Designing the Undersea Internet of Things (IoT) and Machine-to-Machine (M2M) Communications Using UnderWater Acoustic MIMO Networks

Athanasios G. Lazaropoulos

Abstract


This review paper tries to assess the spectral-efficient (SE) and energy-efficient (EE) performance of underwater acoustic multiple-input multiple-output (UWA/MIMO) networks. Since UWA/MIMO networks define the cutting-edge communications platform of the future’s undersea IoT and M2M networks, the factors that influence their SE and EE performance are thoroughly examined in this paper.

The contribution of this paper is three-fold. First, the performance of UWA/MIMO networks is studied with regard to appropriate transmission, SE and EE metrics. The SE and EE performance of these networks drastically depends on the used frequency band, the transmitted power, the MIMO scheme properties, the power consumption profile of the deployed UWA system equipment and the topological characteristics of MIMO configurations. In order to achieve the transition from traditional UWA single-input single-output (UWA/SISO) networks to UWA/MIMO networks, a new singular value decomposition MIMO (SVD/MIMO) module, which also permits the theoretical computation of the aforementioned transmission, SE and EE metrics in UWA networks, is first presented. Second, based on the aforementioned transmission, SE and EE metrics, a SE/EE trade-off relation is proposed in order to investigate the combined SE and EE performance of UWA/MIMO networks. On the basis of this SE/EE trade-off relation, it is first revealed that today’s UWA system equipment cannot support the further IoT broadband exploitation with satisfactory EE performance. Third, the concepts of multi-hop UWA communications and standard UWA topologies are outlined and promoted so that further SE and EE improvement can concurrently occur. These concepts are quantitatively validated by the SE and EE metrics as well as the SE/EE trade-off curves.

Based on the findings of this paper, suitable transmitted power levels and better design of UWA/MIMO configurations are promoted so that: (i) SE and EE requirements can be satisfied at will; and (ii) EE-oriented high-bitrate M2M communications network design can be established.

Citation: Lazaropoulos, A. G. (2016). "Designing the Undersea Internet of Things (IoT) and Machine-to-Machine (M2M) Communications Using UnderWater Acoustic MIMO Networks." Trends in Renewable Energy, 2(1), 13-50. DOI: 10.17737/tre.2016.2.1.0017


Keywords


Internet of Things (IoT); Machine-to-Machine (M2M); UnderWater Acoustic (UWA) channel modeling; statistical performance metrics; spectral-efficient (SE) metrics; energy-efficient (EE) metrics; multi-input multi-output (MIMO) networks

Full Text:

FULL TEXT (PDF)

References


M. C. Domingo, “An overview of the internet of underwater things,” Journal of Network and Computer Applications, vol. 35, no. 6, pp. 1879-1890, 2012. DOI: 10.1016/j.jnca.2012.07.012

M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today's intranet of things to a future internet of things: a wireless-and mobility-related view,” IEEE Wireless Communications, vol. 17, no. 6, pp. 44-51, 2010. DOI: 10.1109/MWC.2010.5675777

R. Roman, C. Alcaraz, J. Lopez, and N. Sklavos, “Key management systems for sensor networks in the context of the Internet of Things,” Computers & Electrical Engineering, vol. 37, no. 2, pp. 147-159, 2011. DOI: 10.1016/j.compeleceng.2011.01.009

H. P. Tan, R. Diamant, W. K. Seah, and M. Waldmeyer, “A survey of techniques and challenges in underwater localization,” Ocean Engineering, vol. 38, no. 14, pp. 1663-1676, 2011. DOI: 10.1016/j.oceaneng.2011.07.017

S. Arnon, “Underwater optical wireless communication network,” Optical Engineering, vol. 49, no.1, pp. 1-6, 2010. DOI: 10.1117/1.3280288

C. Yan, Z. Shunqing, X. Shugong, and G. Y. Li, “Fundamental trade-offs on green wireless networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 30–37, Jun. 2011. DOI: 10.1109/MCOM.2011.5783982

A. Stefanov and M. Stojanovic, “Design and performance analysis of underwater acoustic networks,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 10, pp. 2012-2021, 2011. DOI: 10.1109/JSAC.2011.111211

M. Stojanovic, “Underwater Acoustic Communications: Design Considerations on the Physical Layer,” IEEE/IFIP Fifth Annual Conference on Wireless On demand Network Systems and Services (WONS 2008), Garmisch-Partenkirchen, Germany, Jan. 2008. DOI: 10.1109/WONS.2008.4459349

