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In this paper, a combination of the conventional energy capacitor system 
and a proposed two-trap Resistor Capacitor (RC) shunt damper circuitry 
is used to stabilize a grid network made up of fixed speed wind turbines, 
steam turbines and hydro turbines. The energy storage system is 
connected to the terminals of the wind farm and has the capability of 
stabilizing the grid network during periods of wind speed change. The 
two-trap damper has the ability to mitigate the mechanical vibration of 
the wind turbine and increase its output and rotor speed acceleration 
during disturbances, so the turbine speed is reduced.  Simulations were 
run using Power System Computer Aided Design and Electromagnetic 
Transient Including DC (PSCAD/EMTDC) environment, for scenarios 
where grid frequency control was not implemented and when frequency 
control was employed using the energy storage device. A further 
investigation was carried out in enhancing the performance of the grid 
network considering the proposed two-trap shunt DC damper control 
topology. The results show the improved performance of the variables of 
the wind turbine and the entire grid network during dynamics, due to the 
coordinated control strategies of the two-trap RC circuit and the energy 
capacitor system employed.  

 
Keywords:  Wind energy; Wind farm; Frequency; Grid; Wind turbine; Filters; RC damper 

 

 
Introduction  
   

Recently, the renewable energy technology has received more attention, because 

it not only has the potential to improve energy security, but also reduces the 

environmental impact of greenhouse gases. Hence, this type of energy is eco-friendly. 

The constant penetration of wind farms that are equipped with wind turbines into existing 

grid connected network, would definitely affect the frequency and stability of the entire 

power system. Power electronics technology is the main technology that enables the 

connection of renewable energy sources like wind and solar into the grid system [1-3]. 

They are used to interface the generated energy into the grid. However, these voltage 

source converters produce unwanted harmonics. As a result, filters are used to smoothen 

the output of the network.  

With tremendous rise in renewable energy penetration into the grid system, there 

is bound to be disturbances in the power network. Consequently, the grid network and its 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 96-110. doi: 10.17737/tre.2018.4.2.0070 97 

 

control associates are becoming complex by day. The integration of wind power into 

existing power network causes frequency distortions due to the stochastic nature of the 

wind. A lot of papers have been presented in the literature regarding frequency control of 

the grid connected network. Traditionally, the automatic load frequency control can be 

used to maintain the grid system frequency by variation of the governor set points of the 

turbines connected to the network [4, 5].  In the literature [6-8], the genetic algorithm 

strategy was proposed to control the load frequency in a mixed generation system, in 

order to maintain zero steady state error during grid disturbances. The major shortcoming 

of this approach is the presence of oscillations in the frequency deviations and a longer 

time to reach steady state for the power system variables. Another good approach to 

stabilize the frequency of a grid connected system is the utilization of adaptive notch 

filters [9-11]. The challenge in using this approach is that the measured signal frequency 

should remain constant and this is not the case with the use of wind energy system.  

Usually, an Inductive Capacitive Inductive (LCL) filter is used to mitigate the 

switching harmonics emanating from a Voltage Source Converter (VSC) that is 

connected to the grid network. This is because they offer lower cost and are simple in 

nature [12]. For this reason, the LCL filter is employed in the integration of renewable 

sources in grid networks. With recent advancement in power electronics technology, the 

trap filters have been proposed as a good solution to suppress switching harmonics more 

than the traditional LCL filters [13]. The trap filter topology are smaller in size with low 

cost compared to earlier filter strategies.  

In order to avoid the risk of instability in the grid connected VSC as a result of 

resonance in the capacitive and inductive components in the grid, it is necessary to 

consider damping. However, due to constant changes in the grid network variables, 

effective damping may not be realized using active damping control strategies alone [14]. 

Another solution to this problem may be to employ passive damping because it will 

improve the stability of the system [15], however, there must be large losses to be 

incurred [16].  

Energy storage system can effectively mitigate oscillations in the power system, 

and hence could be used for frequency regulation. In the literature [17], additional power 

to achieve control of a grid connected network was provided by both internal and external 

energy storage devices. In [18], the energy capacitor system was used to stabilize grid 

voltage system, however, the shunt trap frequency control responses were not considered. 

Thus, the controllers of the energy capacitor system were not tested for robustness during 

grid dynamics. Reference [19] considered the use of a small value of series dynamic 

braking resistor in the stator of the wind turbine to improve the frequency of the power 

system.  

The tripping of wind power generators i.e., grid connected wind turbines is most 

likely to avoid grid dynamics or transient disturbances [20]. This is not allowed in most 

countries, based on the recent grid codes. In this paper, the conventional Energy 

Capacitor System (ECS) technology is used to stabilize grid connected wind power and 

synchronous turbine systems. The ECS is used to achieve smoothing of the terminals of 

the distorted wind turbine variables in order to maintain steady supply of power despite 

the stochastic nature of the wind. In order to enhance the performance of the conventional 

wind farm frequency control ECS topology, a two-trap Resistor Capacitor (RC) shunt 

damper is proposed to work in combination with the ECS control system. The proposed 

two-trap shunt RC damper is used to improve the performance of the wind turbine during 

grid disturbances. The new control strategy also has the ability to reduce the speed 
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excursion of the wind turbine and boost the turbine speed during grid dynamics. Besides, 

the proposed system effectively enhances the reactive power production of the VSC 

connected ECS external device, thus, improving its performance when there is grid 

disturbance. These effects would reduce the grid connected VSC losses and improve the 

overall performance of the system. In addition, the grid codes minimum frequency values 

stipulated in the operation of wind farms and power systems would be achieved, thus, 

avoiding the tripping of the wind turbines during grid disturbances. In this work, 

simulations were run for different scenarios in Power System Computer Aided Design 

and Electromagnetic Transient Including DC (PSCAD/EMTDC) platform [21]. In the 

first scenario, no frequency control was employed in the power system. The second 

scenario considered frequency control of the grid network, using the ECS topology, while 

the third scenario employs the proposed two-trap shunt RC damper to further enhance the 

performance of the ECS system. The presented results show the robustness of the 

proposed control strategy in enhancing the performance of the frequency and some other 

variables of the grid connected wind farm in the power network. 

 
 
Model System of Study 
 

The model system of study is shown in Figure 1, where the wind farm is made up 

of two aggregated wind turbines of total power rating 100 MVA connected to aggregated 

steam and hydro turbines of 50 MVA each. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 1. Model system of study 

  

The ECS is connected at the terminals of the wind turbines via the proposed two-

trap RC shunt circuitry in the wind farm as shown in Figure 1. Loads X and Y are 

connected between the bus bar connecting the wind farm and the steam and hydro 

synchronous generators. The power network is operating at 100 MVA, 66 kV and 50 Hz 

with the given line parameters. The two-trap shunt RC damper circuitry is connected 
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between the terminals of the wind turbine and the VSC grid side of the ECS. The 

parameters of the wind turbine, steam and hydro turbines are given in Table 1. The 

excitation circuit parameters of the ECS and the proposed two-trap shunt RC damper are 

given in Tables 2 and 3, respectively. 

 

                    Table 1.  Parameters of the model system turbines  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Table 2.  Parameters of the ECS excitation circuit  
 

 

 

 

 

 

 

 

                Table 3.  Parameters of the two-trap shunt RC damper  
 

 

 

 

 

 

 

 

 

Control Strategy of the FACTS Energy Storage Device 
 

Figure 2 shows the control structure of the grid connected VSC ECS, where a dq 

to abc transformation is done with an angle thetha that is calculated from the Phase Lock 

Loop (PLL) of the system. The effective grid voltage is compared with a reference value 

Generator 

Type 

Steam 

turbine 

Hydro 

turbine 

Generator 

Type 

Wind 

turbine 

MVA 200 200 MVA 100 

ra (pu) 0.003 0.003 r1 (pu) 0.01 

xa (pu) 0.102 0.130 x1 (pu) 0.1 

Xd (pu) 1.651 1.200 Xmu (pu) 3.5 

Xq (pu) 1.590 0.700 r21 (pu) 0.035 

X/
d (pu) 0.232 0.300 x21 (pu) 0.030 

X/
q (pu) 0.380  r22 (pu) 0.014 

X//
d (pu) 0.171 0.220 x22 (pu) 0.098 

X//
q (pu) 0.171 0.250   

T/do (sec) 5.900 5.000   
T/qo (sec) 0.535    
T//do(sec) 0.033 0.040   
T//qo(sec) 0.078 0.050   
H (sec) 3.000 2.500   

 

Parameters Ratings 

DC-link Voltage 6.6 kV 

DC-link Capacitor 50,000μF 

Device for Power Converter IGBT 

PWM Carrier Frequency 1.05kHz 

low pass filter time constant  30 sec 

 

Parameters Ratings 

Line Inductor 0.1mH 

Filter Capacitor 2.15/0.21μF 

Damp Resistor 5.4Ω 

DC-link Voltage 6.6 kV 

Damp Capacitor 2.35μF 

Trap Inductors 0.113/0.3mH 
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of 1.0 pu that is then passed through a Proportional Integral (PI) controller system. The 

signal is further compared with a signal generator to generate six pulse reference signals, 

which are used for switching the Insulated Gate Bipolar Transistors (IGBTs) to achieve 

control of the wind farm system and the entire power network during grid disturbances.          

Also, the control structure and design for the inbuilt Low Pass Filter (LPF) of the ECS 

are shown in Figure 2. The reference signals are the grid active power and the wind 

turbine active power, respectively. The difference of the powers is fed through a PI 

system whose output is added to a constant gain value to generate signal that is compared 

with a triangular carrier signal generator. The output is thus used in the switching of the 

DC chopper circuit unit of the ECS system for charging and discharging limitations. The 

proposed connected two-trap shunt RC damper increases the mechanical power extracted 

from the drive train of the aggregated wind generator and reduces its speed excursion 

during dynamic periods. Also, since mechanical torque is proportional to the square of 

the stator voltage of the wind turbine, the effect would enhance the fast recovery of the 

turbine during grid disturbances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2. ECS and its associate controls 
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Space Vector Control of the ECS and the Trap Shunt RC Damper  
 

The control system of the three phase voltage source converter for the ECS shown 

in Figure 2 is based on space vector transformation. As seen from the figure, the detected 

three phase currents are   and  , which are vectors that are equally spaced in  

clockwise sequence with respect to the grid, which is in stationary  reference frame as 

given in equation (1) [22]. 

 

 

 

 

 

 

 

 

 

The transformation of these vectors into two phase stationary reference frames αβ is 

shown in Figure 3 and their products are represented with  and  in the clockwise 

direction in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. VSC abc stationary frame 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. VSC αβ stationary frame  
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A further decoupling of the  phase vectors based on the  and β axis results in 

equation (2) with three unknown variables. 

 

 

 

 
 

 

From equation (2),  represents the  frame magnitude, while  represents the 

components of the  frame. Putting equation (2) into matrix forms, gives  

 

 

 

 

 

 

 

 

 

 

Considering the orthogonal condition, , the transformation matrix 

 and   ratio are computed as shown in equation (4), where  is the 

transpose of  and  is a 3x3 identity matrix.  

 

 

 

 

 

 

 

Equation (4) is known as the Clarke transformation and the vectors in both frames are the 

same, since equation (2) normalizes the transformation. This situation would lead to 

equation (5)  

 

 

 

 

 

It should be noted that zero sequence component is not utilized for the remaining 

transformation analysis, because it is ignored for simplicity. And the matrix would reduce 

to equation (6).  
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(3) 

(4) 
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If the frequency of rotation of the grid is , then based on Fig. 5, the variables of the 

stationary αβ frame can be expressed as equation (7). Also, the variables of the stationary 

reference frame in equation (6) can be transformed into synchronous frame based on 

equation (8) with displacement clockwise direction angle  between the ranges of to . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. VSC Pulse width modulation vector  

 

 

 

 

 

 

 

 

       Applying equations (6) to (7) to transform the αβ vectors along the two orthogonal 

axes leads to equation (9), with two unknowns in both equations.  

 

 

 

 

 

 

The transformation matrix  helps in representing eqn (9) as eqn (10) 
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The matrix  satisfies the condition of orthogonality given 

by , where is the transpose of  and  is the identity 

matrix. The transformation expression of equation (10) with an additional sequence 

component of 0 is known as the Park transformation. The αβ frame to  frame 

normalized transformation creates room for the current vector to be the same in both 

frames of reference, therefore,   

 

 

 

From the proposed two-trap shunt RC damper shown in the model system in 

Figure 1, the mathematical model based on the  reference frame could be expressed as 

[22, 23]: 

 

 

 

 

 

 

 

 

 

It is considerably meaningful for the transformation of the mathematical model into the 

same frame as the current controllers are in  frame operation. From equation (12),  

          is the grid current vector,  

          is the converter current vector, 

                                          are the grid voltage vector, the converter output voltage vector 

and the filter capacitor current vector, respectively.   

 

 

 

 

 

(10) 

 

(11) 

 

(12) 

 

 

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 96-110. doi: 10.17737/tre.2018.4.2.0070 105 

 

 

Operating Principle of the Proposed Scheme 
 

From the model system in Figure 1, the proposed two-trap shunt RC damper is 

used to reduce multiple harmonic frequencies that are basically above the tuning 

frequency of the filter by using the capacitors and the tuned inductors. The circuit when 

tuned, resonates at a fundamental frequency, so that the fundamental current flowing into 

the resistor could be bypassed. Hence, the proposed two-trap filter has the characteristics 

of low damping losses and better harmonic attenuation, when operating in combination 

with a grid connected voltage source converter. 

The selection of the parameters of the filter is based on [24], which ensures that 

the harmonics in the connected grid current are lower than the specified values. The 

performance of the filter is based on the admittance transfer function represented by the 

grid current to the converter voltage expressed in equation (13) [24, 25]. 

 

 

 

 

 

Equation (13) describes how the modulation control strategy of the harmonic 

voltage is propagated into the grid current. In equation (13),  is the tuned frequency 

and  is the characteristic frequency, and they are expressed in equations (14) and (15), 

respectively as [26]:  

 

 

 

 

 

 

 

 

 

 

 

The damping effect in the circuit is determined by the quality factor and it 

depends on the filter components. This is expressed as  

 

 

 

 

 

 

 

 

 

 

(13) 
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Theoretically, a trap filter produces infinite attenuation at the switching 

frequency, and at frequencies above the switching frequency, the filter attenuation rapidly 

decreases. Based on the above features and analysis, the two-trap shunt RC damper will 

give a good damping performance of the variables of a grid connected VSC system 

during network disturbance. 

 

 

Evaluation of the Model System Performance 
 

Simulations were run for 600 seconds for dynamic analysis considering the model 

system in Figure 1 using natural wind speed obtained from Hokkaido Island, Japan as 

shown in Figure 6. Three scenarios were considered. In the first scenario, no grid 

frequency control was implemented in the model system. The second scenario uses the 

conventional energy capacitor system for stability of the grid frequency. In the third 

scenario, the proposed two-trap shunt RC damper was used to further enhance the 

performance of the energy capacitor system and the entire power network. Some of the 

simulation results in PSCAD/EMTDC are discussed as follows for the model system 

variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 6. Wind speed data for system analysis 

 

Figure 7 shows the response of the grid frequency considering three scenarios. 

