Production of Biochar Based Porous Carbon Nanofibers for High-Performance Supercapacitor Applications

Shuangning Xiu, Spero Gbewonyob, Abolghasem Shahbazi, Lifeng Zhang


Biomass-derived biochar was used as the precursor to synthesize porous carbons for supercapacitor electrodes. The biochar was first activated with KOH to generate porous carbon material and then fabricated into highly flexible porous carbon nanofibers (ECNF) by electrospinning technique. Activated carbons with a surface area of around 2258 m2/g were found. The resultant biochar based ECNF mats exhibited outstanding mechanical flexibility and electrochemical properties as free-stranding and binder free electrodes of supercapacitor. The PAN/BCK3 ECNFs, which were made from the composite of polyacrylonitrile (PAN) and KOH-activated biochar (mass ratio of Biochar/KOH =1:3) exhibited the highest gravimetric capacitance (108 F/g at current density of 0.5 A/g) with high retention (96% at 1 A/g) due to its well-developed micro-mesoporosity. The results indicated that biomass-derived biochar is a promising material which can be used for the production of low cost high performance electrode materials for supercapacitor. 

Citation: Xiu, S., Gbewonyob, S., Shahbazi, A., and Zhang, L. (2019). Production of Biochar Based Porous Carbon Nanofibers for High-Performance Supercapacitor Applications. Trends in Renewable Energy, 5, 151-164. DOI: 10.17737/tre.2019.5.2.0095


Biochar; Pyrolysis; Supercapacitor; Nanofiber; Activated carbon

Full Text:



Wang, K., Xu, M., Gu, Z., Ahrenkiel, P., Lee, J., Gibbons, W., Croat, J., and Fan, Q. (2016). Pyrrole modified biomass derived hierarchical porous carbon as high performance symmetrical supercapacitor electrodes. International Journal of Hydrogen Energy, 41(30), 13109-13115. DOI: 10.1016/j.ijhydene.2016.05.090

Jin, H., Wang, X., Shen, Y., and Gu, Z. (2014). A high-performance carbon derived from corn stover via microwave and slow pyrolysis for supercapacitors. Journal of Analytical and Applied Pyrolysis, 110, 18-23. DOI: 10.1016/j.jaap.2014.07.010

Dyatkin, B., Presser, V., Heon, M., Lukatskaya, M. R., Beidaghi, M., and Gogotsi, Y. (2013). Development of a Green Supercapacitor Composed Entirely of Environmentally Friendly Materials. ChemSusChem, 6(12), 2269-2280. DOI: 10.1002/cssc.201300852

Qiu, Z., Wang, Y., Bi, X., Zhou, T., Zhou, J., Zhao, J., Miao, Z., Yi, W., Fu, P., and Zhuo, S. (2018). Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. Journal of Power Sources, 376, 82-90. DOI: 10.1016/j.jpowsour.2017.11.077

Liu, M.-C., Kong, L.-B., Zhang, P., Luo, Y.-C., and Kang, L. (2012). Porous wood carbon monolith for high-performance supercapacitors. Electrochimica Acta, 60, 443-448. DOI: 10.1016/j.electacta.2011.11.100

Cheng, B.-H., Zeng, R. J., and Jiang, H. (2017). Recent developments of post-modification of biochar for electrochemical energy storage. Bioresource Technology, 246, 224-233. DOI: 10.1016/j.biortech.2017.07.060

Gao, F., Shao, G., Qu, J., Lv, S., Li, Y., and Wu, M. (2015). Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes. Electrochimica Acta, 155, 201-208. DOI: 10.1016/j.electacta.2014.12.069

Zhang, L. L., and Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531. DOI: 10.1039/B813846J

Xiu, S., Shahbazi, A., and Li, R. (2017). Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review. Trends in Renewable Energy, 3(1), 86-101. DOI: 10.17737/tre.2017.3.1.0033

Zhang, S., Su, Y., Zhu, S., Zhang, H., and Zhang, Q. (2018). Effects of pretreatment and FeCl3 preload of rice husk on synthesis of magnetic carbon composites by pyrolysis for supercapacitor application. Journal of Analytical and Applied Pyrolysis, 135, 22-31. DOI: 10.1016/j.jaap.2018.09.026

Li, W., Chen, D., Li, Z., Shi, Y., Wan, Y., Wang, G., Jiang, Z., and Zhao, D. (2007). Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte. Carbon, 45(9), 1757-1763. DOI: 10.1016/j.carbon.2007.05.004

Aboagye, A., Liu, Y., Ryan, J. G., Wei, J., and Zhang, L. (2018). Hierarchical carbon composite nanofibrous electrode material for high-performance aqueous supercapacitors. Materials Chemistry and Physics, 214, 557-563. DOI: 10.1016/j.matchemphys.2018.05.009

Duan, P., and Savage, P. E. (2011). Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 50(1), 52-61. DOI: 10.1021/ie100758s

Du, X., Zhao, W., Wang, Y., Wang, C., Chen, M., Qi, T., Hua, C., and Ma, M. (2013). Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications. Bioresource Technology, 149, 31-37. DOI: 10.1016/j.biortech.2013.09.026

Lai, C., Zhou, Z., Zhang, L., Wang, X., Zhou, Q., Zhao, Y., Wang, Y., Wu, X.-F., Zhu, Z., and Fong, H. (2014). Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. Journal of Power Sources, 247, 134-141. DOI: 10.1016/j.jpowsour.2013.08.082

Liu, Y., Zhou, J., Chen, L., Zhang, P., Fu, W., Zhao, H., Ma, Y., Pan, X., Zhang, Z., Han, W., and Xie, E. (2015). Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors. ACS Applied Materials & Interfaces, 7(42), 23515-23520. DOI: 10.1021/acsami.5b06107

Sevilla, M., Yu, L., Zhao, L., Ania, C., and Titiricic, M.-M. (2014). Surface Modification of CNTs with N-Doped Carbon: An Effective Way of Enhancing Their Performance in Supercapacitors. ACS Sustainable Chem. Eng., 2 (4), 1049–1055. DOI: 10.1021/sc500069h

Cheng, Y., Lu, S., Zhang, H., Varanasi, C. V., and Liu, J. (2012). Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors. Nano Letters, 12(8), 4206-4211. DOI: 10.1021/nl301804c

Hao, J., Zhong, Y., Liao, Y., Shu, D., Kang, Z., Zou, X., He, C., and Guo, S. (2015). Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor applications using electrochemically exfoliated graphene. Electrochimica Acta, 167, 412-420. DOI: 10.1016/j.electacta.2015.03.098

Li, R., Shahbazi, A., Wang, L., Zhang, B., Chung, C.-C., Dayton, D., and Yan, Q. (2018). Nanostructured molybdenum carbide on biochar for CO2 reforming of CH4. Fuel, 225, 403-410. DOI: 10.1016/j.fuel.2018.03.179

Wang, J., and Kaskel, S. (2012). KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22(45), 23710-23725. DOI: 10.1039/C2JM34066F

Razaq, A., Nyholm, L., Sjödin, M., Strømme, M., and Mihranyan, A. (2012). Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose Composite electrodes. Advanced Energy Materials, 2(4), 445-454. DOI: 10.1002/aenm.201100713

Ma, X., Kolla, P., Zhao, Y., Smirnova, A. L., and Fong, H. (2016). Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance. Journal of Power Sources, 325, 541-548. DOI: 10.1016/j.jpowsour.2016.06.073



  • There are currently no refbacks.

Copyright (c) 2019 Shuangning Xiu, Spero Gbewonyob, Abolghasem Shahbazi1, Lifeng Zhang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2022 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)