Α. Radosevic, J. G. Proakis, and M. Stojanovic, “Statistical characterization and capacity of shallow water acoustic channels,” in IEEE OCEANS 2009-EUROPE, pp. 1-8, May 2009. DOI: 10.1109/OCEANSE.2009.5278349

M. Zatman and B. Tracey, “Underwater acoustic MIMO channel capacity,” in IEEE Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1364-1368, Nov. 2002. DOI: 10.1109/ACSSC.2002.1197002

R. F. Ormondroyd, “A robust underwater acoustic communication system using OFDM-MIMO,” IEEE OCEANS 2007-Europe, pp. 1-6, 2007. DOI: 10.1109/OCEANSE.2007.4302422

A. G. Zajic, “Statistical modeling of MIMO mobile-to-mobile underwater channels,” IEEE Transactions on Vehicular Technology, pp. 1337-1351, vol. 60, no. 4, 2011. DOI: 10.1109/TVT.2011.2129603

P. Bouvet and A. Loussert, “Capacity analysis of underwater acoustic MIMO communications,” IEEE OCEANS 2010, Sydney, 2010. DOI: 10.1109/OCEANSSYD.2010.5603661

R. F. W. Coates, Underwater Acoustic Systems. Wiley, 1989.

P. A. van Walree, “Propagation and Scattering Effects in Underwater Acoustic Communication Channels,” IEEE Journal of Oceanic Engineering, vol. 38, no. 4, pp. 614-631, Oct. 2013. DOI: 10.1109/JOE.2013.2278913

F. Guerra, P. Casari, and M. Zorzi, “World ocean simulation system (WOSS): A simulation tool for underwater networks with realistic propagation modeling,” in Proc. ACM WUWNet, Berkeley, CA, USA, Nov. 2009, DOI: 10.1145/1654130.1654134.

N. Parrish, L. Tracy, S. Roy, P. Arabshahi, and W. L. J. Fox, “System design considerations for undersea networks: Link and multiple access protocols,” IEEE J. Sel. Areas Commun., vol. 26, no. 9, pp. 1720–1730, Dec. 2008. DOI: 10.1109/JSAC.2008.081211

A. G. Lazaropoulos, “Overhead and Underground MIMO Low Voltage Broadband over Power Lines Networks and EMI Regulations: Towards Greener Capacity Performances,” Computers and Electrical Engineering, vol. 39, pp. 2214-2230, 2013. DOI: 10.1016/j.compeleceng.2013.02.003

A. G. Lazaropoulos, “Green Overhead and Underground Multiple-Input Multiple-Output Medium Voltage Broadband over Power Lines Networks: Energy-Efficient Power Control,” Journal of Global Optimization, vol. 2012 / Print ISSN 0925-5001, pp. 1-28, Oct. 2012. DOI: 10.1007/s10898-012-9988-y

Α. Radosevic, D. Fertonani, T. M. Duman, J. G. Proakis, and M. Stojanovic, “Capacity of MIMO systems in shallow water acoustic channels,” In IEEE 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 2164-2168, Nov. 2010. DOI:10.1109/ACSSC.2010.5757934

C. Gabriel, M. A. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” Journal of Optical Communications and Networking, vol. 5, no. 1, pp. 1-12, 2013. DOI: 10.1364/JOCN.5.000001

H. Dol, M. A. Ainslie, M. Colin, and J. Janmaat, “Simulation of an underwater acoustic communication channel characterized by wind-generated surface waves and bubbles,” IEEE Journal of Oceanic Engineering, vol. 38, no. 4, pp. 642-654, Oct. 2013. DOI: 10.1109/JOE.2013.2278931

E. Y. T. Kuo, “Sea surface scattering and propagation loss: Review, update and new predictions,” IEEE J. Ocean. Eng., vol. OE-13, no. 4, pp. 229–234, Oct. 1988. DOI: 10.1109/48.9235

D. E. Weston and P. A. Ching, “Wind effects in shallow-water acoustic transmission,” J. Acoust. Soc. Amer., vol. 86, no. 4, pp. 1530–1545, Oct. 1989. DOI: 10.1121/1.398713