When no control was implemented, the grid frequency was distorted due to the stochastic 

nature of the natural wind energy in Figure 6. Hence, the grid codes require the wind 

farm to be shut down in this case to avoid damage to the power network and utilities 

connected to it. With the help of the energy capacitor system control strategy, active 

power control was achieved, in addition to reactive power that was injected into the grid 

network based on the coordinated control of the ECS Pulse Width Modulation DC 

chopper presented in Figure 2. The grid frequency was controlled almost within the 

permissible limit set by the grid codes in order to avoid shutting down of the wind farm 

considering an LPF time constant of 120 seconds. In a bid to further improve the grid 

frequency performance of the network, the proposed control scheme with the two-trap 

shunt RC damper was used as shown in Figure 7. The two-trap RC shunt damper helped 
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boost the grid frequency during dynamics by damping the system and also filtering the 

attenuated harmonics based on the analysis presented earlier in this paper.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Frequency response of the grid network 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Reactive power of energy capacitor system 

 
 

Figure 8 shows that the proposed coordinated control topology is able to boost the 

reactive power production of the ECS grid connected VSC to help in further stabilizing 

the grid system with faster recovery of the grid variables. This is because the proposed 

control will increase the mechanical power extracted from the drive train of the wind 

turbine, thus reducing its speed excursion during grid disturbances as shown in Figure 9 

for the wind turbine speed. Moreover, based on the fact that mechanical torque is 

proportional to the square of the stator voltage of the wind generator, the effect would 

enhance the recovery of the wind turbine after the grid dynamics. 
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Figure 9. Wind turbine speed   
 
 
CONCLUSIONS 
 

 In this paper, a more efficient coordination of voltage source converter energy 

capacitor based system and two-trap shunt RC damper is proposed to enhance the 

performance of the frequency of a grid network during dynamic conditions. The working 

principle of the pulse width modulation voltage source converter and the operation 

principle of the proposed two-trap shunt RC damper were presented. The simulation 

results show that the proposed control strategy was able to enhance not only the grid 

frequency, but other variables of the network by boosting the performance of the energy 

capacitor system during grid disturbances. Also, with this topology, wind farms would 

remain connected to the grid network during grid disturbances because the permissible 

limit of operation of the grid frequency would be met based on the stipulated grid 

requirements.   
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A partial shading condition is a case under which the PV array is exposed 
to many problems such as losses of the output power of the PV array, and 
the PV array has more than one maximum power point (MPP), which 
makes it so difficult to track the MPP. This paper presents the effect of 
different partial shading patterns on PV array characteristics and the effect 
on the output power of the PV array, and provides a comparative literature 
review on methods to mitigate these effects and the drawbacks of these 
methods. It also proposed a new reconfiguration strategy that increases 
the output power of the PV array by 13.8 % from the total power under 
shadow condition, and a new technique for enhancing the output power of 
the PV array by 20 % of the total power under fully illumining conditions by 
controlling the switch matrix between the photovoltaic array and adaptive 
batteries bank. This paper gives a solution for the problem of the difficulty 
of tracking the MPP, because the proposed strategy makes only one MPP. 
The simulation was carried out by using MATLAB Simulink under different 
shading patterns. 

 
Keywords:  Photovoltaic Array; Partial shading; Reconfiguration; MATLAB Simulink; Optimization 

 

 
1. Introduction  
  

The use of photovoltaic (PV) cells for producing electricity has been recently 

increased due to reduced costs and increased efficiency of the energy conversion. They are 

widely used in many applications to reduce the effect of CO2 emission. However, two of 

the problems that still affect the performance and reliability of PV modules are shading 

and mismatch. Shading occurs, when PV system has been installed in some locations where 

exposure to shading is inevitable. For example, there is not enough land available to build 

a PV installation to prevent all types of shading. Shading of PV may also occur in the case 

of leaves, bird droppings or dirt falling on PV cells as well as surrounding structures 

(building and trees) and the shadows casting over PV cells. The effect of partial shading 

will reduce the output power of the PV array, and the mismatch may be occurring because 

cells with different characteristic performance are combined together in an array. The 

condition of a mismatch may cause power loss. When the characteristic of cells within the 
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PV array differs, individual cells may not operate at the optimal condition. As a result, 

some shaded cells consume power from the unshaded cells, and the output power of the 

PV array reduces and the shaded cells overheat. This phenomenon is called hot spot and it 

may cause damage of the PV cells. Bypass diodes are commonly used in PV arrays to 

protect against the effect of partial shading and hotspot power dissipation. A bypass diode 

is connected in parallel but in opposite polarity with the PV cell. Under normal operation, 

each solar cell will be forward biased and therefore the bypass diode will be reverse biased. 

Typically, one bypass diode is connected with a string [1]. Since the string has the same 

current because of the series connection, but the shaded cell is reverse biased to conduct 

the large current of unshaded cells [2-3]. The activation of bypass diodes causes presence 

of multiple maximum power peaks that make it difficult to track the maximum power point 

(MPP). This paper presents a solution for optimization of the maximum output power of 

the PV array and enhancement of the PV array performance. The remaining of the paper is 

organized as the following: Section 2 Literature review, Section 3 Modelling of the PV 

array, Section 4 Research method, Section 5 Simulation and results, and Section 6 

Conclusions. 

 

 

2. Literature Review 
 

Some authors discussed a great number of methods to track the global MPP of the 

PV array under partial shading conditions. Ref [4] covered a comparison between some 

techniques for tracking of the global MPP.  

Ref [5] studied the effect of the interconnection of the array according to the 

shading pattern. The author made simulation on three interconnections of PV: array series-

parallel connection (SP), total cross tie connection (TCT) and bridge linked connection 

(BL) at different shading patterns. The author concluded that Series-Parallel (SP) 

interconnection produces the maximum power as compared to Total-Cross-Tied (TCT) 

interconnection when shadow is portended to be progress on the last row of horizontal 

modules, while TCT interconnection produces the maximum power as compared to SP 

interconnections when shadow is portended to be progress on the left column of vertical 

modules. The drawback of this technique is that the shading pattern must be known.  

In Ref [6], a DC–DC converter controlled by a DC signal of adjustable amplitude 

was used to track the global MPP. 

Ref [7] discussed the optimal layout of PV modules within a PV array giving the 

maximum output power. Author found that the scheme of parallel connection of all the 

panels of the system was the best possible configuration. 

In Ref [8], a reconfiguration of the shaded modules was made within the fixed PV 

array by using adaptive bank PV modules and switching matrix. The drawbacks of this 

technique are the high cost of adaptive bank of PV modules and some of this adaptive bank 

PV modules may be shaded. 

In Ref [9], reconfiguration of the PV array by using the rough set technique (RST) 

was done. This technique depends on a complex mathematical method for reconfiguration 

of the PV array. 

Ref [10] developed a power optimizer software for executing a power conversion 

and distributing maximum power point tracking to capture maximum PV array tied to the 
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electric grid by taking input parameter data about panel, array, shading obstacles, weather 

data and using this information to perform plane of array irradiance mapping and using this 

data to develop annual simulation software for power recovery in array during complete or 

partial shading. But this system required annual update for data and it didn’t work 

accurately if there are unpredictable reason for shading. 

In Ref [11], a basic boost converter with several channels was used and the output 

of the two channel boosts was combined with an uncoupled reactor. This two-channel boost 

converter increased the output power and efficiency of the PV array, and reduced the 

harmonic in the output power. This system was controlled by pulse width modulation 

(PWM) based PI voltage mode controller. However, this converter has non-linearity and 

non-stability due to its parameter variation and is suitable for low power application only. 

If the power increased, the size of reactor and the cost increased. 

These literature reviews can be summarized as follows: Some authors used different 

methods for reconfiguration of photovoltaic array during normal operation condition such 

as ref. [5, 7-9]. Ref. [5] required the user to predict the shading pattern and use the 

appropriate system configuration, but still there are power losses that didn’t substitute. Ref. 

[4] didn’t consider the reconfiguration due to unpredictable condition such as birds and 

clouds. Ref. [7] suggested a good method for reconfiguration under different shading 

conditions and ref. [8] substituted the loss occurring due to partial shading by using 

adaptive PV array, but didn’t take in account that the partial shading occurs in the main 

and alternative PV arrays due to clouds. Ref. [9] suggested a complex method for 

reconfiguration of the PV array depending on data entry about the shading pattern. If this 

parameter changed, the system won’t work correctly. 

Some authors such as ref. [6] and [11] substituted the loss during partial shading by 

using a power electronics converter that causes the output power of the photovoltaic array 

to generate multiple power points and causes losses. Some authors suggested different 

methods for maximum power point such as ref. [4] and [10]. 

 
 
3. Modelling of the PV Array Circuit 
 

3.1 Electrical Model of PV Module (five parameter model)  
There are three models of the PV cell, i.e., ideal model, single diode model and two 

diode model. In this paper, a single diode five parameter model is used as illustrated in Fig. 

1. This electrical circuit of the PV cell represents the behavior of the real cell. This model 

is called a single diode five parameter model because it depends on five parameters that 

are the nominal PV current, diode current, series resistance, parallel resistance and output 

voltage of the PV array. These parameters can be estimated as shown in the literature [12]. 
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Figure 1.   Equivalent circuit of PV cell single diode five parameter model   

 

3.2 Mathematical Model of PV Module (five parameter model) 
 For the circuit shown in Fig. 1 it is possible to obtain Eq. 1: 

         𝐼 = 𝐼𝑝𝐻 − 𝐼𝐷 (𝑒
𝑉

𝑎 𝑣𝑡 − 1) −
𝑉+𝐼𝑅𝑠

𝑅𝑝
                                        (1) 

Where IPH is the photovoltaic current, ID is the diode current, V is the PV output voltage, 

Vt is the thermal voltage and Rs is the series resistance. Rp is the parallel resistance and I 

is the PV output current. The solution of Eq. 1 gives the I-V characteristic curve of the PV 

array. 

• Thermal voltage 

The thermal voltage of a module with Nc cells is given by the Eq. 2. 

𝑉𝑡ℎ =
𝐾 𝑇

𝑞
                                                                                 (2) 

Where the k is the Boltzmann’s constant (1.38×10-23 J/K), q is the electron charge (1.6 ×10-

19 C) and T is the temperature. 

• Diode reverse saturation current (ID) 

The diode reverse saturation current can be calculated by substituting the open 

circuit conditions (V=Voc, I=0) as shown in Eq. 3. 

𝐼𝐷 =
𝐼𝑠𝑐

exp(
𝑉𝑜𝑐

𝑎𝑁𝑐𝑉𝑡ℎ
)−1

                                                                    (3) 

Where Voc is the open circuit voltage, Isc is the short circuit current, a is the ideality factor 

of the diode and Nc is the number of cells. 

• Photovoltaic current (IPH) 

The photovoltaic current IPH depends on the temperature and the solar irradiation 

as shown in Eq. 4. 

    𝐼𝑝𝐻 = (𝐼𝑝ℎ, 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 𝐾𝑡(𝑇 − 𝑇𝑟𝑒𝑓))
𝐺

𝐺𝑟𝑒𝑓
                     (4) 

Where Iph, ref is the photovoltaic current at reference irradiance and temperature (1000 

w/m2 and 25oC), G is the incident irradiation (w/m2), Tref is the reference temperature at 

normal condition (25oC) and Gref is the reference irradiance or nominal irradiance (1000 

w/m2).  

 

 

4. Methods and Results 
 
4.1 Proposed Reconfiguration Strategy 

The PV array under partial shading conditions has a preferable performance and 

output power when the shaded modules are located in the same column or in a limited 

number of columns. Therefore, to obtain optimal optimization of the output power of the 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 111-124. doi: 10.17737/tre.2018.4.2.0068 115 

 

 

PV array during shading conditions, it is required to reconfigure the electrical connection 

of the PV array where the new reconfiguration of the electrical connection of the PV array 

must make the shaded modules in the same column or in a limited number of columns. The 

implementation of this task required using of some components (such as a current 

transformer to measure (Ib) the current passes through a bypass diode and a potential 

transformer to measure the voltage (v) across the module)  and using of electronic switches 

to make  automatic reconfiguration of the modules when  the shading occurs. The controller 

takes order from the current transformer and potential transformer to control the switching 

of the modules to achieve the best reconfiguration. 

The processes of reconfiguration of a PV matrix M × N where M is the number of 

rows and N is the number of columns are shown in the following flow chart (Fig. 2).  

 

 
 

Figure 2.   Flow chart of the proposed reconfiguration strategy 

 
 
4.2 The Principle of Operation of the Proposed Unit 

The reconfiguration strategy makes optimization of the output power of the PV 

array during partial shading condition, but the output power of the array is still lower than 

the output of the PV array under fully illumining condition. Therefore, a new technique as 

shown in Fig. 3 is used for substituting this loss of the output power of the PV array during 

partial shading conditions by using a lead acid battery connected in parallel with the PV 

array. The parameters of the lead acid battery are shown in Table 1. The voltage of battery 

is equal to the minimum voltage of series modules under uniform irradiation. When the 

partial shading occurs, the output current of the photovoltaic array reduced due to partial 

shading. The current transformer senses the current of the PV array (Ib) and sends the 
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signal to the controller. The controller compares the current value sent by the current 

transformer with the preset value of the current (Ipvm) equal to the minimum value of the 

PV array current under uniform irradiation. If the current measurement of the current 

transformers of some modules is lower than Ipvm, then the controller will send commands 

for electronic switches to stack all shaded modules from the matrix and count all shaded 

modules. If the number of the shaded modules is equal to the number of the columns, then 

the controller connects all shaded modules in one column for optimization of the output of 

the PV array and the battery substitutes these losses due to shadowing. If the number of 

shaded modules is more than / less than the number of columns, then the controller will 

connect the shaded modules in less number of columns as shown in m-file shown in 

Appendix.  

 
Table 1. The parameters of lead acid battery 

Parameter Value 

Nominal voltage 

Rated capacity 

Fully charged voltage 

Nominal discharge current 

Internal resistance 

30 V 

0.4 AH 

38.87 V 

0.08 A 

0.03 Ω 

 

 
 

Figure 3.  The new proposed unit 
  

 
5. The Simulation 
 

The simulated PV array system of 3×3 matrix as shown in Fig. 4. The PV module’s 

parameters were taken from National Renewable Energy Laboratory (NREL)’s System 

advisor model (January 2014) and sorted in Table 2.   
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Table 2. The parameters of the PV module 

Parameter Value 

IMPP 

VMPP 

PMPP 

Is.c.n. 

Vo.c.n. 

I0.n 

a 

Rs 

Rp 

8.07 A 

10.32 V 

83.28 W 

8.62 A 

13.30 V 

1.4176e-10A 

0.99132 

0.098 ohms 

82.11 ohms 
 

 
 

Figure 4.   The simulated PV array matrix. 
 

The simulated system was exposed to different irradiance conditions: 

 

5.1 Uniform Illumination Condition 
 The simulated PV array system under uniform illumination condition where all 

modules are exposed to the same irradiance of 1000 w/m2. Fig. 5(a) shows the I-V and P-

V curve characteristics of the simulated system under uniform illumination condition.  
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Figure 5 (a).   The characteristics of PV matrix under uniform irradiance 
 

5.2 Partial Shading Condition 

The influence of the shading on the output power of the PV array is discussed with 

some simulations. The reference pattern is fully illuminated modules that is an array of 3×3 

matrix at irradiance 1000 w/m2 and temperature of 25oC. This array of 9 modules with its 

progressive shading is analyzed. Several simulations are carried out considering that the 

modules from 0 to 9 are shaded. The percentage of the shaded modules to all modules are 

33.33%, i.e., three modules are shaded from the matrix. The shading pattern may occur in 

different manners in the same column or in different columns. The different cases of 

shading pattern are simulated, and the results are shown in Fig. 5 (b, c, d). 
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Figure 5 (b). The characteristics of PV matrix under shading pattern in different columns 

 

 
 

Figure 5 (c).  The characteristics of PV matrix under shading pattern in the same row 
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Figure 5 (d). The characteristics of PV matrix under shading pattern in the same column 

 

It’s shown from the simulation of the PV matrix under different shading pattern 

cases that the maximum output power occurred, when all shaded modules in the same 

columns or in minimum numbers of columns. The maximum power (600 Wp) of the shaded 

modules in the same column is about 13.8 % higher than the maximum power (490 Wp) 

of the shaded modules in the same row. Table 3 shows the output power for different 

reconfiguration at different percentages of shading.  

 
Table 3. The output power for different reconfiguration at different percentage of shading 

Percentage of 

shading 

Number of the 

shaded modules 

Pout (the 

shaded modules 

in the same 

row) 

Pout (the 

shaded module 

in the same 

column) 

Pout (the 

shaded module 

in different 

columns) 

10% 1 700 Wp 700 Wp 700 Wp 

20% 2 580 Wp 650 Wp 650 Wp 

30% 3 490 Wp 600 Wp 520 Wp 

40% 4 400 WP 500 Wp 500 Wp 

50% 5 480 Wp 480 Wp 480 Wp 

 

The simulated system of the proposed unit is shown in Fig. 6(a). The output power 

of the PV array will increase by 20% of the total output power during fully illumining by 

using the new technique as shown in Fig. 6 (b).   
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Figure 6 (a). The proposed unit of PV 3×3 matrix by using a new technique 

 

 
 

Figure 6 (b).  The characteristic of PV 3×3 matrix by using a new technique 
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5.3  A Comparison of Power Enhancement of the Proposed Method with 
Different Existing Methods 

There are three existing methods for reconfiguration of the PV array under partial 

shading conditions. In the literature [8], authors made reconfiguration during the partial 

shading and substituted the loss of power by using alternative PV modules. But this method 

isn’t an effective approach when the partial shading is due to clouds covering the main and 

alternative PV modules. The proposed technique in this paper used a storage device (a 

battery) to substitute the loss that occurs during the partial shading condition and also 

minimize the loss during partial shading. In the literature [9], authors made reconfiguration 

by a complex method and didn’t substitute the loss of the power. In the literature [13], 

authors maximized the output power of the PV array by using a battery, but the output of 

the PV array has multiple power peaks that cause problem for MPPT. In this paper, the 

output waveform has a unique MPP.  
 

