Virtual Topologies for Populating Overhead Low-Voltage Broadband over Powerlines Topology Classes by Exploiting Neural Network Topology Generator Methodology (NNTGM) - Part 1: Theory

Athanasios G. Lazaropoulos

Abstract


Based on a set of indicative overhead low voltage broadband over power lines (OV LV BPL) topologies of respective OV LV BPL topology classes, Neural Network Topology Generator Methodology (NNTGM) is theoretically proposed in this paper, so that its generated OV LV BPL topologies (NNTGM OV LV BPL topologies) can populate the OV LV BPL topology classes. Given the indicative topology of the OV LV BPL topology class, the NNTGM OV LV BPL topologies can be statistically familiar with the corresponding indicative OV LV BPL topology in terms of the theoretical channel attenuation behavior. Actually, NNTGM is based on the reverse procedure of the Neural Network Identification Methodology for the distribution line and branch Line Length Approximation (NNIM-LLA); say, NNTGM generates theoretical channel attenuation behaviors given the number of branches, the distribution line lengths and the branch line lengths, when appropriate NNTGM default operation settings are assumed. The statistical familiarity between the examined indicative OV LV BPL topology and an NNTGM OV LV BPL topology is examined after the application of appropriate channel attenuation metrics. On the basis of the channel attenuation metrics, class maps are theoretically defined so that the relative positions of indicative OV LV BPL topologies and their respective NNTGM OV LV BPL topologies (NNTGM virtual topologies) can be further studied.

Citation: Lazaropoulos, A. (2024). Virtual Topologies for Populating Overhead Low-Voltage Broadband over Powerlines Topology Classes by Exploiting Neural Network Topology Generator Methodology (NNTGM) - Part 1: Theory. Trends in Renewable Energy, 10(3), 301-314. doi: http://dx.doi.org/10.17737/tre.2024.10.3.00181


Keywords


Smart Grid; Broadband over Power Lines (BPL) Networks; Power Line Communications (PLC); Distribution and Transmission Power Grids; Neural Networks; Simulation; Modeling

Full Text:

FULL TEXT (PDF)

References


Lazaropoulos, A. G., & Leligou, H. C. (2022). Fiber optics and broadband over power lines in smart grid: a communications system architecture for overhead high-voltage, medium-voltage and low-voltage power grids. Progress in Electromagnetics Research B, 95, 185-205. doi: http://dx.doi.org/10.2528/PIERB22062502

Lazaropoulos, A. G., & Leligou, H. C. (2023). Artificial Intelligence, Machine Learning and Neural Networks for Tomography in Smart Grid – Performance Comparison between Topology Identification Methodology and Neural Network Identification Methodology for the Distribution Line and Branch Line Length Approximation of Overhead Low-Voltage Broadband over Power Lines Network Topologies. Trends in Renewable Energy, 9(1), 34-77. doi: http://dx.doi.org/10.17737/tre.2023.9.1.00149

Amirshahi, P., & Kavehrad, M. (2006). High-frequency characteristics of overhead multiconductor power lines for broadband communications. IEEE Journal on Selected Areas in Communications, 24(7), 1292-1303. doi: https://doi.org/10.1109/JSAC.2006.874399

Sartenaer, T., & Delogne, P. (2006). Deterministic modeling of the (shielded) outdoor power line channel based on the multiconductor transmission line equations. IEEE Journal on Selected areas in Communications, 24(7), 1277-1291. doi: https://doi.org/10.1109/JSAC.2006.874423

Marcuzzi, F., & Tonello, A. M. (2023). Topology-based machine learning: Predicting power line communication quality in smart grids. IEEE Access, 11, 24851-24862. doi: https://doi.org/10.1109/ACCESS.2023.3245361

Lazaropoulos, A. G., & Leligou, H. C. (2024). Big Data and Neural Networks in Smart Grid - Part 1: The Impact of Piecewise Monotonic Data Approximation Methods on the Performance of Neural Network Identification Methodology for the Distribution Line and Branch Line Length Approximation of Overhead Low-Voltage Broadband over Powerlines Networks. Trends in Renewable Energy, 10, 30-66. doi: https://doi.org/10.17737/tre.2024.10.1.00164

Lazaropoulos, A. G., & Leligou, H. C. (2024). Big Data and Neural Networks in Smart Grid - Part 2: The Impact of Piecewise Monotonic Data Approximation Methods on the Performance of Neural Network Identification Methodology for the Distribution Line and Branch Line Length Approximation of Overhead Low-Voltage Broadband over Powerlines Networks. Trends in Renewable Energy, 10, 67-97. doi: https://doi.org/10.17737/tre.2024.10.1.00165

