Capacity Performance of Overhead Transmission Multiple-Input Multiple-Output Broadband over Power Lines Networks: The Insidious Effect of Noise and the Role of Noise Models

Athanasios G. Lazaropoulos

Abstract


Extending the analysis already presented in [1], this paper considers broadband potential of overhead (OV) transmission multiple-input multiple-output (MIMO) broadband over power lines (BPL) networks when different noise conditions occur and different well-proven noise models are adopted.

The contribution of this paper is two-fold. First, the broadband potential of a great number of indicative OV high-voltage (HV) BPL topologies and of MIMO transmission schemes is studied in terms of appropriate capacity metrics. The relevant numerical results reveal the significant dependence of ΜΙΜΟ capacity metrics on noise conditions. Second, various well-known BPL noise models from the literature are compared on the basis of their achieved OV HV MIMO BPL capacity. Through the careful study of the capacity results of noise models, it is demonstrated that spectrally flat additive white Gaussian noise (AWGN) may be comfortably assumed as an efficient noise model in transmission MIMO BPL networks. Also in MIMO BPL networks, the comparative capacity analysis of noise models shows small differences among them in the 3-88MHz frequency range.

Citation:Lazaropoulos, A. G. (2016). Capacity Performance of Overhead Transmission Multiple-Input Multiple-Output Broadband over Power Lines Networks: The Insidious Effect of Noise and the Role of Noise Models. Trends in Renewable Energy, 2(2), 61-82. DOI: 10.17737/tre.2016.2.2.0023


Keywords


Smart Grid; Broadband over Power Lines (BPL) networks; Power Line Communications (PLC); Noise Models, Transmission Power Grids; Capacity; Multiple-Input Multiple-Output (MIMO) Systems.

Full Text:

FULL TEXT (PDF)

References


A. G. Lazaropoulos, “The Impact of Noise Models on Capacity Performance of Distribution Broadband over Power Lines (BPL) Networks,” Hindawi Computer Networks and Communications, vol. 2016, Article ID 5680850, 14 pages, 2016. DOI: 10.1155/2016/5680850. [Online]. Available: http://www.hindawi.com/journals/jcnc/2016/5680850/

A. G. Lazaropoulos, “Factors Influencing Broadband Transmission Characteristics of Underground Low-Voltage Distribution Networks,” IET Commun., vol. 6, no. 17, pp. 2886-2893, Nov. 2012. DOI: 10.1049/iet-com.2011.0661

A. G. Lazaropoulos and P. G. Cottis, “Transmission characteristics of overhead medium voltage power line communication channels,” IEEE Trans. Power Del., vol. 24, no. 3, pp. 1164-1173, Jul. 2009. DOI: 10.1109/TPWRD.2008.2008467

A. G. Lazaropoulos and P. G. Cottis, “Capacity of overhead medium voltage power line communication channels,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 723-733, Apr. 2010. DOI: 10.1109/TPWRD.2009.2034907

A. G. Lazaropoulos and P. G. Cottis, “Broadband transmission via underground medium-voltage power lines-Part I: transmission characteristics,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2414-2424, Oct. 2010. DOI: 10.1109/TPWRD.2010.2048929

A. G. Lazaropoulos and P. G. Cottis, “Broadband transmission via underground medium-voltage power lines-Part II: capacity,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2425-2434, Oct. 2010. DOI: 10.1109/TPWRD.2010.2052113

A. G. Lazaropoulos, “Broadband transmission characteristics of overhead high-voltage power line communication channels,” Progress in Electromagnetics Research B, vol. 36, pp. 373-398, 2012. DOI: 10.2528/PIERB11091408 [Online]. Available: http://www.jpier.org/PIERB/pierb36/19.11091408.pdf

A. G. Lazaropoulos, “Towards broadband over power lines systems integration: Transmission characteristics of underground low-voltage distribution power lines,” Progress in Electromagnetics Research B, 39, pp. 89-114, 2012. DOI: 10.2528/PIERB12012409 [Online]. Available: http://www.jpier.org/PIERB/pierb39/05.12012409.pdf

