Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review

Shuangning Xiu, Abolghasem Shahbazi, Rui Li

Abstract


Biomass can be converted to biofuels and bioproducts via thermochemical processes. Biochar is one of the major products of thermochemical conversion of biomass. The efficient use of biochar is critical to improving the economic viability and environmental sustainability of biomass conversion technologies. Applications of biochar for both agricultural and environmental benefits (e.g. as soil amendment, for inorganic pollutant removal) have been studied and reviewed extensively. However, biochar for energy storage materials and catalytic applications has not been widely reviewed in the recent past. This review aims to present the more significant recent advances in several biochar utilizations such as catalysts and supercapacitors. Discussions on biochar production technologies, chemistry, properties, characteristics, and advanced functionalization techniques are provided. It also points out barriers to achieving improvements in the future. 

Citation: Xiu, S., Shahbazi, A., and Li, R. (2017). Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review. Trends in Renewable Energy, 3(1), 86-101. DOI: 10.17737/tre.2017.3.1.0033


Keywords


Biochar; Hydrochar; Catalysis; Supercapacitor; Thermochemical conversion of biomass; Mechanism of biochar formation; Feedstock choice; Characterization; Biochar modification

Full Text:

FULL TEXT (PDF)

References


Boo Linares, N., Silvestre-Albero, A. M., Serrano, E., Silvestre-Albero, J., Garcia Martinez, J. (2014). Mesoporous materials for clean energy technologies. Chem. Soc. Rev. 43, 7681– 7717. DOI: 10.1039/c3cs60435g

Hu, B.; Wang, K.; Wu, L.; Yu, S.-H.; Antonietti, M.; Titirici, M.-M. (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813– 828. DOI: 10.1002/adma.200902812

Xie, J., Hse, C., Shupe T., Hu, T. (2015). Physicochemical characterization of lignin recovered from microwave-assisted delignified lignocellulosic biomass for use in biobased materials. Journal of Applied Polymer Science, DOI: 10.1002/APP.42635

Initiate IB. (2012). Standardized product definition and product testing guidelines for biochar that is used in soil. International Biochar Initiate. http://www.biochar-international.org/sites/default/files/Guidelines_for_Biochar_That_Is_Used_in_Soil_Final.pdf (Accessed on 2/2/2017)

Qian, K.; Kumar, A.; Zhang, H.; Bellmer, and Huhnke, R. (2015) Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews. 42, 1055-1064. DOI: 10.1016/j.rser.2014.10.074

Namaalwa, J.; Sankhayan, P. L.; Hofstad, O. (2007) A dynamic bio-economic model for analyzing deforestation and degradation: An application to woodlands in Uganda. Forest Policy Economics 9, 479– 495. DOI: 10.1016/j.forpol.2006.01.001

Meyer, S.; Glaser, B.; Quicker, P. (2011). Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environ. Sci. Technol. 45, 9473– 9483. DOI: 10.1021/es201792c

Titirici M-M; White RJ; Falco C; Sevilla M. Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. (2012). Energy Environ. Sci. 5, 6796-6822. DOI: 10.1039/C2EE21166A

Wiedner, C.; Rumpel, C.; Steiner, A.; Pozzi, R.; Maas, B. Glaser. (2013) Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy, 59, 264–278. DOI: 10.1016/j.biombioe.2013.08.026

Xiu S.; Shahbazi A. (2012) Bio-oil Production and Upgrading Research: A Review. Renewable and Sustainable Energy Reviews,16(7), 4406-4414. DOI: 10.1016/j.rser.2012.04.028

Kambo, H.S.; Dutta, A. (2015) A comparative review of biochar and hydrochar in terms of production, physical-chemical properties and applications. Renewable and Sustainable Energy Reviews 45, 359-378. DOI: 10.1016/j.rser.2015.01.050

Shen, D. K.; Gu, S. (2009) The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol. 100, 6496– 6504. DOI: 10.1016/j.biortech.2009.06.095

Peters, B. (2011). Prediction of pyrolysis of pistachio shells based on its components hemicellulose, cellulose and lignin. Fuel Process. Technol.92, 1993– 1998. DOI: 10.1016/j.fuproc.2011.05.023

Antal, M. J.; Grønli, M. (2003). The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619−1640. DOI: 10.1021/ie0207919

Minowa, T.; Kondo, T.; Sudirjo, S.T. (1998) Thermochemical liquefaction of indonesian biomass residues. Biomass&Bioenergy,14(5-6), 517-524. DOI: 10.1016/S0961-9534(98)00006-3

Xiu S.; Zhang B.; Shahbazi A. (2011). Biorefinery Processes for Biomass Conversion to Liquid Fuel. In: Biofuel's Engineering Process Technology; Marco A.D. Bernardes, Ed.; InTech, pp: 167-190.