Lazaropoulos, A. G., & Cottis, P. G. (2009). Transmission characteristics of overhead medium voltage power line communication channels. IEEE Transactions on Power Delivery, 24(3), 1164-1173. doi: https://doi.org/10.1109/TPWRD.2008.2008467

Lazaropoulos, A. G., & Cottis, P. G. (2010). Capacity of overhead medium voltage power line communication channels. IEEE Transactions on Power Delivery, 25(2), 723-733. doi: https://doi.org/10.1109/TPWRD.2009.2034907

Lazaropoulos, A. G. (2012). Towards Modal Integration of Overhead and Underground Low-Voltage and Medium-Voltage Power Line Communication Channels in the Smart Grid Landscape: Model Expansion, Broadband Signal Transmission Characteristics, and Statistical Performance Metrics (Invited Paper). International Scholarly Research Notices, 2012(1), 121628. doi: https://doi.org/10.5402/2012/121628

Lazaropoulos, A. G. (2016). New coupling schemes for distribution broadband over power lines (BPL) networks. Progress in Electromagnetics Research B, 71, 39-54. doi: http://dx.doi.org/10.2528/PIERB16081503

Amirshahi-Shirazi, P. (2006). Broadband access and home networking through powerline networks. The Pennsylvania State University. Ph.D. dissertation.

Sartenaer, T. (2004). Multiuser communications over frequency selective wired channels and applications to the powerline access network (Doctoral dissertation, Catholic University of Louvain, Louvain-la-Neuve, Belgium).

Sartenaer, T., & Delogne, P. (2001). Powerline cables modelling for broadband communications. In Proceedings of the IEEE International Conference on Power Line Communications and Its Applications, Malmö, Sweden, pp. 331-337.

Lazaropoulos, A. G. (2017). Improvement of Power Systems Stability by Applying Topology Identification Methodology (TIM) and Fault and Instability Identification Methodology (FIIM) Study of the Overhead Medium-Voltage Broadband over Power Lines (OV MV BPL) Networks Case. Trends in Renewable Energy, 3(2), 102-128. doi: http://dx.doi.org/10.17737/tre.2017.3.2.0034

Lazaropoulos, A. G. (2016). Measurement Differences, Faults and Instabilities in Intelligent Energy Systems - Part 1: Identification of Overhead High-Voltage Broadband over Power Lines Network Topologies by Applying Topology Identification Methodology (TIM). Trends in Renewable Energy, 2, 85-112. doi: http://dx.doi.org/10.17737/tre.2016.2.3.0026

Lazaropoulos, A. G. (2021). Information Technology, Artificial Intelligence and Machine Learning in Smart Grid – Performance Comparison between Topology Identification Methodology and Neural Network Identification Methodology for the Branch Number Approximation of Overhead Low-Voltage Broadband over Power Lines Network Topologies. Trends in Renewable Energy, 7, 87-113. doi: http://dx.doi.org/10.17737/tre.2021.7.1.00133

Lazaropoulos, A. G. (2020). Business Analytics and IT in Smart Grid - Part 1: The Impact of Measurement Differences on the iSHM Class Map Footprints of Overhead Low-Voltage Broadband over Power Lines Topologies. Trends in Renewable Energy, 6(2), 156-186. doi: http://dx.doi.org/10.17737/tre.2020.6.2.00117

Lazaropoulos, A. G. (2020). Statistical Channel Modeling of Overhead Low Voltage Broadband over Power Lines (OV LV BPL) Networks - Part 1: The Theory of Class Map Footprints of Real OV LV BPL Topologies, Branch Line Faults and Hook-Style Energy Thefts. Trends in Renewable Energy, 6(1), 61-87. doi: http://dx.doi.org/10.17737/tre.2020.6.1.00112

Lazaropoulos, A. G. (2020). Business Analytics and IT in Smart Grid - Part 2: The Qualitative Mitigation Impact of Piecewise Monotonic Data Approximations on the iSHM Class Map Footprints of Overhead Low-Voltage Broadband over Power Lines Topologies Contaminated by Measurement Differences. Trends in Renewable Energy, 6(2), 187-213. doi: http://dx.doi.org/10.17737/tre.2020.6.2.00118

Lazaropoulos, A. G. (2020). Business Analytics and IT in Smart Grid - Part 3: New Application Aspect and the Quantitative Mitigation Analysis of Piecewise Monotonic Data Approximations on the iSHM Class Map Footprints of Overhead Low-Voltage Broadband over Power Lines Topologies Contaminated by Measurement Differences. Trends in Renewable Energy, 6(2), 214-233. doi: http://dx.doi.org/10.17737/tre.2020.6.2.00119

Lazaropoulos, A. G. (2012). Broadband Transmission and Statistical Performance Properties of Overhead High-Voltage Transmission Networks. Journal of Computer Networks and Communications, 2012(1), 875632. doi: https://doi.org/10.1155/2012/875632