A. G. Lazaropoulos, “Broadband transmission and statistical performance properties of overhead high-voltage transmission networks,” Hindawi Journal of Computer Networks and Commun., 2012, article ID 875632, 2012. DOI: 10.1155/2012/875632 [Online]. Available: http://www.hindawi.com/journals/jcnc/aip/875632/

A. G. Lazaropoulos, “Towards modal integration of overhead and underground low-voltage and medium-voltage power line communication channels in the smart grid landscape: model expansion, broadband signal transmission characteristics, and statistical performance metrics (Invited Paper),” ISRN Signal Processing, vol. 2012, Article ID 121628, pp. 1-17, 2012. DOI: 10.5402/2012/121628 [Online]. Available: http://www.hindawi.com/journals/isrn/2012/121628/

A. G. Lazaropoulos, “Review and Progress towards the Common Broadband Management of High-Voltage Transmission Grids: Model Expansion and Comparative Modal Analysis,” ISRN Electronics, vol. 2012, Article ID 935286, pp. 1-18, 2012. DOI: 10.5402/2012/935286 [Online]. Available: http://www.hindawi.com/isrn/electronics/2012/935286/

A. G. Lazaropoulos, “Review and Progress towards the Capacity Boost of Overhead and Underground Medium-Voltage and Low-Voltage Broadband over Power Lines Networks: Cooperative Communications through Two- and Three-Hop Repeater Systems,” ISRN Electronics, vol. 2013, Article ID 472190, pp. 1-19, 2013. DOI: 10.1155/2013/472190 [Online]. Available: http://www.hindawi.com/journals/isrn/2013/472190/

A. G. Lazaropoulos, “Green Overhead and Underground Multiple-Input Multiple-Output Medium Voltage Broadband over Power Lines Networks: Energy-Efficient Power Control,” Springer Journal of Global Optimization, vol. 2012 / Print ISSN 0925-5001, pp. 1-28, Oct. 2012. DOI: 10.1007/s10898-012-9988-y

A. Milioudis, G. T. Andreou, and D. P. Labridis, “Detection and location of high impedance faults in multiconductor overhead distribution lines using power line communication devices,” IEEE Trans. on Smart Grid, vol. 6, no. 2, pp. 894-902, 2015. DOI: 10.1109/TSG.2014.2365855

G. C. Christoforidis, I. P. Panapakidis, T. A. Papadopoulos, G. K. Papagiannis, I. Koumparou, M. Hadjipanayi, and G. E. Georghiou, “A Model for the Assessment of Different Net-Metering Policies,” Energies, vol. 9, no. 4, pp. 1-24, 2016. DOI: 10.3390/en9040262

M. Biagi, “MIMO self-interference mitigation effects on power line relay networks,” IEEE Commun. Lett., vol. 15, no. 8, pp. 866–868, Aug. 2011. DOI: 10.1109/LCOMM.2011.062911.110230

D. Schneider, A. Schwager, J. Speidel and A. Dilly, “Implementation and results of a MIMO PLC feasibility study,” in Proc. IEEE Int. Symp. Power Line Communications and Its Applications, Udine, Italy, Apr. 2011, pp. 54–59. DOI: 10.1109/ISPLC.2011.5764450

A. Schwager, D. Schneider, W. Bäschlin, A. Dilly, and J. Speidel, “MIMO PLC: Theory, Measurements and System Setup,” in Proc. IEEE Int. Symp. Power Line Communications and Its Applications, Udine, Italy, Apr. 2011, pp. 48–53. DOI: 10.1109/ISPLC.2011.5764447

F. Versolatto and A. M. Tonello, “An MTL theory approach for the simulation of MIMO power-line communication channels,” IEEE Trans. Power Del., vol. 26, no. 3, pp. 1710-1717, Jul. 2011. DOI: 10.1109/TPWRD.2011.2126608

A. Canova, N. Benvenuto, and P. Bisaglia, “Receivers for MIMO-PLC channels: Throughput comparison,” in Proc. IEEE Int. Symp. Power Line Communications and Its Applications, Rio de Janeiro, Brazil, Mar. 2010, pp. 114–119. DOI: 10.1109/ISPLC.2010.5479904