Carpenter, S. R.; Caraco, N. F.; Correll, D. L.; Howarth, R.W.; Sharpley, A.N., Smith,V. H. (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8, 559–568. DOI: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2

Matteson, G. C; Jenkins, B. M. (2007) Food and processing residues in California: Resource assessment and potential for power generation. Bioresour. Technol., 98, 3098–3105. DOI: 10.1016/j.biortech.2006.10.031

Cantrell, K.; Ro, K.; Mahajan, D.; Anjom, M.; Hunt, P.G. (2007) Role of thermochemical conversion in livestock waste-to-energy treatments: Obstacles and opportunities. Industrial and Engineering Chemistry Research 46, 8918–8927. DOI: 10.1021/ie0616895

Joan J., Manyà. (2012) Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science & Technology,46, 7939-7954. DOI: 10.1021/es301029g

Brown, T. R.; Wright, M. M.; Brown, R. C. (2011). Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels, Bioprod. Biorefin.5, 54– 68. DOI: 10.1002/bbb.254

Liao, C.; Wu, C.; Yan, Y. (2007). The characteristics of inorganic elements in ashes from a 1MW CFB biomass gasification power generation plant. Fuel process. Technol.,88, 149-156. DOI: 10.1016/j.fuproc.2005.06.008

Li, R.; Zhang, B.; Xiu, S.N.; Wang, H., Wang, L.J.; Shahbazi, A. (2015). Characterization of Solid Residues Obtained from Supercritical Ethanol Liquefaction of Swine Manure. American Journal of Engineering and Applied Sciences, 8.4: 465-470.

Brewer, C.E.; Schmidt-Rohr, K.; Satrio, J.A.; Brown, R.C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Envirom. Prog. Sustainable Energy, 28, 386-396. DOI: 10.1002/ep.10378

Spokas, K. A.; Novak, J. M.; Masiello, C. A.; Johnson, M. G.; Colosky, E. C.; Ippolito, J. A.; Trigo, C. (2014). Physical disintegration of biochar: An overlooked process. Environ. Sci. Technol. Lett. 1, 326–332. DOI: 10.1021/ez500199t

Sharma, R. K.; Wooten, J. B.; Baliga, V. L.; Lin, X.; Geoffrey Chan, W.; Hajaligol, M. R. (2004). Characterization of chars from pyrolysis of lignin. Fuel 83, 1469– 1482. DOI: 10.1016/j.fuel.2003.11.015

Freitas, J. C. C.; Bonagamba, T. J.; Emmerich, F. G. (2001). Investigation of biomass and polymer-based carbon materials using 13C high-resolution solid-state NMR. Carbon 39, 535– 545. DOI: 10.1016/S0008-6223(00)00169-X

Mukome, F. N. D.; Zhang, X.; Silva, L. C. R.; Six, J.; Parikh, S. J. (2013). Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J. Agric. Food Chem. 61, 2196–2204. DOI: 10.1021/jf3049142

Gao, Y.; Wang, X.H.; Yang, H.P.;Chen, H.P. (2012). Characterization of products from hydrothermal treatments of cellulose. Energy, 42, 457-465. DOI: 10.1016/j.energy.2012.03.023

Qian, L.; Chen, B. (2014). Interactions of aluminum with biochars and oxidized biochars: Implications for biochar aging process. J. Agric. Food Chem. 62,373-380. DOI: 10.1021/jf404624h

Lehmann, J.; Joseph, S. (2009). Biochar for environmental management: science and technology; Earthsan: London.

Liu, W.J.; Zeng, F.X.; Jiang, H.; Zhang, X.S. (2011). Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour. Technol.102, 8247−8252. DOI: 10.1016/j.biortech.2011.06.014

Li, Y.; Shao, J.; Wang, X.; Deng, Y.; Yang, H.; Chen, H. (2014). Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuels 28, 5119– 5127. DOI: 10.1021/ef500725c

Xu, D.; Zhao, Y.; Sun, K.; Gao, B.; Wang, Z.; Jin, J.; Zhang, Z.; Wang, S.; Yan, Y.; Liu, X.; Wu, F. (2014). Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: Impact of bulk and surface properties. Chemosphere, 111, 320−326. DOI: 10.1016/j.chemosphere.2014.04.043

Anfruns, A.; García-Suárez, E. J.; Montes-Morán, M. A.; Gonzalez-Olmos, R.; Martin, M. J. (2014). New insights into the influence of activated carbon surface oxygen groups on H2O2 decomposition and oxidation of pre-adsorbed volatile organic compounds. Carbon, 77, 89−98. DOI: 10.1016/j.carbon.2014.05.009