H. DeFerrari, N. Williams, and H. Nguyen, “Focused arrivals in shallow water propagation in the Straits of Florida,” ARLO, vol. 4, no. 3, pp. 106–111, Jul. 2003. DOI: 10.1121/1.1591713

J. W. Choi and P. H. Dahl, “Mid-to-high-frequency bottom loss in the East China Sea,” IEEE J. Ocean. Eng., vol. 29, no. 4, pp. 980–987, Oct. 2004. DOI: 10.1109/JOE.2004.834178

O. Diachok, “Effects of absorptivity due to fish on transmission loss in shallow water,” J. Acoust. Soc. Amer., vol. 105, no. 4, pp. 2107–2128, Apr. 1999. DOI: 10.1121/1.426816

J. M. Jornet, M. Stojanovic, and M. Zorzi, “On joint frequency and power allocation in a cross-layer protocol for underwater acoustic networks,” IEEE J. Ocean. Eng., vol. 35, no. 4, pp. 936–947, Oct. 2010. DOI: 10.1109/JOE.2010.2080410

D. Pompili, T. Melodia, and I. F. Akyildiz, “A CDMA-based medium access control for underwater acoustic sensor networks,” IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 1899–1909, Apr. 2009. DOI: 10.1109/TWC.2009.080195

M. A. Chitre, “A high-frequency warm shallow water acoustic communications channel model and measurements,” Journal of the Acoustical Society of America, vol. 5, no. 122, pp. 2580–2586, 2007. DOI: 10.1121/1.2782884.

X. Geng and A. Zielinski, “An eigenpath underwater acoustic communication channel model,” in Proceedings of OCEAN’95, vol. 2, 1995, pp. 1189–1196. DOI: 10.1109/OCEANS.1995.528591

C. S. Clay and H. Medwin, Acoustical Oceanography: Principles and Applications. New York: Wiley, 1977, ch. 3.

W. H. Thorp, “Analytic description of the low frequency attenuation coefficient,” Journal of the Acoustical Society of America, vol. 33, pp.334–340, 1961.

F. H. Fisher and V. P. Simons, “Sound absorption in seawater,” Journal of the Acoustical Society of America, vol. 62, pp. 558–564, 1977. DOI: 10.1121/1.381574

D. Schneider, A. Schwager, J. Speidel and A. Dilly, “Implementation and Results of a MIMO PLC Feasibility Study,” in Proc. IEEE Int. Symp. Power Line Communications and Its Applications, Udine, Italy, Apr. 2011, pp. 54–59. DOI: 10.1109/ISPLC.2011.5764450

E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels: Information theoretic and communications aspects,” IEEE Trans. Inform. Theory, vol. 44, pp. 2619–2692, Oct. 1998. DOI: 10.1109/18.720551

A. Canova, N. Benvenuto, and P. Bisaglia, “Receivers for MIMO-PLC channels: Throughput comparison,” in Proc. IEEE Int. Symp. Power Line Communications and Its Applications, Rio de Janeiro, Brazil, Mar. 2010, pp. 114–119. DOI: 10.1109/ISPLC.2010.5479904

R. Hashmat, P. Pagani, A. Zeddam, and T. Chonavel, “MIMO communications for inhome PLC networks: Measurements and results up to 100MHz,” in Proc. IEEE Int. Symp. Power Line Communications and Its Applications, Rio de Janeiro, Brazil, Mar. 2010, pp. 120–124. DOI: 10.1109/ISPLC.2010.5479897

D. Schneider, J. Speidel, L. Stadelmeier, and D. Schill, “Precoded spatial multiplexing MIMO for inhome power line communications,” in Proc. IEEE Global Telecommunications Conference, New Orleans, LA, USA, Nov./Dec. 2008, pp. 1–5. DOI: 10.1109/GLOCOM.2008.ECP.556

R. S. Prabhu and B. Daneshrad, “Energy-efficient power loading for a MIMO-SVD system and its performance in flat fading,” in Proc. IEEE Global Telecommunications Conference, Miami, FL, USA, Dec. 2010, pp. 1–5. DOI: 10.1109/GLOCOM.2010.5683485

M. Doniec, M. Angermann, and D. Rus, “An End-to-End Signal Strength Model for Underwater Optical Communications,” IEEE Journal of Oceanic Engineering, vol. 38, no. 4, pp. 743-757, Oct. 2013. DOI: 10.1109/JOE.2013.2278932