D. Schneider, J. Speidel, L. Stadelmeier, and D. Schill, “Precoded spatial multiplexing MIMO for inhome power line communications,” in Proc. IEEE Global Telecommunications Conference, New Orleans, LA, USA, Nov./Dec. 2008, pp. 1–5. DOI: 10.1109/GLOCOM.2008.ECP.556

M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in

broad-band powerline communications,” IEEE Trans. Electromagn. Compat., vol. 44, no. 1, pp. 249-258, Feb. 2002. DOI: 10.1109/15.990732

P. Amirshahi and M. Kavehrad, “High-frequency characteristics of overhead multiconductor power lines for broadband communications,” IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1292-1303, Jul. 2006. DOI: 10.1109/JSAC.2006.874399

T. Sartenaer, “Multiuser communications over frequency selective wired channels and applications to the powerline access network” Ph.D. dissertation, Univ. Catholique Louvain, Louvain-la-Neuve, Belgium, Sep. 2004.

T. Calliacoudas and F. Issa, ““Multiconductor transmission lines and cables solver,” An efficient simulation tool for plc channel networks development,” presented at the IEEE Int. Conf. Power Line Communications and Its Applications, Athens, Greece, Mar. 2002.

A. G. Lazaropoulos, “Policies for Carbon Energy Footprint Reduction of Overhead Multiple-Input Multiple-Output High Voltage Broadband over Power Lines Networks,” Trends in Renewable Energy, vol. 1, no. 2, pp. 87-118, Jun. 2015. DOI: 10.17737/tre.2015.1.2.0011 [Online]. Available: http://futureenergysp.com/index.php/tre/article/view/11/17

T. Sartenaer and P. Delogne, “Deterministic modelling of the (Shielded) outdoor powerline channel based on the multiconductor transmission line equations,” IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1277-1291, Jul. 2006. DOI: 10.1109/JSAC.2006.874423

C. R. Paul, Analysis of Multiconductor Transmission Lines. New York: Wiley, 1994.

Y. H. Kim, S. Choi, S. C. Kim, and J. H. Lee, “Capacity of OFDM two-hop relaying systems for medium-voltage power-line access networks,” IEEE Trans. Power Del., vol. 27, no. 2, pp. 886-894, Apr. 2012. DOI: 10.1109/TPWRD.2011.2182063

OPERA1, D5: Pathloss as a function of frequency, distance and network topology for various LV and MV European powerline networks. IST Integrated Project No 507667, Apr. 2005.

K. Dostert, Powerline Communications. Upper Saddle River, NJ: Prentice-Hall, 2001.

Ofcom, “DS2 PLT Measurements in Crieff,” Ofcom, Tech. Rep. 793 (Part 2), May 2005, [Online]. Available: http://www.ofcom.org.uk/research/technology/research/archive/cet/powerline/ds2.pdf

Ofcom, “Ascom PLT Measurements in Winchester,” Ofcom, Tech. Rep. 793 (Part 1), May 2005, [Online]. Available: http://www.ofcom.org.uk/research/technology/research/archive/cet/powerline/ascom.pdf

M. Katayama, T. Yamazato, and H. Okada, “A mathematical model of noise in narrowband power line communication systems,” IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1267-1276, Jul. 2006. DOI: 10.1109/JSAC.2006.874408

J. Song, C. Pan, Q. Wu, Z. Yang, H. Liu, B. Zhao, and X. Li, “Field Trial of Digital Video Transmission over Medium-Voltage Powerline with Time-Domain Synchronous Orthogonal Frequency Division Multiplexing Technology,” in Proc. 2007 IEEE Int. Symp. on Power Line Communications and its Applications, Pisa, Italy, Mar. 2007, pp. 559-564.