 
6. Conclusions 
 

 In this paper, a novel strategy for reconfiguration of the PV array under partial 

shading conditions is presented. This new strategy increases the output power during the 

partial shading by 13.8%, prevents producing multiple MPPs, and solves the problems of 

tracking the MPP during the partial shading. A new technique with using a lead acid battery 

is presented to increase the output power of the PV under shading condition by 20%, which 

is similar to the output power of the array under fully illumining condition. The paper 

simulated the PV array with different shading parameters to optimize the output power 

during partial shading. 
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This paper assesses the impact of measurement differences on the 
spectral efficiency (SE) of distribution broadband over power lines (BPL) 
networks when CS2 module is applied. The broadband performance of 
distribution BPL networks is investigated in the 3-88 MHz frequency 
range when appropriate injected power spectral density limits  
(IPSD limits) and uniform additive white Gaussian noise (AWGN) PSD 
levels from the BPL literature are assumed. The impact of measurement 
differences on SE of the distribution BPL networks is here assessed 
through appropriate SE metrics. These SE metrics assessing this impact 
are detailed in order to act as the benchmark metrics of the 
countermeasures techniques against measurement differences of the 
companion paper. 
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1. Introduction 
  

Smart grid allows the transformation of today’s power grid to an advanced  

IP-based power network with a plethora of relevant broadband applications. Depending 

on the number and the requirements of the supported smart grid applications,  

high spectral efficiency (SE) potential of this power network should be assured [1]-[9].  

Apart from the smart grid applications, which act as SE consumers, the various 

communications technologies, which interoperate in order to assure the fine operation of 

the smart grid, act as the SE producers. Among the available communications 

technologies that can interoperate under the aegis of the smart grid, a significant role can 

be played by the broadband over power lines (BPL) technology that exploits the already 

installed power grid infrastructure [10]-[12].  

 Since distribution BPL networks –i.e., overhead (OV) and underground (UN) 

medium-voltage (MV) and low-voltage (LV) BPL networks– are benchmarked in this 

paper, the spectral behavior of distribution BPL networks is described through the hybrid 

model [1]-[8], [13]-[22]. Hybrid model has extensively been employed to examine the 

behavior of various multiconductor transmission line (MTL) configurations in BPL 
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networks and, of course, in distribution BPL networks such those that are examined in 

this paper. The hybrid model is modular and consists of: (i) a bottom-up approach that is 

based on an appropriate combination of MTL theory and similarity transformations; and  

(ii) a top-down approach that is based on the concatenation of multidimensional 

transmission matrices of the cascaded network BPL connections. Recently, a refinement 

of a top-down approach that is denoted as CS2 module, which affects the way that BPL 

signals are injected onto and extracted from the power lines of distribution BPL 

connections, has been proposed in [23]. CS2 module is the improved offspring of the 

initial CS1 module. On the basis of broadband performance metrics supported by the 

hybrid method such as coupling channel attenuation, capacity and SE, the impact of  

CS2 module on the performance of the distribution BPL networks has been assessed in 

[24]. 

 Nevertheless, as already been mentioned in [25]-[32], measurement differences 

between the experimental and theoretical results occur during the transfer function 

determination of distribution BPL networks that further affect the computation of all the 

derivative spectral efficiency metrics, such as capacity and SE. These measurement 

differences are due to a number of practical reasons and “real-life” conditions. In 

accordance with [25], [26], [28], [31], these measurement differences can comfortably be 

handled as error distributions such as continuous uniform distributions (CUDs). Since 

measurement differences affect the measurement process of coupling channel attenuation 

of CS2 module, further theoretical computations of capacity and, thus, SE are also 

influenced. In this paper, the correlation between measurement differences and SE 

performance of CS2 module is first presented when appropriate injected power spectral 

density limits (IPSD limits) and uniform additive white Gaussian noise (AWGN) PSD 

levels from the BPL literature are assumed. A set of statistical metrics is applied in order 

to assess the impact of measurement differences on the SE of distribution BPL networks. 

Among these, two sets of SE metrics are going to be used as the benchmark metrics 

either for assessing the impact of measurement differences on SE in this paper or for the 

assessment of the mitigation of measurement differences in the companion paper are 

reported while their behavior is investigated. 

The rest of this paper is organized as follows: In Section 2, a brief synopsis of 

MTL configurations of distribution power grids, indicative distribution BPL topologies, 

signal transmission in distribution BPL networks and CS2 module is given. Section 3 

deals with the measurement differences, applied IPSD limits, AWGN PSD levels and SE. 

In Section 4, numerical results and discussion are provided, aiming at numerically 

correlating the measurement differences and SE when CS2 module is applied. Two sets 

of statistical metrics are applied while those that are going to be used as the benchmark 

during the countermeasure techniques against the measurement differences of the 

companion paper are reported and highlighted. Section 5 concludes this paper. 

 

 

2. Distribution BPL Network Synopsis 
 
2.1 Distribution Power Grid MTL Configuration 
 A typical case of an OV MV and LV distribution line is depicted in  

Figs. 1(a) and 1(b), respectively. Overhead distribution lines hang above the ground and 

they consist of the three parallel non-insulated phase conductors and the neutral 
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conductor. In this paper, the neutral conductor is considered only in the case of the  

 

 
Fig. 1. Typical MTL configurations. (a) Overhead MV [1]. (b) Overhead LV [1]. (c) Underground MV [1]. 

(d) Underground LV [2]. 

 

 

OV LV distribution line while the conductors are assumed to be steel reinforced 

aluminum conductors (ACSR conductors). More details regarding the dimensions of the 

overhead distribution MTL configurations are given in [1], [3], [4], [15], [33], [34].  
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In Figs. 1(c) and 1(d), the UN MV and UN LV distribution lines are depicted, 

respectively. As the UN MV distribution line is concerned, the three-phase sector-type 

Paper Insulated Lead Covered (PILC) cable is assumed while in the case of the UN LV 

distribution line, three-phase four-conductor core-type Cross-linked polyethylene (XLPE) 

cable is assumed. Both cables of this paper are buried inside the ground and they consist 

of one shield conductor that is grounded at both ends. More details regarding the 

dimensions of the OV distribution MTL configurations are given in [1], [2], [5], [16], 

[17], [34]-[39]. 

In all the MTL configurations of the distribution power grid, which are examined 

in this paper, the conductivity of the ground is assumed 
g

 =5mS/m and its relative 

permittivity is equal to 
rg

 =13, which define a realistic scenario [1], [3], [4], [7],  

[13]-[15]. In OV distribution power grids, the ground is considered as the reference 

conductor whereas the grounded shield is considered as the reference conductor in the 

UN distribution power grids. The impact of imperfect ground on high frequency signal 

propagation via distribution power grids is detailed in [2]-[7], [13]-[15], [33], [38],  

[40]-[43]. 

 
2.2 Indicative Distribution BPL Topologies 
 In accordance with [23], BPL networks are divided into cascaded BPL 

connections, which can be treated separately. Each BPL connection is bounded by the 

transmitting end and receiving end repeaters that allow the amplification and regeneration 

of the attenuated BPL signals. Between the transmitting and receiving end of a BPL 

connection, the number of branches as well as the topological characteristics may vary 

depending on the type of the supported power grid. On the basis of its topological 

characteristics, each BPL connection can be treated as a different distribution BPL 

topology. This BPL connection consideration remains common either OV or UN 

distribution BPL networks are studied. In Fig. 2(a), a typical BPL connection with  

N branches is shown.  

With respect to Figs. 2(b) and 2(c), the hybrid model is interested in the topology 

of the BPL connections. Since the distribution BPL topology is known, the hybrid model 

separates the BPL topology into network modules. Through the two supported 

approaches of the hybrid model, each network module is treated separately and then their 

results are synthesized in order to produce the required metrics of the examined 

distribution BPL topology. In Table 1, the topological characteristics of indicative OV 

distribution BPL topologies are reported, which are common for both MV and LV power 

grids. Similarly to Table 1, indicative BPL topologies are presented in Table 2 but in the 

case of UN distribution BPL topologies. 
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Fig. 2. (a) End-to-end BPL connection with N branches. (b) Network module. (c) An indicative  

BPL topology considered as a cascade of N+1 modules corresponding to N branches [1], [23]. 

 

 
Table 1. OV Distribution BPL Topologies 

Topology 

Name 

Topology Description Number of 

Branches 

Length of 

Distribution Lines 

Length of 

Branching Lines 

Urban case A Typical OV urban topology 3 L1=500m, 

L2=200m, 

L3=100m, L4=200m 

Lb1=8m, Lb2=13m, 

Lb3=10m 

Urban case B Aggravated OV urban 

topology 

5 L1=200m, L2=50m, 

L3=100m, 

L4=200m, 

L5=300m, L6=150m 

Lb1=12m, Lb2=5m, 

Lb3=28m, Lb4=41m, 

Lb5=17m 

Suburban case OV suburban topology 2 L1=500m, 

L2=400m, L3=100m   

Lb1=50m, Lb2=10m 

Rural case OV rural topology 1 L1=600m, L2=400m Lb1=300m 

“LOS” case OV Line-of-Sight 

transmission 

0 L1=1000m - 
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Table 2. UN Distribution BPL Topologies 

Topology 

Name 

Topology Description Number of 

Branches 

Length of 

Distribution Lines 

Length of 

Branching Lines 

Urban case A Typical UN urban topology 3 L1=70m, L2=55m, 

L3=45m, L4=30m 

Lb1=12m, 

Lb2=7m,  

Lb3=21m    

Urban case B Aggravated UN urban 

topology 

5 L1=40m, L2=10m, 

L3=20m, L4=40m, 

L5=60m, L6=30m   

Lb1=22m, Lb2=12m, 

Lb3=8m, Lb4=2m, 

Lb5=17m   

Suburban case UN suburban topology 2 L1=50m, L2=100m, 

L3=50m    

Lb1=60m, Lb2=30m   

Rural case UN rural topology 1 L1=50m, L2=150m Lb1=100m   

“LOS” case UN Line-of-Sight 

transmission 

0 L1=200m - 

 

 

Apart from the topological characteristics of Tables 1 and 2, the hybrid model 

receives as input the circuital parameters of the distribution BPL topologies as well as 

several assumption affecting the transmission and propagation of the BPL signal across 

the distribution BPL topologies. As the circuital parameters are concerned, those are 

detailed in [1]-[8], [13], [15], [17], [34], [35], [44]-[46]. As the transmission and 

propagation assumptions are concerned, those can be synopsized as follows:  

(i) the cables of the branching lines are assumed identical to the distribution ones;  

(ii) the interconnections between the distribution and branch lines are assumed to be fully 

activated; (iii) the transmitting and the receiving ends are assumed matched to the 

characteristic impedance of the distribution lines; and (iv) the branch terminations are 

assumed open circuit. 

 
2.3 BPL Signal Transmission 
 Hybrid model that deals with the BPL signal propagation and transmission across 

MTL configurations of distribution BPL networks is based on: (i) a matrix approach of 

the bottom-up approach that extends the standard transmission line (TL) analysis to the 

MTL one, which involves more than two conductors; and (ii) the concatenation of 

multidimensional transmission matrices of the cascaded network modules of the  

top-down approach. One of the main outputs of the hybrid model is the 𝑛G × 𝑛G channel 

transfer function matrix 𝐇{∙} that relates line voltages 𝐕(𝑧) = [𝑉1(𝑧) ⋯ 𝑉𝑛G(𝑧)]T at 

the transmitting (z=0) and the receiving (z=L) ends where nG is the number of the 

conductors of the examined MTL configuration and  T  denotes the transpose of a matrix.  

The channel transfer function matrix depends on the frequency, the power grid type,  

the physical properties of the cables and the geometry of the MTL configuration [1], [3], 

[44], [47]. 

 
2.4 BPL Signal Coupling and CS2 Module 
 According to how signals are injected onto and extracted from the lines of 

distribution BPL networks, different coupling schemes occur [1], [4], [7], [13]-[15].  

With reference to Figs. 3(a) and 3(b), the components of a coupling scheme module at the 

transmitting and the receiving end are highlighted, respectively.  

In [23], [24], CS2 module has been introduced and compared against its 

predecessor CS1 module. The performance differences among different coupling scheme 
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modules come from the adjustment of the elements 𝐶𝑖
in, 𝑖 = 1, ⋯ , 𝑛G at the transmitting 

end and of the elements 𝐶𝑖
out , 𝑖 = 1, ⋯ , 𝑛G  at the receiving end.  

The elements 𝐶𝑖
in, 𝑖 = 1, ⋯ , 𝑛G of the input coupling vector 𝐂in are the input coupling 

coefficients as well as the participation percentages of the conductors of the MTL 

configuration during the BPL signal injection while the elements 𝐶𝑖
out, 𝑖 = 1, ⋯ , 𝑛G of 

the output coupling vector 𝐂out are the output coupling coefficients. On the basis of a 

number of restrictions detailed in [23], [24], the coupling scheme channel transfer 

function of a coupling scheme module that relates output BPL signal 𝑉out− and input 

BPL signal 𝑉in+ is given by 


 
 

    CC

Cin

C-out

C inout

V

V
H CHC ==

+
                                          (1) 

where  C  denotes the applied coupling scheme. 

In accordance with [23], [24] and eq. (1), CS2 module can support three types of 

coupling schemes, namely: 

• Coupling Scheme Type 1: Wire-to-Ground (WtG) or Shield-to-Phase (StP) 

coupling schemes. The signal is injected into only one conductor at the 

transmitting end and returns via the ground or the shield for overhead or 

underground BPL connections, respectively. The signal is extracted from the 

same conductor at the receiving end. Hereafter, WtG or StP coupling between 

conductor s, 𝑠 = 1, ⋯ , 𝑛G and ground or shield will be detoned as WtGs or StPs, 

respectively.  

• Coupling Scheme Type 2: Wire-to-Wire (WtW) or Phase-to-Phase (PtP) coupling 

schemes. The signal is injected in equal parts between two conductors. The signal 

is extracted from the same conductors. WtW or PtP coupling between conductors 

p and q, 𝑝, 𝑞 = 1, ⋯ , 𝑛G will be detoned as p-qWtW  or p-qPtP , respectively. 

• Coupling Scheme Type 3: MultiWire-to-MultiWire(MtM) or  

MultiPhase-to-MultiPhase (MtM) coupling schemes. The signal is injected among 

multiple conductors with different participation percentages for OV or UN BPL 

connections, respectively. Similarly to the previous coupling scheme types,  

the signal is extracted from the same conductor set at the receiving end.  

As it concerns MTM coupling scheme notation, for example, MtM coupling 

among the three conductors p, q and r, 𝑝, 𝑞, 𝑟 = 1, ⋯ , 𝑛G   with participation 

percentages equal to in

p
C , in

q
C  and in

r
C , respectively, will be detoned as 

rqp

CCC

−−
in
r

in
q

in
p __

MtM . 

 

 

3. Factors Affecting SE Performance 
 
3.1 Measurement Differences 
 Although the theoretical computation of the coupling scheme channel transfer 

function, as described in eq. (1), is well-defined and verified, a set of practical reasons  
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Fig. 3. Coupling scheme module [23], [24]. (a) BPL signal injection interface at the transmitting end.  

(b) BPL signal extraction interface at the receiving end. 