S. Tang, Y. Dong, and X. Zhang, “Impulse Response Modeling for Underwater Wireless Optical Communication Links,” IEEE Trans. on Communications, vol. 62, no. 1, pp. 226-234, Jan. 2014. DOI: 10.1109/TCOMM.2013.120713.130199

D. Piao and G. Lu, “Application of Cooperative MIMO in the Ad Hoc Shallow Water Acoustic Sensor Network,”. in IEEE 4th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM'08, pp. 1-4, Oct. 2008. DOI: 10.1109/WiCom.2008.980

B. Gulbahar and O. B. Akan, “A communication theoretical modeling and analysis of underwater magneto-inductive wireless channels,” IEEE Transactions on Wireless Communications, vol. 11, no. 9, pp. 3326-3334, 2012. DOI: 10.1109/TWC.2012.070912.111943

R. J. Urick, Ambient Noise in the Sea. Peninsula Pub, 1986.

M. Stojanovic, “On the relationship between capacity and distance in an underwater acoustic communication channel,” ACM SIGMOBILE Mobile Comput. and Comm. Review (M2CR), vol. 11, pp. 34–43, Oct. 2007. DOI: 10.1145/1161039.1161049

Z. Sun and I. Akyildiz, “Magnetic induction communications for wireless underground sensor networks,” IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2426–2435, 2010. DOI: 10.1109/TAP.2010.2048858

S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-Efficiency of MIMO and Cooperative MIMO Techniques in Sensor Networks,” IEEE J. Sel. Areas Commun., vol. 22, no. 6, pp. 1089–1098, Aug. 2004. DOI: 10.1109/JSAC.2004.830916

S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-constrained modulation optimization,” IEEE Trans.Wireless Commun., vol. 4, no. 5, pp. 2349–2360, Sep. 2005. DOI: 10.1109/TWC.2005.853882

M. Steyaert, B. De Muer, P. Leroux, M. Borremans, and K. Mertens, “Low-voltage low-power CMOS-RF transceiver design,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 281–287, Jan. 2002. DOI: 10.1109/22.981281

T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, U.K.: Cambridge Univ. Press, 1998.

A. G. Lazaropoulos and P. G. Cottis, “Capacity of overhead medium voltage power line communication channels,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 723–733, Apr. 2010. DOI: 10.1109/TPWRD.2009.2034907

A. G. Lazaropoulos and P. G. Cottis, “Broadband transmission via underground medium-voltage power lines—Part II: capacity,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2425–2434, Oct. 2010. DOI: 10.1109/TPWRD.2010.2052113

A. Goldsmith, S. A. Jafar, N. Jindal, and S.Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas. Commun., vol. 21, no. 5, pp. 684–702, Jun. 2003. DOI: 10.1109/JSAC.2003.810294

A. Schwager, D. Schneider, W. Bäschlin, A. Dilly, and J. Speidel, “MIMO PLC: Theory, Measurements and System Setup,” in Proc. IEEE Int. Symp. Power Line Communications and Its Applications, Udine, Italy, Apr. 2011, pp. 48–53. DOI: 10.1109/ISPLC.2011.5764447

B. Li, J. Huang, S. Zhou, K. Ball, M. Stojanovic, L. Freitag, and P. Willett, “MIMO-OFDM for high rate underwater acoustic communications,” IEEE J. Ocean. Eng., vol. 34, no. 4, pp. 634–644, 2009. DOI: 10.1109/JOE.2009.2032005

C. Polprasert, J. A. Ritcey, and M. Stojanovic, “Capacity of OFDM systems over fading underwater acoustic channels,” IEEE Journal of Oceanic Engineering, vol. 36, no .4, pp. 514-524, 2011. DOI: 10.1109/JOE.2011.2167071

X. Junfeng, K. Li, and G. Min, “Reliable and energy-efficient multipath communications in underwater sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 7, pp. 1326-1335, 2012. DOI: 10.1109/TPDS.2011.266

C. Xiong, G. Y. Li, S. Zhang, Y. Chen, and S. Xu, “Energy- and spectral-efficiency tradeoff in downlink OFDMA networks,” IEEE Trans. Wireless Commun., vol. 10, no. 11, pp. 3874–3886, Nov. 2011. DOI: 10.1109/TWC.2011.091411.110249