H. Liu, J. Song, B. Zhao, and X. Li, “Channel study for medium-voltage power network,” in Proc. 2006 IEEE International Symposium on Power Line Communications and its Applications, Orlando, FL, USA, Mar. 2006, pp. 245-250. DOI: 10.1109/ISPLC.2006.247469

V. Degardin, M. Lienard, A. Zeddam, F. Gauthier, and P. Degauque, “Classification and characterization of impulsive noise on indoor power line used for data communications,” IEEE Trans. on Consumer Electronics, vol. 48, no. 4, pp. 913–918, 2002. DOI: 10.1109/TCE.2003.1196420

F. Cañete, J. Cortés, L. Díez, and J. Entrambasaguas, “Analysis of the cyclic short-term variation of indoor power line channels,” IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1327–1338, Jul. 2006. DOI: 10.1109/JSAC.2006.874402

H. Meng, Y. L. Guan, and S. Chen, “Modeling and analysis of noise effects on broadband power line communications,” IEEE Trans. Power Del., vol. 20, no. 2, pp. 630–637, Apr. 2005. DOI: 10.1109/TPWRD.2005.844349

M. V. Ribeiro, C. A. Duque, and J. M. T. Romano, “An interconnected type-1 fuzzy algorithm for impulsive noise cancellation in multicarrier-based power line communication systems,” IEEE Journal on Sel. Areas in Comm., vol. 24, no. 7, pp. 1364-1376, July 2006. DOI: 10.1109/JSAC.2006.874417

H. Hrasnica, A. Haidine, and R. Lehnert, Broadband Powerline Communications: Network Design. Wiley, 2004.

J. Meng and A. E. Marble, “Effective communication strategies for noise-limited power-line channels,” IEEE Trans. on Power Del., vol. 22, no. 2, pp. 887-892, April 2007. DOI: 10.1109/TPWRD.2006.883018

J. Zhang and J. Meng, “Noise Resistant OFDM for Power-Line Communication Systems,” IEEE Trans. on Power Del., vol. 25, no. 2, pp. 693-710, Apr. 2010. DOI: 10.1109/TPWRD.2009.2036626

P. Amirshahi, “Broadband access and home networking through powerline networks” Ph.D. dissertation, Pennsylvania State Univ., University Park, PA, May 2006. [Online]. Available: http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-1205/index.html

N. Suljanović, A. Mujčić, M. Zajc, and J. F. Tasič, “Approximate computation of high-frequency characteristics for power line with horizontal disposition and middle-phase to ground coupling,” Elsevier Electr. Power Syst. Res., vol. 69, pp. 17-24, Jan. 2004. DOI: 10.1016/j.epsr.2003.07.005

M. D’Amore and M. S. Sarto, “Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range-Part I: Single conductor configuration,” IEEE Trans. Electromagn. Compat., vol. 38, no. 2, pp. 127-138, May 1996. DOI: 10.1109/15.494615

M. D’Amore and M. S. Sarto, “Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range-Part II: Multi-conductor configuration,” IEEE Trans. Electromagn. Compat., vol. 38, no. 2, pp. 139-149, May 1996. DOI: 10.1109/15.494616

OPERA1, D44: Report presenting the architecture of plc system, the electricity network topologies, the operating modes and the equipment over which PLC access system will be installed, IST Integr. Project No 507667, Dec. 2005.

R. Pighi and R. Raheli, “On Multicarrier Signal Transmission for High-Voltage Power Lines," in Proc. IEEE Int. Symp. Power Line Commun. Appl., Vancouver, BC, Canada, Apr. 2005, pp. 32-36.

N. Theethayi, “Electromagnetic interference in distributed outdoor electrical systems, with an emphasis on lightning interaction with electrified railway network,” Ph.D. dissertation, Uppsala Univ., Uppsala, Sweden, Sep. 2005, [Online]. Available: http://uu.diva-portal.org/smash/get/diva2:166746/FULLTEXT01

D. Schneider, A. Schwager, W. Baschlin, and P. Pagani, “European MIMO PLC field measurements: Channel analysis,” in Proc. IEEE Int. Symp. Power Line Commun. Appl., Beijing, China, Mar. 2012, pp. 304-309. DOI: 10.1109/ISPLC.2012.6201316

NATO, “HF Interference, Procedures and Tools (Interférences HF, procédures et outils) Final Report of NATO RTO Information Systems Technology,” RTO-TR-ISTR-050, Jun. 2007, [Online]. Available: http://ftp.rta.nato.int/public/PubFullText/RTO/TR/RTO-TR-IST-050/$$TR-IST-050-ALL.pdf

FCC, “In the Matter of Amendment of Part 15 regarding new requirements and measurement guidelines for Access Broadband over Power Line Systems,” FCC 04-245 Report and Order, Jul. 2008.