 

 

and “real-life” conditions create significant differences between experimental 

measurements and theoretical results during the determination of the measured coupling 

scheme channel transfer function of distribution BPL topologies. In accordance with [25], 

[27], [30], the causes of these measurement differences can be grouped into six categories 

while the measured coupling scheme transfer function 𝐻C̅̅ ̅̅ {∙} for given coupling scheme 

can be determined in mathematical terms by 

𝐻C̅̅ ̅̅ (𝑓𝑖) = 𝐻C(𝑓𝑖) + 𝑒(𝑓𝑖), i=1,…,u                                 (2) 

where fi, i=1,…,u denotes the measurement frequency, e(fi) synopsizes the total 

measurement difference in dB due to the six categories and u is the number of 

subchannels in the examined frequency range. According to [27], [30]-[32], the total 

measurement difference can be assumed to follow either continuous uniform distribution 

(CUD) with minimum value −𝑎CUD  and maximum value 𝑎CUD  or normal distribution 

(ND) with mean 𝜇ND  and standard deviation 𝜎ND . In this pair of papers,  

only the CUD case is examined. 

 

3.2 EMI Policies and Power Constraints 
 A variety of EMI policies that implies corresponding IPSD limits concerning the 

BPL operation occurs. The goal of these IPSD limits is to regulate the EMI emissions of 

the BPL technology in order not to interfere with other wireless and wireline services that 

operate at the same frequency band. The IPSD limits proposed by Ofcom are adopted in 

this paper [1]-[8], [13], [48]-[54]. Synoptically, in the 3-30 MHz frequency range, 
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maximum levels of -60 dBm/Hz and –40 dBm/Hz constitute appropriate IPSD limits 

𝑝(𝑓) for OV and UN distribution BPL networks, respectively, whereas in the 30-88MHz 

frequency range, maximum IPSD limits 𝑝(𝑓) equal to -77 dBm/Hz and –57 dBm/Hz for 

the respective OV and UN distribution BPL networks are assumed. 

 

3.3 Noise Characteristics 
 As the noise properties of distribution BPL networks are concerned in the  

3-88 MHz frequency range [1]-[8], a uniform AWGN PSD levels 𝑁(𝑓) will be assumed 

equal to -105 dBm/Hz and -135 dBm/Hz in the case of OV and UN distribution BPL 

networks, respectively. 

 

3.4 SE 
 In accordance with [24], SE refers to the information in bps/Hz that can be 

reliably transmitted over the used BPL bandwidth for the examined distribution BPL 

topology. In general terms, SE describes the maximum achievable transmission rate per 

Hz that can be reliably transmitted over the examined BPL network. SE depends on the 

applied MTL configuration, the examined BPL topology, the coupling scheme applied, 

the EMI policies adopted and the noise environment [1]-[8]. SE for given coupling 

scheme channel is determined from 

𝑆𝐸(𝑓𝑖) = log2 {1 + [
〈𝑝(𝑓𝑖)〉𝐿

〈𝑁(𝑓𝑖)〉𝐿
∙ |𝐻𝐶 (𝑓𝑖)|2]} , 𝑖 = 1, … , 𝑢                                          (3) 

where 
L

  is an operator that converts dBm/Hz into a linear power ratio (W/Hz).  

On the basis of eq. (3), the min, max and average SE are going to be examined in this 

paper in order to highlight the impact of the measurement differences and the different 

coupling schemes. 

 

 

4. Numerical Results and Discussion 
  

The numerical results of the supported coupling schemes by the CS2 module for 

various power grid types and distribution BPL topologies as well as the different intensity 

levels of measurement differences aim at assessing the impact of the measurement 

differences on the SE performance. 

 

4.1 SE without Measurement Differences 
 The broadband performance, in terms of SE in the 3-88 MHz frequency band,  

is assessed by applying CS2 module when the indicative OV and UN distribution BPL 

topologies of Sec.2.2 are considered. The IPSD limits of Sec.3.2 and the AWGN levels of 

Sec.3.3 are applied. Also, three representative coupling schemes, each one representing a 

coupling scheme type, are considered in OV distribution BPL networks; say, WtG1, 

WtW1-2 and 
3-2-1

1.0_1.0_8.0MtM −−  coupling schemes for the coupling scheme type 1, 2 and 3, 

respectively. Similarly to OV distribution BPL networks, StP1, PtP1-2 and 
3-2-1

1.0_1.0_8.0MtM −−  

coupling schemes for the coupling scheme type 1, 2 and 3, respectively, are considered 

for the UN distribution BPL networks.  

In Figs. 4(a)-(c), SE of the indicative OV MV BPL topologies is plotted versus 

the frequency when WtG1, WtW1-2 and 
3-2-1

1.0_1.0_8.0MtM −−  coupling scheme is applied,  
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Fig. 4. SE of the indicative OV MV BPL topologies in the 3-88 MHz frequency band when different 

coupling schemes are applied. (a) WtG1 coupling scheme. (b) WtW1-2 coupling scheme. (c) 3-2-1

1.0_1.0_8.0MtM −−
 

coupling scheme.  
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Fig. 5. SE of the indicative UN MV BPL topologies in the 3-88 MHz frequency band when different 

coupling schemes are applied. (a) StP1 coupling scheme. (b) PtP1-2 coupling scheme. (c) 3-2-1

1.0_1.0_8.0MtM −−
 

coupling scheme.  
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Fig. 6. Same with Fig. 4 but for the case of the indicative OV LV BPL topologies.  
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Fig. 7. Same with Fig. 5 but for the case of the indicative UN LV BPL topologies.  
 

 

respectively. In Figs. 5(a)-(c), SE of the indicative UN MV BPL topologies is plotted 

versus the frequency when StP1, PtP1-2 and 
3-2-1

1.0_1.0_8.0MtM −−  coupling scheme is applied, 

respectively. In Figs. 6(a)-(c), same plots with Figs. 4(a)-(c) are given but for the case of 

the indicative OV LV BPL topologies while in Figs. 7(a)-(c), same curves with  

Figs. 5(a)-(c) are presented but for the case of the indicative UN LV BPL topologies. 

Observing Figs. 4(a)-(c), 5(a)-(c), 6(a)-(c) and 7(a)-(c), it is evident that the SE of 

the “LOS” case acts as a SE mask for the other indicative distribution BPL topologies of 

the same distribution power grid type and coupling scheme. Since “LOS” topologies 

present the most favorable transmission behavior in comparison with the other branched 

BPL topologies, this profile of low channel attenuation of “LOS” topologies is also 

reflected on a favorable SE performance that is the best of the other respective ones of the 

other distribution BPL topologies.  

Also, in all the indicative BPL topologies examined, there are two distinctive 

frequency bands of SE performance that are bounded by a SE step of the “LOS” case. 

This SE step is approximately equal to 5 bps/Hz and is located at 30 MHz in all the 

indicative distribution BPL topologies regardless of their distribution power grid type and 

the coupling scheme. This SE step is explained by the fact that a significant change of the 

applied IPSD limits occurs at 30 MHz, while IPSD limits remain higher at the frequency 

band of 3-30 MHz in comparison with the ones at the frequency band of 30-88 MHz 

despite the examined power grid type. In general, the higher IPSD limits of  

UN distribution BPL networks with the lower noise AWGN levels explain the higher SE 

values of distribution BPL topologies. 

In addition, the recent research effort regarding the capacity enhancement of 

distribution BPL networks through the wise use of coupling scheme modules has 

significantly improved the SE of WtW/PtP coupling schemes while proposes new  
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SE efficient with low electromagnetic interference (EMI) such as MtM coupling schemes 

[23], [24]. Indeed, for the same power grid type and coupling scheme, the SE differences 

among the different applied coupling schemes remain now relatively low. In contrast 

with CS1 module [1], [8], [47], CS2 module allows the WtW and PtP coupling schemes 

to present approximately the same SE results with the WtG and StP coupling schemes, 

respectively. Here it should be reminded the better EMC performance of WtW and PtP 

coupling schemes [15], [33]. Also, the careful selection of the used conductors of the 

examined MTL configurations as well as the respective participation percentages can 

offer higher SE results than the SE of the traditional WtG and WtW coupling schemes 

with even better electromagnetic compatibility (EMC) behavior through the use of  

MtM coupling schemes in OV and UN distribution BPL topologies.  

In order to easily distinguish the SE performance differences among different 

power grid types, indicative BPL topologies and coupling schemes, a set of statistical 

metrics, which is denoted hereafter as set A and consists of the minimum, the maximum 

and the average value, of SE for each of the examined cases in Figs. 4(a)-(c), 5(a)-(c), 

6(a)-(c) and 7(a)-(c), is reported in Table 3. 

 From Table 3, it is evident that MtM coupling schemes achieve the best SE 

performance statistical metrics in comparison with the coupling schemes of coupling 

scheme type 1 and 2. This favorable SE performance can be combined with appropriate 

adjustment of the participation percentages so that better EMC can be assured and  

IPSD limits can be further relaxed. However, the complexity of the BPL unit installation 

is a critical issue since more than two conductors of the MTL configurations are required. 

As the coupling schemes of the coupling scheme type 1 and 2 are examined, WtW and 

PtP coupling schemes are indeed almost SE equivalent to WtG and StP coupling 

schemes, respectively, when CS2 module is adopted. In addition, by observing SE 

minimum values of all the cases examined, it is evident that the rich multipath 

environment of the urban and suburban distribution BPL topologies creates spectral 

notches that further affect the SE performance regardless of the examined power grid 

type. This last observation explains the almost zero values of the SE minimum values of 

the Table 3. In contrast, in accordance with the Figs. 4(a)-(c), 5(a)-(c), 6(a)-(c) and  

7(a)-(c), the SE maximum values of the examined distribution BPL topologies follow the 

“LOS” mask for given power grid type and coupling scheme type. In fact, the maximum 

value for the “LOS” cases is observed at 3 MHz whereas in all the other cases their SE 

maximum value is observed in the 3-30 MHz frequency band in relation with the “LOS” 

mask. Hence, the average SE for each examined distribution BPL topology offers a very 

descriptive statistical metric for the performance since describes the impact of the 

channel attenuation, IPSDM limits and AWGN levels across the entire  

3-88 MHz frequency band. In order to examine the impact of the measurement 

differences on the SE performance, only the average SE performance for each 

distribution BPL topology is examined, hereafter. 
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Table 3. SE Statistical Metrics of Set A for the Different Indicative Distribution BPL Topologies 

(the frequency spacing is equal to 0.1 MHz) 

  SE  

(bps/Hz) 

  (WtG1 / StP1) (WtW1-2 / PtP1-2) 3-2-1

1.0_1.0_8.0MtM −−
 

Distribution 

power grid 

type 

Topology 

Name 

Min Max Average Min Max Average Min Max Average 

 

 

 

 

OVMV 

Urban 

case A 

0 13.96 7.00 0 14.57 7.19 0 15.00 7.35 

Urban 

case B 

0 14.19 5.39 0 14.51 5.59 0 14.77 5.74 

Suburban 

case 

0 14.35 8.29 0 14.63 8.49 0 15.05 8.64 

Rural 

case 

2.45 14.25 9.25 2.25 14.87 9.43 1.34 15.41 9.58 

“LOS” 

case 

8.73 14.37 10.48 8.75 14.89 10.68 8.76 15.41 10.83 

 

 

 

 

OVLV 

Urban 

case A 

0 14.34 7.12 0 14.62 7.19 0 15.04 7.30 

Urban 

case B 

0 14.43 5.51 0 14.53 5.58 0 14.75 5.70 

Suburban 

case 

0 14.51 8.40 0 14.76 8.47 0 15.18 8.59 

Rural 

case 

2.33 14.45 9.37 2.38 14.81 9.43 1.83 15.24 9.55 

“LOS” 

case 

8.82 14.53 10.60 8.67 14.83 10.67 8.69 15.23 10.78 

 

 

 

 

UNMV 

Urban 

case A 

0 28.69 9.57 0 28.69 9.57 0 28.69 9.57 

Urban 

case B 

0 28.52 8.05 0 28.52 8.05 0 28.52 8.05 

Suburban 

case 

0 30.26 10.46 0 30.26 10.46 0 30.26 10.46 

Rural 

case 

0.02 30.07 11.37 0.02 30.07 11.37 0.02 30.07 11.37 

“LOS” 

case 

0.05 30.51 12.33 0.05 30.51 12.33 0.05 30.51 12.33 

 

 

 

 

UNLV 

Urban 

case A 

6.89 30.50 21.73 7.12 30.19 21.21 7.19 30.31 21.41 

Urban 

case B 

5.67 30.36 19.20 5.80 30.07 18.68 5.75 30.20 18.89 

Suburban 

case 

17.62 31.10 22.95 17.16 30.92 22.43 17.26 30.98 22.64 

Rural 

case 

20.00 31.10 24.12 19.38 30.93 23.60 19.59 30.99 23.81 

“LOS” 

case 

21.69 31.20 25.29 20.93 31.06 24.77 21.25 31.11 24.97 
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4.2 SE with Biased Measurement Differences 
 With reference to eq. (2), the SE impact of measurement differences is examined 

in this subsection. As measurement differences can be expressed in dB, the average SE 

and the range of the average SE for given positive value 𝑎  in dB is presented in the 

following figures when the indicative distribution BPL topologies are assumed. In detail, 

the lower and the upper limit of the average SE range are calculated for given 𝑎  value 

when the minimum value −𝑎  and the maximum value 𝑎  are applied across the entire 

set of the measured coupling scheme transfer function, respectively. In this subsection, it 

should be noted that the assumed value of 𝑎  is added to the measured coupling scheme 

transfer function of each measurement frequency thus acting as a bias. 

 More specifically, in Figs. 8(a)-(c), the upper and the lower limits of the average 

SE range of the indicative OV MV BPL topologies are plotted versus the value 𝑎  when 

WtG1, WtW1-2 and 
3-2-1

1.0_1.0_8.0MtM −−  coupling scheme is applied, respectively.  

In Figs. 9(a)-(c), the upper and the lower limit of the average SE range of the indicative 

UN MV BPL topologies is plotted versus the value 𝑎  when StP1, PtP1-2 and 
3-2-1

1.0_1.0_8.0MtM −−  coupling scheme is applied, respectively. In Figs. 10(a)-(c), same plots 

with Figs. 8(a)-(c) are given but for the case of the indicative OV LV BPL topologies 

while in Figs. 11(a)-(c), same curves with Figs. 9(a)-(c) are presented but for the case of 

the indicative UN LV BPL topologies. In Table 3, the results concerning the average SE 

range of Figs. 8-11 with respect to the different 𝑎  values of the measurement 

differences are reported. 
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Fig. 8. Limits of the average SE range of the indicative OV MV BPL topologies in the 3-88 MHz 

frequency band when FCC limits are assumed and different coupling schemes are applied. (a) WtG1 

coupling scheme. (b) WtW1-2 coupling scheme. (c) 3-2-1

1.0_1.0_8.0MtM −−
 coupling scheme.  
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Fig. 9. Limits of the average SE range of the indicative UN MV BPL topologies in the 3-88 MHz 

frequency band when FCC limits are assumed and different coupling schemes are applied. (a) StP1 

coupling scheme. (b) PtP1-2 coupling scheme. (c) 3-2-1

1.0_1.0_8.0MtM −−
 coupling scheme.  
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Fig. 10. Same with Fig. 8 but for the case of the indicative OV LV BPL topologies.  
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Fig. 11. Same with Fig. 9 but for the case of the indicative UN LV BPL topologies.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 125-184. doi: 10.17737/tre.2018.4.2.0076 153 

 

Table 4. Average SE Range for Different 𝑎  Values 

(the frequency spacing is equal to 0.1 MHz) 

  Average SE Range 

(bps/Hz) 

  (WtG1 / StP1) (WtW1-2 / PtP1-2) 3-2-1

1.0_1.0_8.0MtM −−
 

Distribution 

power grid 

type 

Topology 

Name 

𝑎CUD

= 0dB 

𝑎CUD

= 1dB 

𝑎CUD

= 2dB 

𝑎CUD

= 5dB 

𝑎CUD

= 0dB 

𝑎CUD

= 1dB 

𝑎CUD

= 2dB 

𝑎CUD

= 5dB 

𝑎CUD

= 0dB 

𝑎CUD

= 1dB 

𝑎CUD

= 2dB 

𝑎CUD

= 5dB 

 

 

 

 

OVMV 

Urban 

case A 0.00 0.60 1.20 2.85 0.00 0.60 1.20 2.81 0.00 0.60 1.19 2.77 

Urban 

case B 0.00 0.54 1.07 2.61 0.00 0.54 1.07 2.60 0.00 0.54 1.07 2.57 

Suburban 

case 0.00 0.63 1.26 2.87 0.00 0.63 1.24 2.79 0.00 0.62 1.20 2.72 

Rural 

case 0.00 0.66 1.29 2.77 0.00 0.65 1.25 2.61 0.00 0.60 1.15 2.44 

“LOS” 

case 0.00 0.66 1.18 2.27 0.00 0.65 1.08 2.08 0.00 0.54 0.94 1.93 

 

