Cover Image

Optimization of Raw Material Composition in an Agricultural Biogas Plant

Lili Mézes, Attila Bai, Dávid Nagy, István Cinka, Zoltán Gabnai


We analyzed the operation of a typical agricultural biogas plant in Hungary. Our aim was to optimize the composition of substrates for the biogas production and make a correct recommendation for completing feedstock recipes by considering the raw materials and technologies analyzed. The calculations were based on a very detailed database (including the daily operating data of 1673 days). Distribution of the biogas yields in summer and winter periods was normal based on the One-Sample Kolmogorov-Smirnov test, while the variance of data was homogeneous based on the Levene-test. Factor analysis of the biogas yield was performed with the Kaiser-Meyer-Olkin Measure of Sampling Adequacy probe (0.616) and the Bartlett's Test. According to the objectivity of our LP (linear program) model, we believe that a significant excess biogas yield (18-66%) could be achieved by the use of our model compared to the actual measured data. Although the amount of corn silage, grass silage, and the extract – as variables – was minimal in the recipe, they played a crucial role in the total biogas yield of the recipe because of their significantly higher organic matter contents and specific biogas yields. Our results could provide a reliable foundation for optimizing of the recipe in biogas plants with raw material base similar to the analyzed plants.

Citation: Mézes, L., Bai, A., Nagy, D., Cinka, I., and Gabnai, Z. (2017). Optimization of Raw Material Composition in an Agricultural Biogas Plant. Trends in Renewable Energy, 3(1), 61-75. DOI: 10.17737/tre.2017.3.1.0031


Biogas; Optimization; Heterosis Effect; Feedstock; Substrate

Full Text:



Popp, J., Lakner, Z., Harangi-Rákos, M., and Fári, M. (2014). The effect of bioenergy expansion: food, energy, and environment. Renewable and Sustainable Energy Reviews, 32, 559-578.

Popp, J., Harangi-Rákos, M., Petô, K., and Nagy, A. (2013). Bioenergy: Risks to food-, energy-and environmental Security. APSTRACT: Applied Studies in Agribusiness and Commerce(4/5), 121-130.

Fuchsz, M., and Kohlheb, N. (2015). Comparison of the environmental effects of manure-and crop-based agricultural biogas plants using life cycle analysis. Journal of Cleaner Production, 86, 60-66.

Fogarassy, C., and Nábrádi, A. (2015). Proposals for low-carbon agriculture production strategies between 2020 and 2030 in Hungary. APSTRACT: Applied Studies in Agribusiness and Commerce, 9(4).

für Umwelt, B. L. (2007). Biogashandbuch Bayern, Materialienband. Augsburg, Germany, 13-14.

Chen, Y., Cheng, J. J., and Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource technology, 99(10), 4044-4064.

Hartmann, H., and Ahring, B. K. (2005). Anaerobic digestion of the organic fraction of municipal solid waste: influence of co-digestion with manure. Water research, 39(8), 1543-1552.

Linke, B., Muha, I., Wittum, G., and Plogsties, V. (2013). Mesophilic anaerobic co-digestion of cow manure and biogas crops in full scale German biogas plants: a model for calculating the effect of hydraulic retention time and VS crop proportion in the mixture on methane yield from digester and from digestate storage at different temperatures. Bioresource technology, 130, 689-695.

Ward, A. J., Hobbs, P. J., Holliman, P. J., and Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource technology, 99(17), 7928-7940.

Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E., and Wagentristl, H. (2007). Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource technology, 98(17), 3204-3212.

Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., and Gruber, L. (2007). Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 118(1), 173-182.

Nielsen, L. H., Hjort-Gregersen, K., Thygesen, P., and Christensen, J. Samfundsøkonomiske analyser af biogasfællesanlæg. In: Proc., DAKOFA-konference om organisk affald.

Møller, H. B., Sommer, S. G., and Ahring, B. K. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33(1), 27-36.