L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,” IEEE Trans. on Information Theory, vol. 49, no. 5, pp. 1073-1096, 2003. DOI: 10.1109/TIT.2003.810646

C. Isheden and G. P. Fettweis, “Energy-efficient multi-carrier link adaptation with sum rate-dependent circuit power,” in Proc. IEEE Global Telecommunications Conference, Miami, FL, USA, Dec. 2010, pp. 1-6. DOI: 10.1109/GLOCOM.2010.5683700

C. Liu, Y. V. Zakharov, and T. Chen, “Doubly selective underwater acoustic channel model for a moving transmitter/receiver,” IEEE Transactions on Vehicular Technology, vol. 61, no. 3, pp. 938-950, 2012. DOI: 10.1109/TVT.2012.2187226

M. Stojanovic, “Design and Capacity Analysis of Cellular-Type Underwater Acoustic Networks,” IEEE J. Ocean. Eng., vol. 33, pp. 171–181, Apr. 2008. DOI: 10.1109/JOE.2008.920210

C. H. Mar and W. K. G. Seah, “DS/CDMA throughput of a multi‐hop sensor network in a Rayleigh fading underwater acoustic channel,” Concurrency and Computation: Practice and Experience, vol. 19, no. 8, pp. 1129-1140, 2007. DOI: 10.1002/cpe.1163

H. Kulhandjian, T. Melodia, and D. Koutsonikolas, “Securing underwater acoustic communications through analog network coding,” In 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 266-274, 2014. DOI: 10.1109/SAHCN.2014.6990362

H. Kulhandjian, T. Melodia, and D. Koutsonikolas, “CDMA-based analog network coding through interference cancellation for underwater acoustic sensor networks,” In Proceedings of the Seventh ACM International Conference on Underwater Networks and Systems, p. 7, Nov. 2012.

A. G. Kanatas, “Beamspace MIMO and Degrees of Freedom,” In Parasitic Antenna Arrays for Wireless MIMO Systems, Springer New York, pp. 45-84, 2014. DOI: 10.1007/978-1-4614-7999-4_3

P. S. Bithas, G. P. Efthymoglou, and A. G. Kanatas, “SEP of rectangular QAM in composite fading channels,” AEU-International Journal of Electronics and Communications, vol. 69, no. 1, pp. 246-252, 2015. DOI: 10.1016/j.aeue.2014.09.011

B. Han, V. I. Barousis, A. Kalis, C. B. Papadias, A. G. Kanatas, and R. Prasad, “A Single RF MIMO Loading Network for High-Order Modulation Schemes,” International Journal of Antennas and Propagation, 2014.

A. G. Kanatas, D. Vouyioukas, G. Zheng, and L. Clavier, “Beamforming Techniques for Wireless MIMO Relay Networks,” International Journal of Antennas and Propagation, 2014.

A. G. Lazaropoulos and P. Lazaropoulos, “Financially Stimulating Local Economies by Exploiting Communities’ Microgrids: Power Trading and Hybrid Techno-Economic (HTE) Model,” Trends in Renewable Energy, vol. 1, no. 3, pp. 131-184, Sep. 2015. DOI: 10.17737/tre.2015.1.3.0014

A. G. Lazaropoulos, “Policies for Carbon Energy Footprint Reduction of Overhead Multiple-Input Multiple-Output High Voltage Broadband over Power Lines Networks,” Trends in Renewable Energy, vol. 1, no. 2, pp. 87-118, Jun. 2015. DOI: 10.17737/tre.2015.1.2.0011

A. G. Lazaropoulos, “Designing Broadband over Power Lines Networks Using the Techno-Economic Pedagogical (TEP) Method – Part I: Overhead High Voltage Networks and Their Capacity Characteristics,” Trends in Renewable Energy, vol. 1, no. 1, pp. 16-42, Mar. 2015. DOI: 10.17737/tre.2015.1.1.002

A. G. Lazaropoulos, “Designing Broadband over Power Lines Networks Using the Techno-Economic Pedagogical (TEP) Method – Part II: Overhead Low-Voltage and Medium-Voltage Channels and Their Modal Transmission Characteristics,” Trends in Renewable Energy, vol. 1, no. 2, pp. 59-86, Jun. 2015. DOI: 10.17737/tre.2015.1.2.006




DOI: http://dx.doi.org/10.17737/tre.2016.2.1.0017

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Athanasios G. Lazaropoulos

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2019 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)