 

 

 

OVLV 

Urban 

case A 0.00 0.60 1.20 2.83 0.00 0.60 1.20 2.81 0.00 0.60 1.19 2.77 

Urban 

case B 0.00 0.54 1.07 2.60 0.00 0.54 1.07 2.59 0.00 0.54 1.07 2.58 

Suburban 

case 0.00 0.63 1.25 2.82 0.00 0.63 1.24 2.79 0.00 0.62 1.21 2.74 

Rural 

case 0.00 0.65 1.27 2.68 0.00 0.65 1.25 2.63 0.00 0.61 1.18 2.50 

“LOS” 

case 0.00 0.66 1.14 2.16 0.00 0.64 1.10 2.09 0.00 0.56 0.98 1.98 

 

 

 

 

UNMV 

Urban 

case A 0.00 0.48 0.96 2.39 0.00 0.48 0.96 2.39 0.00 0.48 0.96 2.39 

Urban 

case B 0.00 0.42 0.84 2.10 0.00 0.42 0.84 2.10 0.00 0.42 0.84 2.10 

Suburban 

case 0.00 0.50 1.01 2.52 0.00 0.50 1.01 2.52 0.00 0.50 1.01 2.52 

Rural 

case 0.00 0.53 1.06 2.65 0.00 0.53 1.06 2.65 0.00 0.53 1.06 2.65 

“LOS” 

case 0.00 0.56 1.11 2.77 0.00 0.56 1.11 2.77 0.00 0.56 1.11 2.77 

 

 

 

 

UNLV 

Urban 

case A 0.00 0.66 1.33 3.32 0.00 0.66 1.33 3.32 0.00 0.66 1.33 3.32 

Urban 

case B 0.00 0.66 1.33 3.32 0.00 0.66 1.33 3.32 0.00 0.66 1.33 3.32 

Suburban 

case 0.00 0.66 1.33 3.29 0.00 0.66 1.33 3.31 0.00 0.66 1.33 3.30 

Rural 

case 0.00 0.66 1.33 3.27 0.00 0.66 1.33 3.29 0.00 0.66 1.33 3.29 

“LOS” 

case 0.00 0.66 1.32 3.15 0.00 0.66 1.33 3.22 0.00 0.66 1.33 3.19 

 

 

From Figs. 8-11, it is clear that the measurement differences significantly 

influence the computation accuracy of the average SE of the examined indicative 

distribution BPL topologies. As the measurement uncertainty increases so does the limits 
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as well as the average SE range for given BPL topology and coupling scheme type.  

In accordance with the figures and the Table 4, each dB increase of the measurement 

difference uncertainty creates an average uncertainty of 0.60 bps/Hz in the computed 

average SE. Also, the average SE range cumulatively increases with the measurement 

uncertainty. Graphically, this almost stable cumulative relation between the average SE 

range and 𝑎  values of the measurement differences explains the linear representation of 

the upper and lower limits of the average SE range in Figs. 8-11 for given distribution 

BPL topology and coupling scheme type. Here, it should be noted that some deviations 

from the linear consideration, such as the “LOS” cases of Figs. 8(a)-(c) and 10(a)-(c), are 

due to the minimum channel attenuation restriction of 0dB. In addition, it should be 

pointed out that the SE impact of measurement differences remains almost the same 

regardless of the considered coupling scheme of the CS2 module. 

 

4.3 SE with CUD Measurement Differences 
 As already been mentioned in [25], [26], [28], [31], measurement differences can 

comfortably be handled as error distributions such as CUDs. However, the handling of 

measurement differences through CUDs rather than the biased values of the previous 

subsection becomes a challenging issue due to the behavior of the traditional statistical 

metrics of maximum, minimum and average SE.  

 In order to examine the impact of real measurement differences CUDs on the SE 

as well as the measurement differences countermeasures of [55], five representative CUD 

measurement differences, which are denoted as CUD1-5, with respective 𝑎CUD ranging 

from 1dB to 5dB are assumed. In Figs. 12(a)-(c), the metrics of set A, say, maximum, 

minimum and average SE of the indicative OV MV BPL topologies are plotted versus the 

value 𝑎CUD  when WtG1, WtW1-2 and 3-2-1

1.0_1.0_8.0MtM −−  coupling scheme is applied, 

respectively. Note that each 𝑎CUD  corresponds to the respective CUD measurement 

difference whereas at zero the results refer to the SE case without measurement 

differences. In Figs. 13(a)-(c), maximum, minimum and average SE of the indicative UN 

MV BPL topologies are plotted versus the value 𝑎CUD  when StP1, PtP1-2 and 
3-2-1

1.0_1.0_8.0MtM −−  coupling scheme is applied, respectively. In Figs. 14(a)-(c), same plots 

with Figs. 12(a)-(c) are given but for the case of the indicative OV LV BPL topologies 

while in Figs. 15(a)-(c), same curves with Figs. 13(a)-(c) are presented but for the case of 

the indicative UN LV BPL topologies. 
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Fig. 12. Maximum, minimum and average SE of the indicative OV MV BPL topologies in the 3-88 MHz 

frequency band when FCC limits are assumed and different coupling schemes are applied for different 

CUD measurement differences. (a) WtG1 coupling scheme. (b) WtW1-2 coupling scheme.  

(c) 3-2-1

1.0_1.0_8.0MtM −−
 coupling scheme.  
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Fig. 13. Maximum, minimum and average SE of the indicative UN MV BPL topologies in the 3-88 MHz 

frequency band when FCC limits are assumed and different coupling schemes are applied for different 

CUD measurement differences. (a) StP1 coupling scheme. (b) PtP1-2 coupling scheme. (c) 3-2-1

1.0_1.0_8.0MtM −−
 

coupling scheme.  
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Fig. 14. Same with Fig. 12 but for the case of the indicative OV LV BPL topologies.  
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Fig. 15. Same with Fig. 13 but for the case of the indicative UN LV BPL topologies.  
 

 

By observing Figs. 12-15, measurement differences slightly affect the maximum, 

minimum and average SE for given distribution BPL topology and coupling scheme type 

regardless of their maximum value 𝑎CUD. This is a rational result since CUDs are adopted 

in order to describe the distribution of measurement differences. Although small 

differences of the average SE can be observed, these differences are not efficient to give 

an accurate estimation of the intensity of the occurred measurement differences in 

comparison with the respective results of biased measurement differences. Anyway, 

small average SE differences can be observed for the same maximum value 𝑎CUD if the 

different CUD is considered. However, after the application of countermeasures against 

the measurement differences, it is expected that the set A metrics after the measurement 

difference mitigation techniques should present values closer to the theoretical ones than 

set A metrics of the measured SE now do. This hypothesis is examined in [55]. 

 The need for assessing the intensity of the measurement differences urges the 

application of statistical metrics that depend on the value 𝑎CUD of the CUD measurement 

differences. In accordance with [25]-[29], two statistical metrics, i.e., mean absolute error 

(MAE) and root mean square deviation (RMSD), can easily assess the impact of 

measurement differences while their behavior depends on the value 𝑎CUD  of the  

CUD measurement differences. Set B consists of these two metrics. 

In Figs. 16(a)-(c), the MAE of the average SE of the indicative OV MV BPL 

topologies are plotted versus the value 𝑎CUD  when WtG1, WtW1-2 and 3-2-1

1.0_1.0_8.0MtM −−  

coupling scheme is applied, respectively. Note again that each 𝑎CUD corresponds to the 

respective CUD measurement difference whereas at zero the results refer to the SE case 

without measurement differences. In Figs. 17(a)-(c), the MAE of the average SE of the 

indicative UN MV BPL topologies are plotted versus the value 𝑎CUD when StP1, PtP1-2 

and 3-2-1

1.0_1.0_8.0MtM −−  coupling scheme is applied, respectively.  
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Fig. 16. MAE of SE of the indicative OV MV BPL topologies in the 3-88 MHz frequency band when FCC 

limits are assumed and different coupling schemes are applied for different CUD measurement differences. 

(a) WtG1 coupling scheme. (b) WtW1-2 coupling scheme. (c) 3-2-1

1.0_1.0_8.0MtM −−
 coupling scheme.  
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Fig. 17. MAE of SE of the indicative UN MV BPL topologies in the 3-88 MHz frequency band when FCC 

limits are assumed and different coupling schemes are applied for different CUD measurement differences. 

(a) StP1 coupling scheme. (b) PtP1-2 coupling scheme. (c) 3-2-1

1.0_1.0_8.0MtM −−
 coupling scheme.  
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Fig. 18. Same with Fig. 16 but for the case of the indicative OV LV BPL topologies.  
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Fig. 19. Same with Fig. 17 but for the case of the indicative UN LV BPL topologies.  
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Fig. 20. RMSD of SE of the indicative OV MV BPL topologies in the 3-88 MHz frequency band when 

FCC limits are assumed and different coupling schemes are applied for different CUD measurement 

differences. (a) WtG1 coupling scheme. (b) WtW1-2 coupling scheme. (c) 3-2-1

1.0_1.0_8.0MtM −−
 coupling scheme.  
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Fig. 21. RMSD of SE of the indicative UN MV BPL topologies in the 3-88 MHz frequency band when 

FCC limits are assumed and different coupling schemes are applied for different CUD measurement 

differences. (a) StP1 coupling scheme. (b) PtP1-2 coupling scheme. (c) 3-2-1

1.0_1.0_8.0MtM −−
 coupling scheme.  
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Fig. 22. Same with Fig. 20 but for the case of the indicative OV LV BPL topologies.  
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Fig. 23. Same with Fig. 21 but for the case of the indicative UN LV BPL topologies.  
 

 

In Figs. 18(a)-(c), same plots with Figs. 12(a)-(c) are given but for the case of the 

indicative OV LV BPL topologies while in Figs. 19(a)-(c), same curves with  

Figs. 13(a)-(c) are presented but for the case of the indicative UN LV BPL topologies.  

In Figs. 20-23, same curves for the root mean square deviation (RMSD) of SE are given 

for the Figs. 16-19, respectively. 

By observing Figs. 16-23, several interesting conclusions can be deduced.  

More specifically: 

• In contrast with the traditional metrics of the maximum, minimum and average 

SE (i.e., metrics of Set A), the metrics of Set B (i.e., MAE and RMSD) can detect 

the existence of measurement differences while their values increase with the 

increase of the measurement difference 𝑎CUD.  

• Measurement differences influence in a different way the MAE and RMSD of the 

average SE depending on the distribution power grid type and distribution BPL 

topology. However, small order differences among the indicative distribution 

BPL topologies can be pointed out. Anyway, approximately 0.2 bps/Hz of RMSD 

is added for each 1dB increase of maximum value 𝑎CUD  regardless of the 

distribution power grid type and distribution BPL topology. Note that when 

measurement differences of 𝑎CUD  that is equal to 5 dB are assumed  

RMSD of 1 bps/Hz can be observed.  

• When the SE is computed for given distribution BPL network and coupling 

scheme, it is unknown if measurement differences occur and if do which is their 

intensity. The countermeasures techniques of [55] aim at restoring the actual SE 

without a priori knowledge of the intensity of the measurement differences.  

In fact, the proposed SE countermeasure techniques can act as a necessary filter 

after the SE computation in order to identify and restore the actual SE that is free 

from measurement differences.  
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• Although maximum, minimum and average SE cannot provide evidence about the 

intensity of measurement differences and their impact, they can act as integrity 

metric for the countermeasures techniques of [55] that aim at retrieving the real 

SE of distribution BPL topologies. 

 

 

5. Conclusions 
  

 This paper has focused on the SE performance of distribution BPL networks 

when different coupling schemes of the CS2 module, different BPL topologies and 

different types and intensities of measurement differences are assumed. It has been 

revealed that the SE performance depends on the type of the distribution power grid type, 

IPSD limits, noise levels and the examined distribution BPL topology.  

Also, the maximum, minimum and average SE (i.e., metrics of Set A) significantly 

depend on the level of the biased measurement differences. In contrast with the biased 

measurement differences, CUD measurement differences have little effect to the 

maximum, minimum and average SE of the distribution BPL topologies. In order to 

identify the existence and the intensity of the measurement differences, MAE and RMSD 

(i.e., metrics of Set B) are employed during the SE computation in distribution BPL 

topologies. The behavior of MAE and RMSD strongly depends on the value 𝑎CUD of the 

CUD measurement differences rather than the distribution power grid type, distribution 

BPL topology and the applied coupling scheme. The role of MAE and RMSD is 

important since they can assess the mitigation efficiency of the measurement difference 

countermeasure techniques of [55]. 
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This second paper assesses the performance of piecewise monotonic 
data approximations, such as L1PMA, L2WPMA and L2CXCV, against 
the measurement differences during the spectral efficiency (SE) 
calculations in overhead medium-voltage broadband over power lines 
(OV MV BPL) networks. In this case study paper, the performance of the 
aforementioned three already known piecewise monotonic data 
approximations, which are considered as countermeasure techniques 
against measurement differences, is here extended during the  
SE computations. The indicative BPL topologies of the first paper are 
again considered while the 3-30MHz frequency band of the  
BPL operation is assumed. 
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1. Introduction 
  

Smart energy is a sustainable and worthwhile energy system where energy 

production, transmission and delivery are integrated and coordinated with the energy 

consumption, smart grid applications, energy services, active producers / consumers, 

renewable / storage solutions and enabling communications technologies. However, the 

emerging advanced IP-based power network requires high spectral efficiency (SE) 

potential so that the supported plethora of relevant broadband applications can be easily 

supported [1]-[3].  

 Among the enabling communications technology solutions of the smart grid, 

Broadband over Power Lines (BPL) technology attracts the interest of many decision 

makers due to the low installation cost of the BPL devices on the existing power grid 

infrastructure. Already presented in [4], the spectral behavior of distribution BPL 

networks –i.e., overhead (OV) and underground (UN) medium-voltage (MV) and  

low-voltage (LV) BPL networks– is assessed through the hybrid model [5]-[22].  

In this paper, CS2 module, which constitutes a refinement of the hybrid model 

concerning its containing top-down approach, is adopted. On the basis of the SE,  
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the impact of CS2 module and of the measurement differences between the experimental 

and theoretical results on the broadband performance of the distribution BPL networks 

has been assessed in [4]. Here, it should be noted that measurement differences have been 

handled as error distributions and especially by following continuous uniform 

distributions (CUDs) of maximum and minimum value 𝑎CUD and -𝑎CUD, respectively. 

The assessment has been accomplished through the lens of appropriate statistical 

performance metrics of SE that are classified into two metric sets. Set A consists of the 

maximum, minimum and average SE while Set B comprises the mean absolute error 

(MAE) and the root mean square deviation (RMSD) of SE. 

 To mitigate the aforementioned measurement differences that further affect the 

statistical performance metrics, three well-known piecewise monotonic data 

approximations (i.e., L1PMA, L2WPMA and L2CXCV) are going to be applied  

[23]-[32]. Until now, L1PMA, L2WPMA and L2CXCV have been applied and examined 

in transmission and distribution BPL networks in order to counteract the occurred 

measurement differences during the channel attenuation computations [31]-[37].  

Useful results, which are going to be adopted in this paper, concerning the application 

properties of piecewise monotonic data approximations against the measurement 

differences during the channel attenuation computations have been deduced in [36], [37]. 

On the basis of these application properties, the application of the piecewise monotonic 

data approximations is extended to the SE results in order to reveal the theoretical SE 

values by ignoring the fluctuations of channel attenuation computations due to the 

measurement differences and without knowing the CUD measurement difference 

properties (i.e., maximum and minimum values of the CUD measurement distributions). 

The countermeasure efficiency of the L1PMA, L2WPMA and L2CXCV against the 

measurement differences during the SE computation is assessed for comparison reasons 

on the basis of: (i) the main performance metric of the piecewise monotonic data 

approximation method [33], [36], that is the percent error sum (PES); and  

(ii) the statistical performance metrics of set A and B that already been applied in [4]. 

The rest of this paper is organized as follows: In Sec.2, a brief presentation of the 

L1PMA, L2WPMA and L2CXCV is given. Sec.3 synopsizes the applied performance 

metrics, already been presented in [4]. The strong and the weak points of the performance 

metrics are demonstrated. Sec.4 discusses the simulation results of various distribution 

BPL topologies intending to mark out the efficiency of L1PMA, L2WPMA and 

L2CXCV against the restoration of the theoretical SE when measurement differences of 

various CUD properties are considered. Sec.5 concludes this paper. 