Wu, X., Yao, W., Zhu, J., and Miller, C. (2010). Biogas and CH 4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresource technology, 101(11), 4042-4047.

Cuetos, M. J., Gómez, X., Otero, M., and Morán, A. (2008). Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochemical Engineering Journal, 40(1), 99-106.

Cavinato, C., Fatone, F., Bolzonella, D., and Pavan, P. (2010). Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences. Bioresource technology, 101(2), 545-550.

Bouallagui, H., Cheikh, R. B., Marouani, L., and Hamdi, M. (2003). Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresource technology, 86(1), 85-89.

Hernández-Berriel, M. C., Márquez-Benavides, L., González-Pérez, D., and Buenrostro-Delgado, O. (2008). The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (Mexico). Waste Management, 28, S14-S20.

Gruber, W. (2007). Biogasanlagen in der Landwirtschaft. Verbraucherschultz, Ernährung, Landwirtschaft, 1453.

Group, B. T. (2003). BTG Anaerobic Digestion.

Jenagi, I. (2002). Production methane gas from effluent. Adelaide University, Diploma Individual Project.

Kaosol, T., and Sohgrathok, N. (2012). Influence of Hydraulic Retention Time on Biogas Production from Frozen Seafood Wastewater Using Decanter Cake as Anaerobic Co-digestion Material. TVS, 20, 0.20.

Braun, R., Madlener, R., and Laaber, M. Efficiency evaluation of energy crop digestion plants. In: Proc., Proceedings of the 7th FAO/SREN Workshop" The Future of Biogas for Sustainable Energy Production in Europe.

Menardo, S., Gioelli, F., and Balsari, P. (2011). The methane yield of digestate: effect of organic loading rate, hydraulic retention time, and plant feeding. Bioresource technology, 102(3), 2348-2351.

Schievano, A., Pognani, M., D’Imporzano, G., and Adani, F. (2008). Predicting anaerobic biogasification potential of ingestates and digestates of a full-scale biogas plant using chemical and biological parameters. Bioresource technology, 99(17), 8112-8117.

Lindorfer, H., Lopez, C. P., Resch, C., Braun, R., and Kirchmayr, R. (2007). The impact of increasing energy crop addition on process performance and residual methane potential in anaerobic digestion. Water science and technology, 56(10), 55-63.

Pullammanappallil, P., Svoronos, S., Chynoweth, D., and Lyberatos, G. (1998). Expert system for control of anaerobic digesters. Biotechnology and bioengineering, 58(1), 13-22.

Preissler, D., Drochner, U., Lemmer, A., Oechsner, H., and Jungbluth, T. (2010). Sulphur binding in biogas plants using ferric salts. Landtechnik, 65(3), 201-203.

Weiland, P. (2004). Erfahrungen deutscher Biogasanlagen-Ergebnisse einer bundesweiten Bewertung. Institut für Technologie und Biosystemtechnik, Bundesforschungsanstalt für Landwirtschaft (FAL).

Biosystemtechnik, I. f. A. u., and Rohstoffe, F. N. (2009). Biogas-Messprogramm 2: 61 Biogasanlagen im Vergleich, Fachagentur Nachwachsende Rohstoffe.

Arora, J. S. (2004). Introduction to optimum design, Elsevier Academic Press, The University of Iowa.

Al Seadi, T. (2001). Good practice in quality management of AD residues from biogas production.

Mézes, L. (2011). Mezőgazdasági és élelmiszeripari biogáz-termelés optimalizálása. University of Debrecen, Debrecen, Hungary

Eder, B., Krieg, A., and Schulz, H. (2006). Biogas-Praxis: Grundlagen, Planung, Anlagenbau, Beispiele, Wirtschaftlichkeit, Ökobuch-Verlag.

Chadwick, D. (2005). Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmospheric environment, 39(4), 787-799.



  • There are currently no refbacks.

Copyright (c) 2017 Lili Mézes, Attila Bai, Dávid Nagy, István Cinka, Zoltán Gabnai

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2020 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)