Multi-Parameter Based Models for Estimating Global Solar Radiation in Selected Locations in Ebonyi State, Southeastern Nigeria
Abstract
This study aims to develop hybrid empirical models for estimating global solar radiation in selected locations across Ebonyi State, Nigeria, to enhance photovoltaic energy generation and support climate change mitigation and adaptation. The research is designed to create empirical models for calibrating and modeling global solar radiation using meteorological parameters at Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State University Abakaliki and Akanu Ibiam Federal Polytechnic Unwana, all in Ebonyi State, Southeastern Nigeria. The long term monthly mean daily global solar radiation on the horizontal surface, sunshine hours, relative humidity, minimum and maximum temperature at 2 m height for the period of 1984-2019 for the selected stations were obtained from the National Aeronautics and Space Administration (NASA) atmospheric science data centre. A multi-parameter based model was used to estimate the global solar radiation in each of these locations using Angstrom-Prescott-Page Model. Model performance was evaluated using statistical metrics, including Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Mean Percentage Error (MPE). Additionally, the correlation coefficient (r) and coefficient of determination (r2) were calculated. Results indicate that the developed empirical models demonstrate a high level of accuracy in estimating daily global solar radiation. Comparisons with existing models in the literature show that the locally calibrated models perform better on monthly and yearly timescales. Therefore, these models can be applied for solar radiation forecasting across Ebonyi State. However, routine recalibration is recommended, as climate variability over time may affect model stability and performance.
Citation: Amadi, S. O., Eze, I. A., Enyi, V. S., Nwokolo, S. C., & Kalu, P. N. (2025). Multi-Parameter Based Models for Estimating Global Solar Radiation in Selected Locations in Ebonyi State, Southeastern Nigeria. Trends in Renewable Energy, 11(1), 213-236. doi:http://dx.doi.org/10.17737/tre.2025.11.2.00191
Keywords
Full Text:
FULL TEXT (PDF)References
Burari, F.W., & Sambo, A.S. (2001). Model for the prediction of global solar for Bauchi using meteorological Data. Nigerian Journal of Renewable Energy, 91, 30-33.
Aklague, A. M., Firoz, A., & Wasim, M. A. (2009). Estimation of global and diffuse solar radiation for Hyderabad, Sindh, Pakistan. Journal of Basic Applied Sciences, 5(2), 73-77.
Augustine, C., & Nnabuchi, M.N. (2010). Analysis of some meteorological data for some selected Cities in the Eastern and Southern zone of Nigeria, African Journal of Environmental Science and Technology, 4(2): 092-099.
Augustine, C., & Nnabuchi, M.N. (2009). Solar Radiation in Port Harcourt: Correlation with Sunshine Duration, Pacific Journal of Science and Technology, 10(1), 681-684.
Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. Journal of Irrigation and Drainage Engineering, 108(3), 225-230. doi:https://doi.org/10.1016/taceat.0008673
Ohunakin, O. S., Adaramola, M. S., Oyewola, O. M., & Fagbenle, R. O. (2013). Correlations for estimating solar radiation using sunshine hours and temperature measurement in Oshogbo, Nigeria. Frontiers in Energy, 7(2), 214-222. doi:https://doi.org/10.1007/s11708-013-0241-2
Adaramola, M. S. (2012). Estimating global solar radiation using common meteorological data in Akure, Nigeria. Renewable Energy, 47, 38-44. doi:https://doi.org/10.1016/j.renene.2012.04.005
Yaniktepe, B., & Genc, Y. A. (2015). Estimating new model for predicting the global solar radiation on horizontal surface. International Journal of Hydrogen, 40, 15278-15283.