 

 

2. Measurement Differences and Piecewise Monotonic Data Approximation 
Methods 
 
2.1 Measured and Theoretical SE 
 As already been mentioned in [4], [36], [37], a number of practical reasons and 

“real-life” conditions create significant differences between experimental measurements 

and theoretical results during the determination of transfer functions. However, these 

transfer function computation fluctuations affect SE.  

In fact, the measurement differences that occur during the transfer function 

determination of BPL networks indirectly affect the determination of SE. Numerically, 
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when measurement differences are taken into consideration, the measured distribution 

BPL coupling transfer function 𝐻C̅̅ ̅̅ {∙} for given coupling scheme C is determined by 

𝐻C̅̅ ̅̅ (𝑓𝑖) = 𝐻C(𝑓𝑖) + 𝑒(𝑓𝑖)                                               (1) 

where fi, i=1,…,u denotes the measurement frequency, 𝐻𝐶(𝑓𝑖) is the theoretical coupling 

transfer function that is given by the application of the hybrid model presented in [4],  

e(fi) synopsizes the total measurement difference that follows continuous uniform 

distributions (CUDs) in dB with minimum value −𝑎CUD and maximum value 𝑎CUD and  

u is the number of subchannels in the examined frequency range. On the basis of eq. (3) 

of [4], the measured and theoretical SE for given coupling scheme channel C can be 

respectively determined by 

𝑆𝐸𝐶̅̅ ̅̅ ̅(𝑓𝑖) = log2 {1 + [
〈𝑝(𝑓𝑖)〉𝐿

〈𝑁(𝑓𝑖)〉𝐿
∙ |𝐻C̅̅ ̅̅ (𝑓𝑖)|

2
]} , 𝑖 = 1, … , 𝑢                  (2) 

𝑆𝐸𝐶(𝑓𝑖) = log2 {1 + [
〈𝑝(𝑓𝑖)〉𝐿

〈𝑁(𝑓𝑖)〉𝐿
∙ |𝐻𝐶(𝑓𝑖)|2]} , 𝑖 = 1, … , 𝑢                   (3) 

where 𝑝{∙}  are appropriate IPSD limits expressed in dBm/Hz that ensure the low 

electromagnetic interference (EMI) of BPL system operation to the other 

telecommunication systems that operate at the same frequency band, 𝑁{∙} are uniform 

additive white Gaussian noise (AWGN) PSD levels expressed in dBm/Hz and 
L

  is an 

operator that converts dBm/Hz into a linear power ratio (W/Hz). By comparing eqs. (2) 

and (3), it is evident that SE depends on the assumed coupling transfer function while 

significant differences between measured and theoretical coupling transfer functions 

entail differences between measured and theoretical SE. 

 In order to cope with the measurement differences, various monotonic data 

approximation methods, which treated as countermeasure techniques against 

measurement differences, have been proposed by Demetriou, such as L1PMA, L2WPMA 

and L2CXCV [23]-[32]. Their countermeasure efficiency against measurement 

differences during the determination of the coupling transfer functions of distribution 

BPL networks has been extensively validated in [34]-[41] while a number of useful smart 

grid applications concerning the power grid monitoring and control have been proposed 

on the basis of these piecewise monotonic data approximations. Here, the aforementioned 

three piecewise monotonic data approximations are applied in order to reveal the 

theoretical SE when measured SE, the distribution BPL topology and the applied 

coupling scheme are already known. Actually, piecewise monotonic data approximations 

aim at mitigating the deviations between the measured and the theoretical SE which are 

the result of the existence of measurement differences. With reference to eq. (2) and (3), 

piecewise monotonic data approximations give as output the approximated SE for given 

coupling scheme channel C, say: 

𝑆𝐸𝐶̿̿ ̿̿ ̿(𝑓𝑖) = 𝑞{𝑆𝐸𝐶̅̅ ̅̅ ̅(𝑓𝑖)}, 𝑖 = 1, … , 𝑢                                 (4) 

where 𝑞{∙}  is the general function of the applied piecewise monotonic data 

approximations. It should be noted that during the determination of the approximated SE 

of eq. (4), CUD properties of measurement differences are not known.  

 To apply the aforementioned three piecewise monotonic data approximations  

(i.e., L1PMA, L2WPMA and L2CXCV) and to determine the piecewise monotonic data 

approximation of eq. (4), the special application characteristics of each one are mentioned 

in the following subsections. 

 
2.2 L1PMA 
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 L1PMA decomposes the input data (i.e., SE data in this paper) into separate 

monotonous sections between its adjacent turning points (primary extrema) by exploiting 

the piecewise monotonicity property of transmission and distribution BPL transfer 

functions [25], [26]. On the basis of the minimization of the moduli sum between the 

output data (L1PMA approximation data of SE) and input data into the separate 

monotonous sections, L1PMA achieves to mitigate the uncorrelated SE differences, 

which come from the assumed measurement differences, by neglecting the existence of 

few large ones [33], [36], [37]. The L1PMA application is based on the Fortran software 

package that is freely available online in [42] receives as inputs the measured SE,  

the measurement frequencies and the number of monotonic sections (i.e., either user- or 

computer-defined) and primarily gives as output the best fit of the measured SE.  

As already been presented in [36], [37], critical role during the computation of the best of 

the measured SE plays the selection of the number of the monotonic sections. 

 
2.3 L2WPMA 
 Similarly to L1PMA, L2WPMA decomposes the examined input data (i.e., either 

transfer function data or SE data of this paper), which are contaminated by measurement 

differences, into separate monotonous sections between its primary extrema [31], [36], 

[37]. L2WPMA is implemented by a Fortran software package that is freely available 

online in [31]. As in L1PMA case, L2WPMA software receives as input the measured 

SE, the measurement frequencies and the number of monotonic sections and primarily 

gives as output a spline representation of the measured SE. Conversely to L1PMA, 

L2WPMA focuses on the first divided of input data and demands the minimization of the 

weighted sum of the square of the measurement differences by requiring specific number 

of sign changes. The number of sign changes is equal to the number of monotonic 

sections minus one. Again, the number of monotonic sections is either user- or  

computer-defined. 

 
2.4 L2CXCV 
 In accordance with [32], [36], [37], L2CXCV smooths the input data with 

measurement differences in the least square error sense. In contrast with L1PMA and 

L2WPMA, L2CXCV does not focus on the number of monotonic sections but on the 

second divided differences of the smoothed values by solving a strictly convex quadratic 

programming problem for each set [32]. Similarly to L1PMA and L2CXCV, the Fortran 

software package that is applied to implement L2CXCV is freely available online in [43]. 

In general, L2CXCV receives as input the measured SE and gives as output the fit of the 

measured SE. 

 

3. Performance Metrics 
 
3.1 PES 
 In accordance with [33], [36], PES is the main performance metric that is 

employed to assess the approximation accuracy when piecewise monotonic data 

approximation methods are applied in BPL networks. More specifically, in this paper, 

PES expresses as a percentage the total sum of the relative differences between the 

examined SE and the theoretical SE for all the used frequencies. There are two 

submetrics of PES that should be compared in order to benchmark the mitigation 

efficiency of the applied piecewise monotonic data approximation method, say:  
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• PESmeas: This PES submetric examines the relative difference between the SE, 

which is affected by the measurement differences, and the theoretical SE.  

With reference to eqs. (2) and (3), PESmeas is given by:  

𝑃𝐸𝑆meas = 100% ∙
∑ |𝑆𝐸𝐶̅̅ ̅̅ ̅̅ (𝑓𝑖)−𝑆𝐸𝐶(𝑓𝑖)|𝑢

𝑖=1

∑ |𝑆𝐸𝐶(𝑓𝑖)|𝑢
𝑖=1

                                   (5) 

• PESapprox: This PES submetric examines the relative difference between the 

approximated and the theoretical SE. With reference to eqs. (3) and (4), PESapprox 

is given by:  

𝑃𝐸𝑆approx = 100% ∙
∑ |𝑆𝐸𝐶̿̿ ̿̿ ̿̿ (𝑓𝑖)−𝑆𝐸𝐶(𝑓𝑖)|𝑢

𝑖=1

∑ |𝑆𝐸𝐶(𝑓𝑖)|𝑢
𝑖=1

                                 (6) 

From eqs. (5) and (6), the PES difference that is given by 

Δ𝑃𝐸𝑆 = 𝑃𝐸𝑆meas − 𝑃𝐸𝑆approx                                        (7) 

determines the quality of the approximation. If ΔPES is positive, the examined 

approximation method successfully mitigates the measurement differences. ΔPES helps 

towards the determination of the optimal number of monotonic sections of L1PMA and 

L2WPMA [36], [37].  

 
3.2 Metrics of Set A and B 
 In accordance with [4], two sets of performance metrics (i.e., Set A and B) can be 

applied in order to assess either the SE impact of measurement differences or the  

SE mitigation efficacy of piecewise monotonic data approximations against measurement 

differences. Both performance metrics sets can give benchmark results to the 

aforementioned two issues. In [4], both sets have been applied and have assessed the  

SE impact of measurement differences. On the basis of the results of [4], these sets are 

here adopted in order to assess the mitigation efficiency of measurement differences by 

three piecewise monotonic data approximations. The first set of performance metrics, 

which is denoted as Set A, concerns the influence of the measurement differences on the 

general properties of the SE results while the second set, which is denoted as Set B, 

assesses the SE impact intensity of measurement differences. More specifically: 

• Set A: With reference to eqs. (2) and (3), it is assumed that the measured and 

theoretical SE for given coupling scheme channel C are already known.  

Set A consists of the metrics of: (i) average value of SE; (ii) maximum value of 

SE; and (iii) minimum value of SE. Since measured SE is infected by unbiased 

measurement differences, it is expected that average, maximum and minimum 

values remain almost the same with the respective metrics of the theoretical SE. 

This has already been verified in [4]. Hence, the metrics of set A are unable to 

identify the existence and the intensity of measurement differences although even 

small divergences of the three metrics indicate the existence of measurement 

differences. If measurement differences occur and piecewise monotonic data 

approximations are applied in order to mitigate these measurement differences, 

the set A metrics of the approximated SE of eq. (4) should remain almost the 

same with the respective metrics of the theoretical SE.  

Therefore, the set A metrics act as an integrity metric for the countermeasures 

techniques of [4]. 

• Set B: Set B consists of two metrics, say: (i) MAE; and (ii) RMSD.  

With reference to [4] and in contrast with the metrics of Set A, the metrics of  

Set B can not only detect the existence but also to assess the intensity of the 
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measurement differences. In fact, the values of the Set B metrics increase with the 

increase of the measurement difference 𝑎CUD . Anyway, the set B metrics 

constitute comparison metrics between measured and theoretical SE.  

If measurement differences occur and piecewise monotonic data approximations 

are applied in order to mitigate these measurement differences, the set B metrics 

of the approximated SE of eq. (4) should give closer values to the theoretical ones 

in comparison with the respective metrics of the measured SE. 

 

 

4. Numerical Results and Discussion 
  

Various topologies of OV MV BPL networks, which have been presented in 

Sec.2.2 of [4] and are also common in [36], [37], are here simulated with the purpose of 

comparatively benchmarking the SE mitigation efficiency of L1PMA, L2WPMA and 

L2CXCV against measurement differences added during the transfer function 

determination.  

As the propagation and transmission specifications are regarded, those are the 

same with [33]-[37]. Arbitrarily, the WtG1 coupling scheme is applied during the 

following simulations. As it is usually done [5], [11], [13], [44], the selection of 

representative coupling schemes is a typical procedure for the sake of reducing 

manuscript size. 

As the spectral exploitation properties are concerned, injected power spectral 

density limits (IPSD limits) of Ofcom are adopted [4]-[13], [45]-[51], while a uniform 

AWGN PSD levels ( )fN  will be assumed equal to 105− dBm/Hz in the case of  

OV MV BPL networks. In order to compute SE of OV MV BPL topologies,  

the BPL frequency range and flat-fading subchannel frequency spacing are first assumed 

equal to 3-30MHz and 0.1MHz, respectively, so that the required SE accuracy can be 

preserved. However, in order to apply the piecewise monotonic data approximations, the 

flat-fading subchannel frequency spacing is assumed equal to 0.1MHz. The latter 

specification has been made so that: (i) the results of SE can clearly be presented in the 

following figure; and (ii) the results concerning the selection of monotonic sections can 

be comparable with the respective results of [36], [37] that deal with the application 

behavior of piecewise monotonic data approximations in channel attenuation results.  

For the latter case, note that the BPL frequency range and flat-fading subchannel 

frequency spacing are assumed equal to 1-30MHz and 1MHz, respectively, in [36], [37].  

Finally, as the nature of measurement differences and the mitigation of 

measurement differences are concerned, unbiased measurement differences are assumed, 

which affect the measurements of channel attenuation –see eqs. (1) and (2)– and [4]. 

Measurement differences follow continuous uniform distributions (CUDs) with minimum 

value −𝑎CUD and maximum value 𝑎CUD. The piecewise monotonic data approximations 

are applied when the measured SE of eq. (1) are known for given maximum value 𝑎CUD  

and the approximation results of piecewise monotonic data approximations are directly 

compared against the theoretical SE of eq. (2). Afterwards, the aforementioned difference 

is compared against the difference between the measured and the theoretical SE.  

The mitigation efficiency of piecewise monotonic data approximations depends on the 

relation between the aforementioned two differences. 
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4.1 SE ΔPES of L1PMA, L2WPMA and L2CXCV against Measurement 
Differences 
 By simply maintaining the monotonicity pattern, piecewise monotonic data 

approximations achieve to mitigate the additive measurement differences so that 

approximations that resemble the theoretical data can be made [36]. To examine the 

impact of measurement differences on the SE of OV MV BPL topologies and the 

potential of counterbalancing the measurement differences, in Figs. 1(a)-(d), the 

theoretical and the measured SE are plotted versus frequency for the four indicative  

OV MV BPL topologies, respectively. Note that the measured SE corresponds to 

measurement difference CUD of 𝛼CUD=5dB. Also, in each figure, apart from the 

theoretical and measured SE curves, three L1PMA SE approximation curves are also 

presented when the number of monotonic sections is assumed to be equal to 2, 5 and 20. 

In Figs. 2(a)-(d) and 3(a)-(d), same plots are given with Figs. 1(a)-(d) but for the 

application of L2WPMA and L2CXCV, respectively. 

Comparing Figs. 1-3 and Figs. 2-4 of [36], certain similarities and differences 

between SE and channel attenuation approximations can be pointed out: 

• In [36], piecewise monotonic data approximations have mitigated the 

measurement differences that had been added to the measured channel attenuation 

while, in this paper, piecewise monotonic data approximations try to mitigate the 

measured SE whose calculations are based on the measured channel attenuation. 

Hence, piecewise monotonic data approximations have directly mitigated the 

measurement differences in [36] while they indirectly mitigate measurement 

differences in this paper. 

• Although piecewise monotonic data approximations indirectly mitigate the 

measurement differences in this paper, L1PMA, L2WPMA and L2CXCV can 

satisfactorily retrieve the theoretical SE properties of the indicative OV MV BPL 

topologies.  

• The performance of piecewise monotonic data approximations strongly depends 

on the examined OV MV BPL topology, the maximum value 𝛼CUD of the applied 

measurement difference CUD and the number of monotonic sections.  

• As the mitigation performance of piecewise monotonic data approximations is 

examined with relation to the OV MV BPL topology, the presence of many short 

branches along the end-to-end transmission path entails a rich multipath 

environment. As already been mentioned in [33], [36], the spectral notches 

(extrema) that appear in the rich multipath environments (i.e., urban case) require 

additional monotonic sections so that the SE approximation may be accurate. 

Thanks to their adjustable number of monotonic sections, L1PMA and L2WMPA 

can be adaptive in order to improve their approximation efficiency by focusing on 

the improvement of SE ΔPES. Conversely, when OV MV BPL topologies of low 

number and long branches are examined (i.e., “LOS”, rural and suburban case), 

L1PMA and L2WPMA need low number of monotonic sections so that high SE 

ΔPES can be achieved. Also, L2CXCV, which does not take as input monotonic 

sections, can provide very good approximations of SE curves for specific OV MV 

BPL topologies. 

