Effect of Hydrogen Injection Flow Rate on the Performance of In-Cylinder Direct Injection Hydrogen Engines
Abstract
When a hydrogen internal combustion engine uses intake manifold injection to supply hydrogen, it must face the contradiction of abnormal combustion (premature combustion, backfire, etc.). The occurrence of abnormal combustion such as backfire can be avoided by using in-cylinder direct injection of hydrogen. In this paper, the In-Cylinder Direct Injection single-cylinder engine is modified, a three-dimensional simulation model is established, and simulation tests using AVL-Fire software on this basis is conducted. Through the analysis of the research results, the optimal hydrogen injection flow rate for the direct injection hydrogen engine to achieve the best power and economy under different working conditions was obtained. The results show that: under the same speed and load, the increase of hydrogen injection flow rate increases the hydrogen injection speed, which promotes the turbulent motion in the cylinder. At the same time, with the increase of hydrogen injection flow rate, the maximum pressure, temperature, indicated power and indicated thermal efficiency in the engine cylinder generally show a trend of first increasing and then decreasing, and there is an optimal hydrogen injection flow rate value.
Citation: Ma, H. (2024). Effect of hydrogen injection flow rate on the performance of in-cylinder direct injection hydrogen engines. Trends in Renewable Energy, 10(3), 266-282. doi:http://dx.doi.org/10.17737/tre.2024.10.3.00177
Keywords
Full Text:
FULL TEXT (PDF)References
Abedin, M. J., Masjuki, H. H., Kalam, M. A., Sanjid, A., Rahman, S. M. A., & Masum, B. M. (2013). Energy balance of internal combustion engines using alternative fuels. Renewable and Sustainable Energy Reviews, 26, 20-33. doi:https://doi.org/10.1016/j.rser.2013.05.049
Al-Maamary, H. M., Kazem, H. A., & Chaichan, M. T. (2016). Changing the energy profile of the GCC States: A review. International Journal of Applied Engineering Research (IJAER), 11(3), 1980-1988.
Yang, Z., Wu, J., Yun, H., Zhang, H., & Xu, J. (2022). Diagnosis and control of abnormal combustion of hydrogen internal combustion engine based on the hydrogen injection parameters. International Journal of Hydrogen Energy, 47(35), 15887-15895. doi:https://doi.org/10.1016/j.ijhydene.2022.03.031
Eichlseder, H., Wallner, T., Freymann, R., & Ringler, J. (2003). The potential of hydrogen internal combustion engines in a future mobility scenario (No. 2003-01-2267). SAE Technical Paper.
Shih, C. F., Zhang, T., Li, J., & Bai, C. (2018). Powering the Future with Liquid Sunshine. Joule, 2(10), 1925-1949. doi:https://doi.org/10.1016/j.joule.2018.08.016
Hosseini, S. E., & Butler, B. (2020). An overview of development and challenges in hydrogen powered vehicles. International Journal of Green Energy, 17(1), 13-37. doi:https://doi.org/10.1080/15435075.2019.1685999
Sun, Z., Hong, J., Zhang, T., Sun, B., Yang, B., Lu, L., Li, L., & Wu, K. (2023). Hydrogen engine operation strategies: Recent progress, industrialization challenges, and perspectives. International Journal of Hydrogen Energy, 48(1), 366-392. doi:https://doi.org/10.1016/j.ijhydene.2022.09.256
Saeidi, S., Fazlollahi, F., Najari, S., Iranshahi, D., Klemeš, J. J., & Baxter, L. L. (2017). Hydrogen production: Perspectives, separation with special emphasis on kinetics of WGS reaction: A state-of-the-art review. Journal of Industrial and Engineering Chemistry, 49, 1-25. doi:https://doi.org/10.1016/j.jiec.2016.12.003
Shahbek, S. A. (2017). The Policy Trade-off Between Energy Security and Climate Change in the GCC States (Master's thesis, Hamad Bin Khalifa University (Qatar)).
Wu, Z.-S., Li, X., Wang, F., & Bao, X. (2019). DICP's 70th Anniversary Special Issue on Advanced Materials for Clean Energy. Advanced Materials, 31(50), 1905710. doi:https://doi.org/10.1002/adma.201905710
Arsie, I., Battistoni, M., Brancaleoni, P. P., Cipollone, R., Corti, E., Di Battista, D., ... & Zembi, J. (2023). A new generation of hydrogen-fueled hybrid propulsion systems for the urban mobility of the future. Energies, 17(1), 34. doi:https://doi.org/10.3390/en17010034
Verhelst, S. (2014). Recent progress in the use of hydrogen as a fuel for internal combustion engines. International Journal of Hydrogen Energy, 39(2), 1071-1085. doi:https://doi.org/10.1016/j.ijhydene.2013.10.102
Gao, J., Wang, X., Song, P., Tian, G., & Ma, C. (2022). Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines. Fuel, 307, 121553. doi:https://doi.org/10.1016/j.fuel.2021.121553
Babayev, R., Andersson, A., Dalmau, A. S., Im, H. G., & Johansson, B. (2021). Computational characterization of hydrogen direct injection and nonpremixed combustion in a compression-ignition engine. International Journal of Hydrogen Energy, 46(35), 18678-18696. doi:https://doi.org/10.1016/j.ijhydene.2021.02.223
Chen, B., Li, L., & Zhao, X. (2007, 26-31 July 2007). Fault Diagnosis Method to Internal-combustion Engine Based on Integration of Scale-wavelet Power Spectrum, Rough Set and Neural Network. Paper presented at the 2007 Chinese Control Conference. doi:https://doi.org/10.1109/CHICC.2006.4346846
Yip, H. L., Srna, A., Yuen, A. C. Y., Kook, S., Taylor, R. A., Yeoh, G. H., ... & Chan, Q. N. (2019). A review of hydrogen direct injection for internal combustion engines: towards carbon-free combustion. applied sciences, 9(22), 4842. https://doi.org/10.3390/app9224842
Wimmer, A., Wallner, T., Ringler, J., & Gerbig, F. (2005). H2-direct injection–a highly promising combustion concept (No. 2005-01-0108). SAE technical paper.