Nwokolo, S. C., & Ogbulezie, J. C. (2018). A qualitative review of empirical models for estimating diffuse solar radiation from experimental data in Africa. Renewable and Sustainable Energy Review, 92, 353-393. doi:https:/doi.org/10.1016/j.rser.2018.04.118
Nwokolo, S. C. , & Ogbulezie, J. C. (2018). A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef Univ. J. Basic Appl. Sci., 7, 367-396. doi:https://doi.org/10.1016/j.bjbas.2017.05.001
Nwokolo, S. C, & Amadi, S. O. (2018). A Global Review of Empirical Models for Estimating Photosynthetically Active Radiation. Trends in Renewable Energy, 4(2), 236-327. doi:http://dx.doi.org/10.17737/tre.2018.4.2.0079
Agbor, M. E, Udo, S. O, Ewona, I. O, Nwokolo, S. C, Ogbulezie, J. C., Amadi, S. O., & Utibe, B. A. (2023). Effects of Angstrom-Prescott and Hargreaves-Samani Coefficients on Climate Forcing and Solar PV Technology Selection in West Africa. Trends in Renewable Energy, 9(1), 78-106. doi:http://dx.doi.org/10.17737/tre.2023.9.1.00150
Amadi, S. O., Dike, T., & Nwokolo, S. C. (2020). Global Solar Radiation Characteristics at Calabar and Port Harcourt Cities in Nigeria. Trends in Renewable Energy, 6(2), 111-130. doi:http://dx.doi.org/10.17737/tre.2020.6.2.00114
Proutsos, N., Liakatas, A., Alexandris, S., Nwokolo, S. C., Solomou, A. D., & Amadi, S. O. (2024). Assessing the impact of atmospheric attributes on the effectiveness of solar irradiance for photosynthesis of urban vegetation in Attica, Greece. Theoretical and Applied Climatology, 155(2), 1415-1427. doi:http://dx.doi.org/10.1007/s00704-023-04700-0
Besharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews, 21, 798-821. doi:https://doi.org/10.1016/j.rser.2012.12.043
Nwokolo, S. C., Amadi, S. O., Obiwulu, A. U., Ogbulezie, J. C., & Eyibio, E. E. (2022). Prediction of global solar radiation potential for sustainable and cleaner energy generation using improved Angstrom-Prescott and Gumbel probabilistic models. Cleaner Engineering and Technology, 6, 100416. doi:https://doi.org/10.1016/j.clet.2022.100416
Nwokolo, S. C., Obiwulu, A. U., Ogbulezie, J. C., & Amadi, S. O. (2022). Hybridization of statistical machine learning and numerical models for improving beam, diffuse and global solar radiation prediction. Cleaner Engineering and Technology, 9, 100529. doi:https://doi.org/10.1016/j.clet.2022.100529
Akpabio, L. E., & Etuk, S. E. (2003). Relationship between global solar radiation and sunshine duration for Onne, Nigeria. Turkish Journal of Physics, 27(2), 161-167.
Awachie, I. R. N., & Okeke, C. E. (1990). New Empirical Solar Model and its use in predicting Solar irradiation, Nigerian journal of Solar Energy, 9, 142-155.
Nwokolo, S. C., & Ogbulezie, J. C. (2017). A critical review of theoretical models for estimating global solar radiation between 2012-2016 in Nigeria. Int. J. Phys. Res., 5, 60. doi:https://doi.org/10.14419/ijpr.vi2.8160
Maduekwe, A. A. L., & Chendo, M. A. C. (1995). Predicting the components of the total hemispherical solar radiation from sunshine duration measurements in Lagos, Nigeria. Renewable Energy, 6(7), 807-812. doi:https://doi.org/10.1016/0960-1481(95)91008-2
Fagbenle, R. O. (1990). Estimation of total solar radiation in Nigeria using meteorological data. Nigerian Journal of Renewable Energy, 1, 1-10.
Okundamiya, M. S., Emagbetere, J. O., & Ogujor, E. A. (2016). Evaluation of various global solar radiation models for Nigeria. International Journal of Green Energy, 13(5), 505-512. doi:https://doi.org/10.1080/15435075.2014.968921
Ituen, E. E., Esen, N. U., Nwokolo, S. C., & Udo, E. G. (2012). Prediction of global solar radiation using relative humidity, maximum temperature and sunshine hours in Uyo, in the Niger Delta Region, Nigeria. Advances in Applied Science Research, 3(4), 1923-1937.
Iqbal, M. (1980). Prediction of hourly diffuse solar radiation from measured hourly global radiation on a horizontal surface. Solar Energy, 24(5), 491-503. doi:https://doi.org/10.1016/0038-092X(80)90317-5
Kimball, H. H. (1919). Variations in the total and luminous solar radiation with geographical position in the United States. Monthly Weather Review, 47(11), 769-793.
Makade, R. G., Chakrabarti, S., & Jamil, B. (2021). Development of global solar radiation models: A comprehensive review and statistical analysis for Indian regions. Journal of Cleaner Production, 293, 126208. doi:https://doi.org/10.1016/j.jclepro.2021.126208
Feng, Y., Hao, W., Li, H., Cui, N., Gong, D., & Gao, L. (2020). Machine learning models to quantify and map daily global solar radiation and photovoltaic power. Renewable and Sustainable Energy Reviews, 118, 109393. doi:https://doi.org/10.1016/j.rser.2019.109393
DOI: http://dx.doi.org/10.17737/tre.2025.11.2.00191
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Solomon O. Amadi, Ifeanyi A. Eze, Valentine S. Enyi, Samuel C. Nwokolo, Precious N. Kalu

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)