10.1007/s00703-012-0199-3

Amadi, S. O., Udo, S. O., & Ewona, I. (2014). Trends and variations of monthly mean minimum and maximum temperature data over Nigeria for the period 1950-2012. International Journal of pure and applied Physics, 2(4), 1-27.

IPCC. (2007). Summary for Policymakers. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Ewona, I., & Udo, A. (2008). Trend studies of some meteorological parameters in Calabar, Nigeria. Nigerian Journal of Physics, 20(2), 283-289.

Ewona, I., & Udo, S. O. (2011). Climatic condition of Calabar as typified by some meteorological parameters. Global Journal of Pure and Applied Sciences, 17(1), 81-86.

Ogolo, E., & Adeyemi, B. (2009). Variations and trends of some meteorological parameters at Ibadan, Nigeria. The Pacific Journal of Science and Technology, 10(2), 981-987.

Oruonye, E. (2014). An assessment of the trends of climatic variables in Taraba State Nigeria. Global Journal of Science Frontier Research, 14(4), 1-13.

Agbo, E. P., & Ekpo, C. M. (2021). Trend Analysis of the Variations of Ambient Temperature Using Mann-Kendall Test and Sen’s Estimate in Calabar, Southern Nigeria. Journal of Physics: Conference Series, 1734(1), 012016. doi: https://doi.org/10.1088/1742-6596/1734/1/012016

Adefolalu, A. D. (2002). Climate of Nigeria. In Atlas of Nigeria, (65). Paris: Les Editions J.A.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., . . . Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454. doi: https://doi.org/10.1175/JCLI-D-16-0758.1

Molod, A., Takacs, L., Suarez, M., & Bacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev., 8(5), 1339-1356. doi:10.5194/gmd-8-1339-2015

Rienecker, M. M., Suarez, M., Todling, R., Bacmeister, J., Takacs, L., Liu, H.-C., . . . Gelaro, R. (2008). The GEOS-5 Data Assimilation System-Documentation of Versions 5.0. 1, 5.1. 0, and 5.2. 0. Retrieved from

Wu, W.-S., Purser, R. J., & Parrish, D. F. (2002). Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances. Monthly Weather Review, 130(12), 2905-2916. doi: https://doi.org/10.1175/1520-0493(2002)130<2905: TDVAWS>2.0.CO;2

Longobardi, A., & Villani, P. (2010). Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. International Journal of Climatology, 30(10), 1538-1546. doi: https://doi.org/10.1002/joc.2001

Kundzewicz, Z. W., & Robson, A. J. (2004). Change detection in hydrological records—a review of the methodology / Revue méthodologique de la détection de changements dans les chroniques hydrologiques. Hydrological Sciences Journal, 49(1), 7-19. doi:10.1623/hysj.49.1.7.53993

Sonali, P., & Nagesh Kumar, D. (2013). Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology, 476, 212-227. doi: https://doi.org/10.1016/j.jhydrol.2012.10.034

TÜRKEŞ, M. (1996). SPATIAL AND TEMPORAL ANALYSIS OF ANNUAL RAINFALL VARIATIONS IN TURKEY. International Journal of Climatology, 16(9), 1057-1076. doi: https://doi.org/10.1002/(SICI)1097-0088(199609)16:9<1057: AID-JOC75>3.0.CO;2-D

Zhihua, Z., Rui, L., Hui, Q., Jie, C., & Xuedi, Z. (2013). Analysis of rainfall variation over the past 55 years in Guyuan City. Journal of Environmental Science, Computer Science and Engineering Technology, 2(3), 640-649.

Helsel, D. R., Hirsch, R. M., Ryberg, K. R., Archfield, S. A., & Gilroy, E. J. (2020). Statistical methods in water resources techniques and methods 4–A3. USGS Techniques and Methods, 1(13), 15-25.

Yue, S., & Wang, C. (2004). The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resources Management, 18(3), 201-218. doi:10.1023/b: warm.0000043140.61082.60

Wang, H., Zhang, M., Zhu, H., Dang, X., Yang, Z., & Yin, L. (2012). Hydro-climatic trends in the last 50years in the lower reach of the Shiyang River Basin, NW China. CATENA, 95, 33-41. doi: https://doi.org/10.1016/j.catena.2012.03.003

Rai, R. K., Upadhyay, A., & Ojha, C. S. P. (2010). Temporal variability of climatic parameters of Yamuna River Basin: spatial analysis of persistence, trend and periodicity. The open hydrology Journal, 4, 184-210. doi: http://dx.doi.org/10.2174/1874378101004010184

Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the American Statistical Association, 63(324), 1379-1389. doi:10.1080/01621459.1968.10480934

Jones, P. D., Parker, D. E., Osborn, T. J., & Briffa, K. R. (2000). Global and Hemispheric Temperature Anomalies: Land and Marine Instrumental Records (1850 - 2015). United States. doi: https://doi.org/10.3334/CDIAC/cli.002

Houghton, R. A. (2003). Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus, Series B: Chemical and Physical Meteorology, 55(2), 378–390.

Ibrahim, M., Djibo, A. G. & Afouda, A. (2016). Recent trend analysis of hydro-climatic data in the upper and Niger Inland Delta of the Niger River basin (West Africa). International Journal of Current Engineering and Technology, Vol.6(6), 2167–2177.

Alemu, Z. A., & Dioha, M. O. (2020). Climate change and trend analysis of temperature: the case of Addis Ababa, Ethiopia. Environmental Systems Research, 9(1). https://doi.org/10.1186/s40068-020-00190-5




DOI: http://dx.doi.org/10.17737/tre.2024.10.1.00169

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 L.E. King, S.O. Udo, I.O. Ewona, S.O. Amadi, E.D. Ebong, M.D. Umoh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2024 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)