Wu, L.; Sitamraju, S.; Xiao, J.; Liu, B.; Li, Z.; Janik, M. J.; Song, C. (2014). Effect of liquid-phase O3 oxidation of activated carbon on the adsorption of thiophene. Chem. Eng. J., 242, 211−219. DOI: 10.1016/j.cej.2013.12.077

Gokce, Y.; Aktas, Z. (2014). Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Appl. Surf. Sci., 313, 352−359. DOI: 10.1016/j.apsusc.2014.05.214

Adelodun, A. A.; Lim, Y. H.; Jo, Y. M. (2014). Stabilization of potassium-doped activated carbon by amination for improved CO2 selective capture. J. Anal. Appl. Pyrolysis, 108, 151−159. DOI: 10.1016/j.jaap.2014.05.005

Shafeeyan, M. S., Wan Daud, W. M. A., Houshmand, A., Arami-Niya, A. (2012). The application of response surface methodology to optimize the amination of activated carbon for the preparation of carbon dioxide adsorbents. Fuel, 94, 465– 472. DOI: 10.1016/j.fuel.2011.11.035

Takagaki, A.; Tagusagawa, C.; Hayashi, S.; Hara, M.; Domen, K. (2010) Nanosheets as highly active solid acid catalysts for green chemical syntheses. Energy Environ. Sci. 3, 82. DOI: 10.1039/B918563A

Dehkhoda, A. M., West, A. H., Ellis, N. (2013). Biochar based solid acid catalyst for biodiesel production. Appl. Catal., A., 382, 197– 204. DOI: 10.1016/j.apcata.2010.04.051

Taberna, P.-L., Gaspard, S. (2014). CHAPTER 9. Nanoporous Carbons for High Energy Density Supercapacitors. In: Biomass for Sustainable Applications: Pollution Remediation and Energy, S. Gaspard, and M. C. Ncibi, eds., The Royal Society of Chemistry, pp: 366−399. DOI:10.1039/9781849737142-00366

Sun, L.; Tian, C.; Li, M.; Meng, X.; Wang, L.; Wang, R.; Yin, J.; Fu, H. (2013). From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A,1, 6462– 6470. DOI: 10.1039/C3TA10897J

Hulicova-Jurcakova, D.; Puziy, A. M.; Poddubnaya, O. I.; Suárez-García, F.; Tascón, J. M. D.; Lu, G. Q. (2009). Highly stable performance of supercapacitors from phosphorus-enriched carbons. J. Am. Chem. Soc., 131, 5026– 5027. DOI: 10.1021/ja809265m

Sevilla, M.; Mokaya, R. (2014). Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science,7, 1250-1280. DOI: 10.1039/C3EE43525C

Gaspard, S., Passe-Coutrin, N., Durimel, A., Cesaire, T., and Jeanne-Rose, V. (2014). CHAPTER 2 Activated Carbon from Biomass for Water Treatment. In: Biomass for Sustainable Applications: Pollution Remediation and Energy, S. Gaspard, and M. C. Ncibi, eds., The Royal Society of Chemistry, pp: 46-105. DOI: 10.1039/9781849737142-00046

Hu, Z.; Guo, H.; Srinivasan, M.P.; Yaming, N. (2003). A Simple Method for Developing Mesoporosity in Activated Carbon. Sep. Purif. Technol. 31, 47-52. DOI: 10.1016/S1383-5866(02)00148-X

Hu, B.; Yu, S.H.; Wang, K.; Liu, L.; Xu, X.W. (2008). Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Trans.,5414-5423. DOI: 10.1039/B804644C

Sun, X.M; Li, Y.D. (2004). Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem., Int. Ed.,43, 597–601. DOI: 10.1002/anie.200352386

Qian, H. S.; Antonietti, M.; Yu, S. H. (2007). Hybrid “Golden Fleece”: Unique approaches for synthesis of uniform carbon nanofibres and silica nanotubes embedded/confined with high population of noble mental nanoparticles and their catalytic performance. Adv. Funct. Mater.,17, 637–643.