A. Milioudis, G. Andreou, and D. Labridis, “Optimum transmitted power spectral distribution for broadband power line communication systems considering electromagnetic emissions,” Elsevier Electric Power Systems Research, 2016. DOI: 10.1016/j.epsr.2016.03.047

O. G. Hooijen, “On the channel capacity of the residential power circuit used as a digital communications medium,” IEEE Commun. Lett., vol. 2, no. 10, pp. 267–268, Oct. 1998. DOI: 10.1109/4234.725218

D. Benyoucef, “A new statistical model of the noise power density spectrum for powerline communications,” in IEEE Proceedings of the International Symposium on Power-Line Communications and its Applications, Kyoto, Japan, Mar. 2003, pp. 136–141.

H. Philipps, “Development of a statistical model for powerline communications channels,” presented in IEEE Proceedings of the International Symposium on Power-Line Communications and its Applications, Limerick, Ireland, Apr. 2000.

T. Esmailian, F. R. Kschischang, and P. G. Gulak, “In-building power lines as high-speed communication channels: Channel characterization and a test channel ensemble,” Int. J. Commun. Syst., vol. 16, pp. 381–400, May 2003. DOI: 10.1002/dac.596

A. G. Lazaropoulos, “Wireless Sensor Network Design for Transmission Line Monitoring, Metering and Controlling: Introducing Broadband over PowerLines-enhanced Network Model (BPLeNM),” ISRN Power Engineering, vol. 2014, Article ID 894628, 22 pages, 2014. DOI: 10.1155/2014/894628. [Online]. Available: http://www.hindawi.com/journals/isrn.power.engineering/2014/894628/

A. G. Lazaropoulos, “Wireless Sensors and Broadband over PowerLines Networks: The Performance of Broadband over PowerLines-enhanced Network Model (BPLeNM) (Invited Paper),” ICAS Publishing Group Transaction on IoT and Cloud Computing, vol. 2, no. 3, pp. 1-35, 2014. [Online]. Available: http://icas-pub.org/ojs/index.php/ticc/article/view/27/17

A. G. Lazaropoulos, “Designing Broadband over Power Lines Networks Using the Techno-Economic Pedagogical (TEP) Method – Part II: Overhead Low-Voltage and Medium-Voltage Channels and Their Modal Transmission Characteristics,” Trends in Renewable Energy, vol. 1, no. 2, pp. 59-86, Jun. 2015. DOI: 10.17737/tre.2015.1.2.006 [Online]. Available: http://futureenergysp.com/index.php/tre/article/view/6/16

E. A. Bakirtzis, C. K. Simoglou, P. N. Biskas, D. P. Labridis, and A. G. Bakirtzis, “Comparison of advanced power system operations models for large-scale renewable integration,” Elsevier Electric Power Systems Research, vol. 128, pp. 90-99, 2015. DOI: 10.1016/j.epsr.2015.06.025

A. G. Lazaropoulos, “Designing Broadband over Power Lines Networks Using the Techno-Economic Pedagogical (TEP) Method – Part I: Overhead High Voltage Networks and Their Capacity Characteristics,” Trends in Renewable Energy, vol. 1, no. 1, pp. 16-42, Mar. 2015. DOI: 10.17737/tre.2015.1.1.002 [Online]. Available: http://futureenergysp.com/index.php/tre/article/view/2




DOI: http://dx.doi.org/10.17737/tre.2016.2.2.0023

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Athanasios G. Lazaropoulos

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2019 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)