Lazaropoulos, A.G. (2024). Virtual Topologies for Populating Overhead Low-Voltage Broadband over Powerlines Topology Classes by Exploiting Neural Network Topology Generator Methodology (NNTGM) - Part 2: Numerical Results. Trends in Renewable Energy. (under production)

Lazaropoulos, A. (2020). Statistical Channel Modeling of Overhead Low Voltage Broadband over Power Lines (OV LV BPL) Networks - Part 2: The Numerical Results of Class Map Footprints of Real OV LV BPL Topologies, Branch Line Faults and Hook Style Energy Thefts. Trends in Renewable Energy, 6(1), 88-109. doi: http://dx.doi.org/10.17737/tre.2020.6.1.00113

Lazaropoulos, A. G. (2013). Review and Progress towards the Capacity Boost of Overhead and Underground Medium-Voltage and Low-Voltage Broadband over Power Lines Networks: Cooperative Communications through Two- and Three-Hop Repeater Systems. International Scholarly Research Notices, 2013(1), 472190. doi: https://doi.org/10.1155/2013/472190

Meng, H., Chen, S., Guan, Y. L., Law, C. L., So, P. L., Gunawan, E., & Lie, T. T. (2004). Modeling of transfer characteristics for the broadband power line communication channel. IEEE Transactions on Power delivery, 19(3), 1057-1064. doi: https://doi.org/10.1109/TPWRD.2004.824430

Lazaropoulos, A. G. (2019). Statistical broadband over power lines channel modeling-Part 1: The theory of the statistical hybrid model. Progress in Electromagnetics Research C, 92, 1-16. doi: http://dx.doi.org/10.2528/PIERC19012902

Qu, B., Wang, H., Chen, Z., Zheng, Z., Han, Z., & Zhang, L. (2021). A Channel Selection Algorithm of Power Line Communication Network Base on Double-layer Cascade Artificial Neural Network. Journal of Physics: Conference Series, 2031(1), 012041. doi: http://dx.doi.org/10.1088/1742-6596/2031/1/012041

Lazaropoulos, A. G., & Cottis, P. G. (2010). Broadband transmission via underground medium-voltage power lines-Part I: transmission characteristics. IEEE Transactions on Power Delivery, 25(4), 2414-2424. doi: https://doi.org/10.1109/TPWRD.2010.2048929

Lazaropoulos, A. G., & Cottis, P. G. (2010). Broadband transmission via underground medium-voltage power lines-Part II: capacity. IEEE Transactions on Power Delivery, 25(4), 2425-2434. doi: https://doi.org/10.1109/TPWRD.2010.2052113

Okoh, D. (2016). Computer neural networks on MATLAB. CreateSpace Independent Publishing Platform.

Okoh, D. (2020). Neural Network Training Code. Available at: https://www.mathworks.com/matlabcentral/fileexchange/59362-neural-network-training-code (Accessed: 22 April 2020).

Lazaropoulos, A. G. (2018). Broadband Performance Metrics and Regression Approximations of the New Coupling Schemes for Distribution Broadband over Power Lines (BPL) Networks. Trends in Renewable Energy, 4(1), 43-73. doi: http://dx.doi.org/10.17737/tre.2018.4.1.0059

Lazaropoulos, A. G. (2019). Virtual Indicative Broadband over Power Lines Topologies for Respective Subclasses by Adjusting Channel Attenuation Statistical Distribution Parameters of Statistical Hybrid Models (Class Maps) – Part 1: Theory. Trends in Renewable Energy, 5(3), 237-257. doi: http://dx.doi.org/10.17737/tre.2019.5.3.0099

Lazaropoulos, A. G. (2019). Virtual Indicative Broadband over Power Lines Topologies for Respective Subclasses by Adjusting Channel Attenuation Statistical Distribution Parameters of Statistical Hybrid Models (Class Maps) – Part 2: Numerical Results for the Overhead and Underground Medium-Voltage Power Grids. Trends in Renewable Energy, 5(3), 258-281. doi: http://dx.doi.org/10.17737/tre.2019.5.3.00100

Lazaropoulos, A. G. (2019). Virtual Indicative Broadband over Power Lines Topologies for Respective Subclasses by Adjusting Channel Attenuation Statistical Distribution Parameters of Statistical Hybrid Models (Class Maps) – Part 3: The Case of Overhead Transmission Power Grids. Trends in Renewable Energy, 5(3), 282-306. doi: http://dx.doi.org/10.17737/tre.2019.5.3.00101




DOI: http://dx.doi.org/10.17737/tre.2024.10.3.00181

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Athanasios G. Lazaropoulos

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)