To more elaborately examine the SE approximation by applying piecewise monotonic 

approximations, the relation among SE approximation accuracy, the maximum value 

𝛼CUD, the applied piecewise monotonic data approximation and the number of monotonic 
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sections should be investigated. As already been mentioned in Sec.3.1, SE ΔPES acts as 

the main metric that assesses the mitigation efficiency of the piecewise monotonic data  
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Fig. 1. Theoretical, measured and approximated SE of indicative OV MV BPL topologies when L1PMA is 

applied, measurement difference CUD of 𝛼CUD=5dB is assumed. Three representative cases of monotonic 

sections (i.e, k=1, 2 and 20) are assumed for the SE approximation. (a) Urban case. (b) Suburban case.  

(c) Rural case. (d) “LOS” case. 
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Fig. 2. Same curves with Fig.1 but for L2WPMA. 
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Fig. 3. Same curves with Fig.1 but for L2CXCV. 

 

 

approximations. For the Figs. 1-3, the SE ΔPES curves of the applied piecewise 

monotonic data approximations are given in Figs. 4-6, respectively, when various 

measurement difference CUDs and number of monotonic sections are considered.  

In fact, maximum value 𝛼CUD that ranges from 0 to 5dB is assumed.  

On the basis of Figs. 4-6, the maximum SE ΔPES and the corresponding number of 

monotonic sections are reported in Tables 1-3 when L1PMA, L2WPMA and L2CXCV 

are applied, respectively. 
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Fig. 4. SE ΔPES of indicative OV MV BPL topologies when L1PMA is applied and measurement 

difference CUD of 𝛼CUD=5dB is assumed. Three representative cases of monotonic sections (i.e, k=1, 2 

and 20) are assumed for the SE approximation –see also Figs. 1(a)-(d)–. (a) Urban case. (b) Suburban case.  

(c) Rural case. (d) “LOS” case. 
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Fig. 5. Same curves with Fig.4 but for L2WPMA –see also Figs. 2(a)-(d)–. 
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Fig. 6. Same curves with Fig.4 but for L2CXCV –see also Figs. 3(a)-(d)–. 
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Table 1. Maximum ΔPES and Corresponding Number of Monotonic Sections when L1PMA is Applied  

 

Maximum 

Value αCUD 

(dB) 

 

Indicative OV MV BPL Topologies 

Urban Case A Suburban Case Rural Case “LOS” Case 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 
0 -1.92×10-5 11 -2.09×10-5 19 -1.71×10-5 5 -1.72×10-5 5 

1 -5.27×10-7 9 7.7×10-3 17 0.23 5 0.41 3 

2 0.09 11 1.47×10-6 17 0.76 1 0.71 1 

3 3.18×10-6 15 0.45 5 1.85 1 1.89 1 

4 0.17 9 0.34 5 1.58 2 1.50 2 

5 -4.97×10-6 13 0.68 5 2.33 1 2.09 1 

 

Table 2. Maximum ΔPES and Corresponding Number of Monotonic Sections when L2WPMA is Applied  

 

Maximum 

Value 

αCUD 

(dB) 

 

Indicative OV MV BPL Topologies 

Urban Case A Suburban Case Rural Case “LOS” Case 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 
0 -1.86×10-5 11 -2.15×10-5 19 -1.72×10-5 5 -1.71×10-5 5 

1 -4.30×10-7 9 -3.07×10-6 19 0.41 3 0.42 3 

2 0.23 9 0.41 7 1.28 1 1.24 1 

3 0.14 9 0.67 5 2.69 1 2.62 1 

4 0.71 9 1.23 5 1.98 2 1.95 1 

5 0.09 9 1.27 5 3.81 1 3.59 1 

 

 
Table 3. Maximum ΔPES and Corresponding Number of Monotonic Sections when L2CXCV is Applied  

 

Maximum 

Value 

αCUD 

(dB) 

 

Indicative OV MV BPL Topologies 

Urban Case A Suburban Case Rural Case “LOS” Case 

SE 

ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE 

ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE 

ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE 

ΔPES 

(%) 

Number of 

Monotonic 

Sections 
0 -13.64 - -8.25 - -0.42 - -0.29 - 

1 -15.53 - -7.16 - 0.3185 - 0.38 - 

2 -10.98 - -5.61 - 1.18 - 1.11 - 

3 -9.65 - -4.52 - 2.22 - 2.27 - 

4 -7.26 - -2.93 - 2.42 - 2.19 - 

5 -7.15 - -2.44 - 2.70 - 2.47 - 

 

 

From Figs. 4-6 and Tables 1-3, certain remarks can be reported that characterize 

the application behavior of piecewise monotonic data approximations for the various  

OV MV BPL topologies. More specifically: 

• When urban OV MV BPL topologies are examined, piecewise monotonic data 

approximations cannot satisfactorily mitigate the added measurement differences. 

Actually, when the assumed maximum value 𝛼CUD remains low (i.e., below 2dB), 

all the applied piecewise monotonic data approximations of this paper cannot 

provide a clearly better SE approximation than the measured SE since SE ΔPES 

remains marginally lower than zero in these cases. In contrast, when the assumed 

maximum value 𝛼CUD becomes high (i.e., above 2dB), L2WPMA provides  

SE approximations that are better than measured SE (i.e., SE ΔPES higher than 
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zero). These L2WPMA SE approximations are marginally better than the 

measured SE while these SE approximations of urban OV MV BPL topologies 

are achieved by using higher numbers of monotonic sections. 

• Suburban OV MV BPL topologies present a similar SE ΔPES behavior with 

urban ones. L1PMA and L2WPMA offer a marginally improved SE ΔPES 

behavior when high maximum values 𝛼CUD are observed. Although the SE 

approximation improvement still remains marginal in the majority of the 

examined cases (i.e., below 1%), a relatively high number of monotonic sections, 

but smaller than the number of monotonic sections used in urban OV MV BPL 

topologies, is required. Either urban or suburban OV MV BPL topologies are 

examined, L2CXCV fail in all the cases to mitigate the measurement differences. 

Anyway, this behavior of L2CXCV in urban and suburban OV MV BPL 

topologies has also been verified when L2CXCV achieves to directly mitigate the 

measurement differences in channel attenuations curves (see Tables 2 and 3 of 

[36]). 

• On the basis of the achieved SE ΔPES, all the applied piecewise monotonic data 

approximations provide significant improvement concerning the mitigation of 

measurement differences when SE is examined. The SE ΔPES improvement can 

reach up to 3.59% when severe measurement differences (i.e., maximum values 

𝛼CUD of 5dB) are observed. Since rural and “LOS” OV MV BPL topologies 

present low and rare spectral notches, simple approximations, which ignore the 

frequent notches imposed by the measurement differences, can achieve high SE 

ΔPES. Therefore, due to this poor multipath environment of rural and “LOS” OV 

MV BPL topologies, L1PMA and L2WPMA require low number of monotonic 

sections to achieve these rather simple approximations. Since the simple 

approximations are the more suitable for the rural and “LOS” OV MV BPL 

topologies, L2CXCV also achieves high ΔPES in these cases.  

• Although different CUDs are assumed between this paper and [36] and the nature 

of the measurement difference mitigation differs (i.e., direct or indirect 

measurement difference mitigation), the results concerning the assessment of 

piecewise monotonic data approximations remain approximately the same:  

o The main contribution of piecewise monotonic data approximations 

against measurement differences is focused on rural and “LOS” OV MV 

BPL topologies when high maximum values 𝛼CUD are considered. In these 

cases, L2WPMA and L2CXCV can offer SE ΔPES that reaches up to 

3.81%. 

o Comparing Tables 1-3 of this paper with the Tables 2-5 of [36],  

small differences between the relative ranking of L2WPMA and L2CXCV 

are due to: (i) the different CUDs that are applied in these two papers; and 

(ii) the nature of the measurement difference mitigation.  

o With reference to the SE ΔPES, the best SE approximation for given OV 

MV BPL topology and maximum value 𝛼CUD=5dB is highlighted with 

blue color in Table 2 (i.e., blue L2WPMA SE approximations).  

Apart from SE ΔPES, to evaluate the quality of the approximations, the metrics of the set 

A and B of the SE approximations should tend to the respective metrics of the  

theoretical SE. In the following subsection, the blue L2WPMA SE approximations will 
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be benchmarked against the respective theoretical SE and measured SE with reference to 

the metrics of set A and B. 

 

4.2 Case Study – Piecewise Monotonic Data Approximations and Metrics of  
Set A and B 
 Apart from the improvement of SE ΔPES, which remains the basic metric of 

approximation evaluation, the metrics of set A and B of SE piecewise monotonic data 

approximations should comply with the respective metrics of the theoretical SE so that 

the approximation can be considered as successful for various computations.  

In the case study of this subsection, the metrics of the blue L2WPMA SE approximations 

of Sec.4.1 will be compared against the respective ones of the theoretical and measured 

SE. More specifically: 

• Set A: The metrics of Set A are: (i) the average value of SE; (ii) the maximum 

value of SE; and (iii) the minimum value of SE. In Table 4, the metrics of Set A 

are reported for the theoretical SE, measured SE and the blue L2WPMA SE 

approximations for the indicative OV MV BPL topologies of this paper when the 

maximum value 𝛼CUD is assumed equal to 5dB. 

• Set B: The metrics of Set B are: (i) MAE; and (ii) RMSD. In Table 5, the metrics 

of Set B are reported for the theoretical SE, measured SE and the blue L2WPMA 

SE approximations for the indicative OV MV BPL topologies of this paper when 

the maximum value 𝛼CUD is assumed equal to 5dB. 

From Tables 4 and 5, piecewise monotonic data approximations not only improve the  

SE subchannel estimation but also improve the macroscopic SE estimation that is 

described by the metrics of Set A and Set B. More specifically: 

• As blue L2WPMA SE approximation is assumed, its average values of  

SE remains greater or equal to the respective values of measured SE in all the 

indicative OV MV BPL topologies that are examined. In fact, the average values 

of SE of the blue L2WPMA SE approximation are closer to the respective values 

of the theoretical SE in comparison with the respective values of SE. This is valid 

even if high intensity of measurement differences is considered  

(i.e., the maximum value 𝛼CUD is assumed equal to 5dB). Same observations can 

also be made in the cases of the maximum and minimum value of SE.  

• MAE and RMSD describe the deviation among the approximated, measured and 

theoretical SE data. Hence, the metrics of set B again validate the mitigation 

success of the blue L2WPMA SE approximation against measurement 

differences. In all the cases examined, blue L2WPMA SE approximation achieved 

MAE and RMSD with values lower or equal than the respective values of the 

measured SE. Also, the values of MAE and RMSD of the blue L2WPMA SE 

approximation tend to the zero values of the theoretical SE. 

• Already been mentioned in [4], the metrics of set A cannot identify the intensity 

of measurement differences since the differences remain marginal.  

In contrast, the metrics of set B, which behave similar to PES, depend on the 

existence and the intensity of the measurement differences.  
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Table 4. Metrics of Set A for the Theoretical SE, Measured SE and blue L2WPMA SE approximations. 
Indicati

ve OV 

MV 

BPL 

Topolog

y 

Metrics of Set A 

Average Value of SE  

(bps/Hz) 

Maximum Value of SE  

(bps/Hz) 

Minimum Value of SE  

(bps/Hz) 

Theoretic
al SE 

Measur
ed SE 

(𝛼CUD=5

) 

Blue  
L2WPMA 

SE 

Approximati
on 

Theoretic
al SE 

Measur
ed SE 

(𝛼CUD=5

) 

Blue 
L2WPMA 

SE 

Approximati
on 

Theoretic
al SE 

Measur
ed SE 

(𝛼CUD=5

) 

Blue 
L2WPMA 

SE 

Approximati
on 

Urban 

Case A 

10.08 9.86 9.86 13.60 14.22 14.22 1.91 2.36 2.36 

Suburba
n Case 

12.03 11.81 11.83 14.35 14.63 14.31 6.98 6.13 6.13 

Rural 

Case 

13.85 13.60 13.65 14.25 14.95 14.34 12.92 12.32 12.71 

“LOS” 
Case 

13.98 13.71 13.76 14.37 14.95 14.42 12.88 12.49 12.72 

 

 
Table 5. Metrics of Set B for the Theoretical SE, Measured SE and blue L2WPMA SE approximations. 

 

Indicative OV MV 

BPL Topology 

Metrics of Set B 

MAE  

(bps/Hz) 

RMSD  

(bps/Hz) 

Theoretical 

SE 

Measured 

SE 

(𝛼CUD=5) 

Blue  

L2WPMA SE 
Approximation 

Theoretical 

SE 

Measured 

SE 

(𝛼CUD=5) 

Blue 

L2WPMA SE 
Approximation 

Urban Case A 0 0.78 0.78 0 0.92 0.89 

Suburban Case 0 0.79 0.64 0 0.93 0.80 

Rural Case 0 0.76 0.23 0 0.89 0.31 

“LOS” Case 0 0.75 0.24 0 0.87 0.32 

 

 

• Piecewise monotonic data approximations can act as a prerequisite subsystem 

when measurement differences exist. In fact, their presence becomes more critical 

when measurement differences of high intensities are present. If the suitable 

piecewise monotonic data approximation is selected, the measurement difference 

mitigation results can be achieved regardless of the maximum value 𝛼CUD. 

• The most crucial role for achieving high performances against measurement 

differences regardless of their maximum value 𝛼CUD plays the selection of the 

suitable piecewise monotonic data approximation as well as its optimal number of 

monotonic sections. On the basis of the results of this Section and in accordance 

with [36], [37], the optimal number of monotonic sections can determine:  

(i) the accuracy of L1PMA and L2WPMA as expressed by PES;  

(ii) the accuracy of L1PMA and L2WPMA as expressed by the metrics of Set A 

and B; and (iii) the performance accuracy of the piecewise monotonic data 

approximations that use monotonic sections against the approximations that do 

not use (i.e., L2CXCV).  

• The indirect mitigation of measurement differences by using piecewise monotonic 

data approximations has revealed that even if same OV MV BPL topologies are 

examined the metric results are differentiated because of the different applied 

coupling schemes and the optimal number of monotonic sections. As concerns the 

direct mitigation of measurement differences by using piecewise monotonic data 

approximations, exhaustive investigation has been made in [33], [36], [37] for the 

impact of specific factors, such as the applied coupling scheme, the examined OV 

MV BPL topology, the maximum CUD value and the optimal number of 
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monotonic sections [33], [36], [37]. The observations made there are also valid 

during the indirect mitigation of measurement differences.   

 

5. Conclusions 
  

 This paper constitutes a case study on the indirect measurement difference 

mitigation during SE computations in OV MV BPL networks by applying L1PMA, 

L2WPMA and L2CXCV. This paper has exploited the direct measurement difference 

mitigation observations during channel attenuation computations in distribution BPL 

networks. The impact of the different piecewise monotonic data approximations,  

the different OV MV BPL topologies, the number of monotonic sections (when they are 

required) and different types and intensities of measurement differences have been 

assessed. With reference to PES, it has been proven that the piecewise monotonic data 

approximations can provide significant mitigation of measurement differences during  

SE computations. The SE performance characteristics of piecewise monotonic data 

approximations is related with the respective channel attenuation performance 

characteristics. Since suitable piecewise monotonic data approximations have been 

selected, the maximum SE, minimum SE, average SE, SE MAE and SE RMSD of the 

approximation present values that are closer to the theoretical ones in comparison with 

the respective values of the measurements. Higher measurement difference mitigation 

performances are achieved when higher maximum values 𝛼CUD of the CUD measurement 

differences are assumed. 
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In the present work, Artificial Neural Network (ANN) model has been 
developed to predict the energy and exergy efficiency of a roughened 
solar air heater (SAH).  Total fifty data sets of samples, obtained by 
conducting experiments on SAHs with three different specification of 
wire-rib roughness on the absorber plates, have been used in this work. 
These experimental data and calculated values of thermal efficiency and 
exergy efficiency have been used to develop an ANN model. Levenberg-
Marquardt (LM) and Scaled Conjugate Gradient (SCG) learning 
algorithm were used to train the proposed ANN model. Six numbers of 
neurons were found with LM learning algorithm in the hidden layer as the 
optimal value on the basis of statistical error analysis. In the input layer, 
the time of experiments, mass flow rate, ambient temperature, mean 
temperature of air, absorber plate temperature and solar radiation 
intensity have been taken as input parameters; and energy efficiency 
and exergy efficiency have been taken as output parameters in the 
output layer. The 6-6-2 neural model has been obtained as the optimal 
model for prediction. Performance predictions using ANN were 
compared with the experimental data and a close agreement was 
observed. Statistical error analysis was used to evaluate the results. 
 