Yu, X., Li, Y., Liu, D., Guo, Z., Zhang, J., & Zhu, Q. (2022). Effects of second hydrogen direct injection proportion and injection timing on combustion and emission characteristics of hydrogen/n-butanol combined injection engine. International Journal of Hydrogen Energy, 47(75), 32330-32344. doi:https://doi.org/10.1016/j.ijhydene.2022.07.122
Dhyani, V., & Subramanian, K. A. (2018). Experimental investigation on effects of knocking on backfire and its control in a hydrogen fueled spark ignition engine. International Journal of Hydrogen Energy, 43(14), 7169-7178. doi:https://doi.org/10.1016/j.ijhydene.2018.02.125
Dhyani, V., & Subramanian, K. A. (2019). Control of backfire and NOx emission reduction in a hydrogen fueled multi-cylinder spark ignition engine using cooled EGR and water injection strategies. International Journal of Hydrogen Energy, 44(12), 6287-6298. doi:https://doi.org/10.1016/j.ijhydene.2019.01.129
Sekine, K., Oikawa, M., Takagi, Y., & Sato, Y. (2013). Effect of fuel jet location and ignition point in the combustion chamber on thermal efficiency and NOx formation in rich mixture plume ignition combustion of high pressure direct injection hydrogen engines. Transactions of the Japan Society of Mechanical Engineers, Series B, 79(808), 274-281.
Roy, M. K., Kawahara, N., Tomita, E., & Fujitani, T. (2012). High-pressure hydrogen jet and combustion characteristics in a direct-injection hydrogen engine. SAE International Journal of Fuels and Lubricants, 5(3), 1414-1425.
Wallner, T., Scarcelli, R., Nande, A. M., & Naber, J. D. (2009). Assessment of multiple injection strategies in a direct-injection hydrogen research engine. SAE International Journal of Engines, 2(1), 1701-1709.
Park, C., Kim, Y., Oh, S., Oh, J., Choi, Y., Baek, H., Lee, S. W., & Lee, K. (2022). Effect of fuel injection timing and injection pressure on performance in a hydrogen direct injection engine. International Journal of Hydrogen Energy, 47(50), 21552-21564. doi:https://doi.org/10.1016/j.ijhydene.2022.04.274
Yosri, M., Palulli, R., Talei, M., Mortimer, J., Poursadegh, F., Yang, Y., & Brear, M. (2023). Numerical investigation of a large bore, direct injection, spark ignition, hydrogen-fuelled engine. International Journal of Hydrogen Energy, 48(46), 17689-17702. doi:https://doi.org/10.1016/j.ijhydene.2023.01.228
Hamada, K. I., Rahman, M. M., Abdullah, M. A., Bakar, R. A., & A. Aziz, A. R. (2013). Effect of mixture strength and injection timing on combustion characteristics of a direct injection hydrogen-fueled engine. International Journal of Hydrogen Energy, 38(9), 3793-3801. doi:https://doi.org/10.1016/j.ijhydene.2013.01.092
Naganuma, K., Honda, T., Yamane, K., Takagi, Y., Kawamura, A., Yanai, T., & Sato, Y. (2010). Efficiency and emissions-optimized operating strategy of a high-pressure direct injection hydrogen engine for heavy-duty trucks. SAE International Journal of Engines, 2(2), 132-140.
Oikawa, M., Kojiya, Y., Sato, R., Goma, K., Takagi, Y., & Mihara, Y. (2022). Effect of supercharging on improving thermal efficiency and modifying combustion characteristics in lean-burn direct-injection near-zero-emission hydrogen engines. International Journal of Hydrogen Energy, 47(2), 1319-1327. doi:https://doi.org/10.1016/j.ijhydene.2021.10.061
Wei, H., Hu, Z., Ma, J., Ma, W., Yuan, S., Hu, Y., Hu, K., Zhou, L., & Wei, H. (2023). Experimental study of thermal efficiency and NOx emission of turbocharged direct injection hydrogen engine based on a high injection pressure. International Journal of Hydrogen Energy, 48(34), 12905-12916. doi:https://doi.org/10.1016/j.ijhydene.2022.12.031
Rottengruber, H., Berckmüller, M., Elsässer, G., Brehm, N., & Schwarz, C. (2004). Direct-injection hydrogen SI-engine-operation strategy and power density potentials. SAE transactions, 1749-1761.
DOI: http://dx.doi.org/10.17737/tre.2024.10.3.00177
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Honglin Ma
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)