Hu, B.; Zhao, Y.; Zhu, H.Z.; Yu, S.H. (2011). Selective chromogenic detection of thiol-containing biomolecules using carbonaceous nanospheres loaded with silver nanoparticles as carrier. ACS nano,5 (4), 3166-3171. DOI: 10.1021/nn2003053

Zhou, C.H., Xia, X., Lin, C.X., Tong, D.S., Beltramini, J. (2011). Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588-5617. DOI: 10.1039/C1CS15124J

Wang, S., Wang, H., Yin, Q., Zhu, L., Yin, S. (2014). Methanation of bio-syngas over a biochar supported catalyst. New J. Chem. 38, 4471– 4477. DOI: 10.1039/C4NJ00780H

Mani, J.R; Kastner, A; Juneja. (2013). Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Process Technol,114, 118–125. DOI: 10.1016/j.fuproc.2013.03.015

Shen, Y.; Zhao, P.; Shao, Q.; Ma, D.; Takahashi, F.; Yoshikawa, K. (2014). In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl Catal B: Environ,152–153, 140–151. DOI: 10.1016/j.apcatb.2014.01.032

Bhandari, P.N.; Kumar, A.; Huhnke, R.L. (2013). Simultaneous removal of toluene (model tar), NH3, and H2S, from biomass-generated producer gas using biochar-based and mixed-metal oxide catalysts. Energy Fuels,28, 1918–1925. DOI: 10.1021/ef4016872

Yan, Q.; Wan, C.; Liu, J.; Gao, J.; Yu, F.; Zhang, J. (2013). Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons. Green Chem,15, 1631–1640. DOI: 10.1039/C3GC37107G

Matosa, J.; Rosalesa, M.; Rezan, D.C., Titiricib, M.M. (2010). Methane conversion on Pt–Ru nanoparticles alloy supported on hydrothermal carbon. Appl. Catal., A,386, 140-146. DOI: 10.1016/j.apcata.2010.07.047

Dehkhoda, A.M.; Ellis, N. (2013). Biochar-based catalyst for simultaneous reactions of esterification and transesterification. Catal Today,207, 86–92. DOI: 10.1016/j.cattod.2012.05.034

Kastner, J.R.; J. Miller; D.P. Geller; J. Locklin; L.H. Keith; T. Johnson. (2012). Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today,190, 122–132. DOI: 10.1016/j.cattod.2012.02.006

Wu, Y.; Fu, Z.; Yin, D.; Xu, Q.; Liu, F.; Lu, C.; Mao, L. (2010). Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chem.12, 696-700. DOI: 10.1039/B917807D

Liang, H.W.; Zhang, W.J.; Ma, Y.N.; Cao, X.; Guan, Q.F., Xu, W.P.; Yu, S.H. (2011). Highly Active Carbonaceous Nanofibers: A Versatile Scaffold for Constructing Multifunctional Free-Standing Membranes. ACS Nano, 5 (10), 8148–8161. DOI: 10.1021/nn202789f

Gupta, P.; Paul, S. (2011). Amorphous carbon-silica composites bearing sulfonic acid as solid acid catalysts for the chemoselective protection of aldehydes as 1,1-diacetates and for N-, O- and S-acylations. Green Chem.13, 2365-2372. DOI: 10.1039/C0GC00900H

Bhandari, P. N.; Kumar, A.; Bellmer, D. D.; Huhnke, R. L. (2014). Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas. Renewable Energy, 66, 346– 353. DOI: 10.1016/j.renene.2013.12.017

Xiao, Y.H.; Zhang, A.Q.; Liu, S.J. Zhao, J.H.; Fang, S.M. Jia, D.Z. (2012). Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances. J Power Sources, 219, 140–146. DOI: 10.1016/j.jpowsour.2012.07.030

Liu, M.C.; Kong, L.B.; Zhang, P.; Luo, Y.C.; Kang, L. (2012). Porous wood carbon monolith for high-performance supercapacitors. Electrochim Acta,60, 443–448. DOI: 10.1016/j.electacta.2011.11.100

Zhang, L.; Zhao, X.S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38, 2520-2531. DOI: 10.1039/B813846J

Taer, E.; Deraman, M.; Tali, I.A., Awitdrus, A.; Hashmi, A.; Umar, A.A. (2011). Preparation of a Highly Porous Binderless Activated Carbon Monolith from Rubber Wood Sawdust by a Multi-Step Activation Process for Application in Supercapacitors. International journal of electrochemical science 6(8):3301-3315.

Basri, N.H.; M. Deraman; S. Kanwal; I.A. Talib; J.G. Manjunatha; A.A. Aziz. (2013). Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass residues. Biomass Bioenergy, 59, 370–379. DOI: 10.1016/j.biombioe.2013.08.035

Li, X.; Xing, W.; Zhou, S.P.; Zhou, J.; Li, F.; Qiao, S.Z.; Lu, G.Q. (2011). Preparation of capacitor’s electrode from sunflower seed shell. Bioresour. Technol. 102(2):1118-1123. DOI: 10.1016/j.biortech.2010.08.110

Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S. (2013). From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 6, 1249-1259. DOI: 10.1039/C3EE22325F




DOI: http://dx.doi.org/10.17737/tre.2017.3.1.0033

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Shuangning Xiu, Abolghasem Shahbazi and Rui Li

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2019 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)