 
Keywords:  Solar air heater; Energy analysis; Exergy analysis; Artificial Neural Network; Multi-layer 

perceptron 

 

 
Introduction  
  

 In view of limited reserves of fossil fuels on the earth, it is necessary to develop 

efficient systems to use alternative sources of energy. Many types of renewable energy 

are available on the earth, in which solar energy is one of the most abundant and clean 

sources of energy. Solar energy can be utilized in two ways: active and passive. In 

passive solar energy utilization, sun rays are directly used without the aid of any 

equipment. In the active way of utilization of solar energy, sun rays are not directly used, 

and some kind of mechanical equipment is needed for conversion of the solar energy into 

other forms of energy. Solar air heater (SAH) comes in the category of active solar 

energy utilization.  

In solar air heating systems, the solar collector or absorber plate is the main 

component which collects the solar energy in form of thermal energy and transfers the 

same to flowing air through the SAH duct. Due to the low heat capacity of flowing air, 
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the convective heat transfer coefficient between the absorber plate and air is low. Hence, 

the main aim is to increase the heat transfer coefficient and thereby the heat flow rate. 

This objective can be achieved by using extended surfaces [1] or artificial roughness [2-5] 

on the absorber plate on the air flow side, or porous heat absorbing materials in the air 

flow duct of SAH [6,7]. 

In the present work, concepts of energy and exergy analyses have been used for 

evaluating the performances of roughened absorber plate SAH by ANN modeling. The 

quantitative energy analysis of any system is based on first law of thermodynamics, 

whereas the qualitative analysis is based on second law of thermodynamics. In recent 

years many researchers have carried out energy and exergy analyses of thermal systems. 

A mathematical model was developed by Ajam et al. [8] to study the exergetic 

performance of SAHs and optimize the system by using MATLAB. Esen [9] conducted 

experiments on double flow SAH with different obstacles on the absorber plate and did 

the energy and exergy analysis. Akpinar et al. [10] also used the concept of energy and 

exergy analysis for solar air heating unit with four different types of absorber plate with 

obstacles and without obstacles. Alta et al. [11] conducted experiments to investigate the 

energy and exergy analysis of 3 different types of SAHs. Bayrak et al. [12] performed 

energy and exergy analysis for porous bed SAH. Panwar et al. [13] reviewed energy and 

exergy analysis for solar drying systems. Saidur et al. [14] used the concept of energy 

and exergy analysis for various solar energy utilized equipment and concluded that 

exergy analysis is necessary to examine the system performance. Kumar et al. [15] 

conducted experiments on packed bed SAH for various mass flow rates of air and for 

different porosities of packing material and evaluated exergy of the system. Park et al. 

[16] studied the energy and exergy analysis of different types of renewable energy 

systems.   

The performance analysis of solar air heaters using experimental and analytical 

study takes more time to solve problems and requires programming for solving in 

conventional software in analytical approach. Now a day, soft computing technique is 

attracting researchers for solving various complicated problems of nonlinear nature. The 

traditional approaches for such analysis cannot be solved without using fundamental 

equations, conventional correlations, or developing unique designs from experimental 

data through trial and error.  To avoid these problems, artificial neural network (ANN) 

technique has been implemented in various types of complicated problems which are not 

solved by conventional method and in various fields. This technique computes data with 

very less time and more accurately predicted. Therefore, this technique has been 

becoming increasingly popular in Science and Engineering, especially in Thermal 

Engineering applications in recent years. Many researchers have used ANN in the past. 

Kalogirou [17] used neural network in renewable energy systems to predict solar 

radiation and wind speed, and also for load forecasting of PV and building service 

systems. Yang et al. [18] have applied ANN technique for the heating system in building. 

They constructed optimal ANN model and predicted the room temperature by using 

experimental data. Facao et al. [19] used ANN for plate and tube type heat pipe hybrid 

solar collector. They constructed two different types of ANN model by use of multilayer 

perceptron (MLP) and radial basis function (RBF), and predicted the collector efficiency 

and useful heat gained. They found that the MLP model performed slightly better than 
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the RBF model. Ertunc and Hosoz [20] used ANN for performance analysis of 

refrigeration unit. They constructed a 5-4-5 neuron model using experimental data and 

successfully predicted performance parameters such as power absorbed by refrigerant, 

compressor input power, mass flow rate of refrigerants, heat rejection rate of condenser 

and coefficient of performance (COP) of refrigeration unit. Kalogirou [21] applied ANN 

for predicting performance parameters of flat plate collector. To predict these parameters, 

he constructed six different types of ANN model on the basis of measured experimental 

data and got satisfactory results. Yilmaz and Atik [22] used ANN in a mechanical cooling 

system. They conducted experiments with different flow rates of cooling water and 

determined the power consumption, thermal performance, COP of heating and cooling. 

By using experimental data and calculated values they constructed an ANN model with 

1-6-4 neurons to predict the power consumption, thermal efficiency, COP of heating and 

cooling. Sozen et al. [23] conducted experiments on flat plate SAH and calculated the 

thermal efficiency. By the use of experimental and calculated data optimal ANN was 

constructed using 7-20-20-1 and predicted the thermal efficiency with satisfactory results. 

Kurt et al. [24] conducted an experiment on solar cooker with various working conditions 

and collected the data. By the use of this data sample they constructed an ANN model to 

predict the enclosure air, pot water and absorber plate temperature of hot box type solar 

cooker with very less errors. Caner et al. [25] used ANN for estimating the thermal 

efficiency of solar air collector. Experiments were performed with two types of 

zigzagged absorber plat in SAH and collected the data for five days for constructing 

ANN model designed on the LM learning algorithm in nftool tool module in MATLAB. 

They found on the basis of statistical error analysis that the predicted thermal efficiency 

obtained by ANN model was reliable and accurate. Nazghelichi et al. [26] conducted 

experiments with different air temperatures, bed width and square cubed: carrot, collected 

total 518 data and determined energy and exergy of carrot cubes in fluidized bed dryer. 

By the use of this data they constructed an ANN model, and successfully predicted 

energy and exergy with minimum errors.  Aghbashlo et al. [27] applied ANN for 

estimating the exergetic behavior of spray drying. The data was obtained from the 

experiments. They used optimum ANN model on the basis of minimum error and 

maximum R2 value, and successfully predicted the exergetic performance of the unit by 

the use of this model. Benli [28] also applied ANN technique for determining the thermal 

efficiency of SAH with trapeze and corrugated absorber plate. For estimating the 

collector efficiency, experiments were performed, and data was collected for developing 

of ANN model with LM learning algorithms. The ANN predicted results on thermal 

performance of solar air collector, which were found accurate with LM-3 neurons in 

hidden layer. Kalogirou et al. [29] applied ANN for predicting the performance of large 

solar systems. For predicting the performance, ANN model was constructed on measured 

experimental data of over one year and successfully predicted results with higher 

coefficient of determinations. Hamdan et al. [30] developed a 5-20-5 multiple output 

parameter NARX neural model to predict the heat transfer analysis of flat plate solar air 

collector.  Jani et al. [31, 32] used ANN technique to predict the performance of a solid 

desiccant – vapor compression hybrid air-conditioning system. Ghritlahre and Prasad 

[33-40] implemented MLP neural model to predict the performances of various types of 

solar air heaters. 
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From the literature, it has been found that the ANN technique is used for 

performance analysis of various types of thermal systems, but very few work in the field 

of solar systems, especially in the topic of solar air heater performance analysis. In the 

view of above the energy and exergy analysis of solar air heater, using MLP neural model 

is new research work and has been taken in the present work. 

  The aim of this work is to predict the energy efficiency and the exergy efficiency 

of solar air heaters using the ANN model on the basis of actual experimental data and the 

calculated values. Total fifty sets of data have been obtained by conducting experiments 

on three types of transverse wire rib roughened solar air heaters. The ANN model 

consists of six variables in the input layer and two variables in the output layer. Two 

different types of training functions with 4-7 neurons have been used to obtain the best 

network for prediction of output parameters. Six neurons in the hidden layer with LM 

learning function is obtained as an optimal topology. Statistical error analysis has been 

performed for predicted values of energy and exergy efficiency.  

 
 
Materials and Methods 
 

Experimental System and Data Collection 
 
 The line diagram of the experimental system is shown in Fig. 1. The system 

consists of an artificial roughened SAH having entrance section, test section, exit section, 

absorber plate and glass cover and equipped with galvanized iron (GI) pipe, flange 

coupling, orifice plate, U-tube manometer, thermometers, a suction blower, a valve and a 

Variac transformer. In the present work, the SAH duct length is 168 cm, width is 28 cm 

and height is 4 cm. The test section is a rectangular duct having wire- roughened absorber 

plate and a back plate. It consists of a 4 mm thick glass cover at its top. Fig. 2 shows the 

structure of the test section. The absorber plate is made of 1 mm thick GI sheet provided 

with transvers wire of three different specifications as given in Table 1. A configuration 

of wire-roughness used on the absorber plate has been shown in Fig. 3a, where as a 

photographic view of the same has been given in Fig. 3b. The test section is connected 

with 3 inch diameter GI pipe provided with an Orifice meter to measure the mass flow 

rate of air through the SAH. The pressure drop was measured with the help of a U-tube 

Manometer fitted across the orifice plate. The mass flow rate was varied from 0.0235 to 

0.0270 kg/sec. A 2 HP/3-phase suction blower was used to carry air through the SAH 

duct. The intensity of solar radiation was measured with a digital pyranometer. For 

measuring the temperature at various sections of absorber plate and air temperatures at 

inlet and outlet, digital thermometers were used. The experiments were conducted in 

clear sky in the month of April 2014 and data were taken from 10:30 am to 1:00 pm. 

Total 50 sets of experimental data were collected from experiments with three different 

types of roughened absorber plate, categorised on the basis of roughness height (e), 

relative roughness pitch (P/e) and relative roughness height (e/D) [5].  

The experiments were conducted in Jamshedpur (India), where latitude and 

longitude are 22.77o N & 86.14o E, respectively. The variation of wind speed and solar 

intensity of radiation with different months of the year, obtained at Jamshedpur from 

RETScreen database, have been shown in Fig. 4 and Fig. 5, respectively. Fig.5 shows that 
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the maximum solar energy of 6.21 kwh/m2/day is obtained in the month of April, and the 

lowest solar energy of 3.95 kwh/m2/day is obtained in the month of August. Air 

temperature is recorded maximum in the month of May, which is 32oC and minimum in 

January, which is 18oC. The gross incident solar radiation has been estimated as 1744.7 

kwh/m2/year. 

 

 

 
Figure 1. Experimental system 

 

1. Entrance section 

2. Test section 

3. Exit section 

4. Diverging section 

5. Digital thermometer 

6. Thermocouples 

7. Temperature display unit 

8. GI pipe 

9. Orifice plate 

10. U-tube manometer 

11. Valve 

12. Variac transformer 

13. Suction blower 

 

 

 

 
Figure 2. Test section  
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Figure 3a. Wire roughened Absorber plate 

 

 

Figure 3b. Photographic view of absorber plate 

 

 

Table 1. Specification of wire roughness. 

 

Roughness parameter Absorber roughness type 

Type A Type B Type C 

Relative roughness pitch (P/e) 10 10 10 

Relative roughness height (e/D) 0.014 0.01740 0.009571 

Roughness height (e), mm 0.98 1.2 0.67 
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Figure 4. Local weather graph showing wind speed in different months of a year. 

 

Figure 5. Local weather graph showing intensity of solar radiation and air temperature in different 

months of a year. 

 

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 213-235. doi: 10.17737/tre.2018.4.2.0078 220 

 

 

Energy and Exergy Analysis  
 

Analysis of Energy 

 

 Energy analysis of a SAH is represented by its thermal efficiency, which is 

defined as the ratio of energy gained to incident solar radiation [1] and is given as 

 
.

.

u
th

c

Q

Q

 =

 

(1) 

where Qu is the useful heat gain and the incident radiation of solar energy Qc is given by 
.

cc
Q IA=  

(2) 

In Eq. (2), I is solar radiation intensity and Ac is collector area. 

 

The useful energy gained by air is written as 
. . .

. ( )u p f p fo fiQ mC T mC T T= = −  
(3) 

where m is the mass flow rate of air, Tfo and Tfi are outlet and inlet temperature of air 

respectively.  

Thus, the thermal efficiency of collector is [1]: 
.

u
th

c

Q

IA
 =

 

(4) 

 

 

Analysis of Exergy 

 

The analysis of exergy is the most useful concept for optimal utilization of 

energy. This analysis is used to make strategies for designing and operation of industrial 

processes. The exergetic efficiency is defined as the ratio of exergy gained from the 

system to exergy input to the system [40].  

Following assumptions have been undertaken in the present analysis: 

(i) The system works under the steady state condition. 

(ii) Kinetic Energy and Potential Energy are negligible. 

(iii) Chemical and nuclear reactions are not possible to occur in operation of the 

system. 

(iv) The air specific heat is constant and it is considered as an ideal fluid. 

(v) The heat transfer to the system and work transfer from the system are 

positive 

In general, energy and exergy balance equations in rate form with negligible kinetic and 

potential energies can be written as [11,12, 16, 42]: 
. .

i oE E=   
(5) 

 
. . .

i o dEx Ex Ex− =    
(6) 

    or 
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. . . . .

, ,heat work mass in mass out destEx Ex Ex Ex Ex− + − =      
(7) 

In Eqs. (5) to (7),  
.

E  and 
.

Ex  are energy and exergy rates, respectively. 
.

destEx is the rate 

of exergy destruction, i and o stand for inlet and outlet of the system, respectively. 

 

By introducing temperature of environment Te,  sun surface temperature  Ts, 

energy gained by collector Qc, work rate 
.

W , and the specific exergy ψ in Eq. (7),  the 

resulting equation becomes:   

 

Eq. (7) can also be expressed in the form of general exergy equation as given below:  
. . . . .

1
dest

e
c i i o o

s

T
Q W m m Ex

T
 

 
− − + − = 

 
     (8) 

Where, 

( ) ( )i i e e i eh h T s s = − − −  (9) 

( ) ( )o o e e o eh h T s s = − − −  (10) 

In Eqs. (9) and (10),  h is enthalpy  and s is entropy, suffix e stand for environment. 

 

From Eq.(8),(9) and (10), the expression: 

 
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Where,  
.

C CQ IA=
 

 (12) 

 

The change in the enthalpy and the entropy of the air  
( )air o i pf fo f ih h h C T T = − = −  (13) 

fo o
air o i pf

fi i

T P
s s s C ln Rln

T P
 = − = −

 
(14) 

 

In Eqs. (13) and (14), Cpf  is specific heat  of air (J /kg K ), Tfi  and Tfo are inlet and outlet 

air temperatures, respectively, and Ra is Universal gas constant (J/kg K). 

 

From Eq.(11) to  (14) the following expression can be obtained: 

. . .

1 ( ) ln ln
dest

o

foe o
c pf f f i e pf a

s fi i

TT P
IA mC T T mT C R Ex

T T P

  
− − − + − =    

   
  (15) 

where P is the pressure of air. 

 

The Irreversibility/exergy destruction may be expressed as follows:  
. .

.
dest geneEx T S=  

(16) 

where 
.

genS  is the rate of entropy generation. 
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The exergy efficiency of SAH can be formulated by the ratio of net exergy output 

of the system to exergy input of the system. 
..

.

[( ) (s )]

1

o o i e o i
II

ei
c

S

m h h T sEx

TEx IA
T


− − −

= =
 
− 

 

 
(17) 

 

Artificial Neural Network (ANN) 
 

ANN is a complex information processing system, which is structured from 

interconnected segmental processing elements, called neurons. These neurons find the 

input information from other sources and perform generally a non-linear operation on the 

result and then give final results as output. ANN works in two ways, first learning and 

then storing the knowledge in interconnects called weights. The basic model of ANN is 

represented in Fig. 6. ANN is a simulation tool in MATLAB which can be used to 

estimate the values on the basis of input parameters, optimum topology and training 

processes. In feed forward networks, each product of input elements and weights are fed 

to summing junctions and is summed with bias of neurons as follows [17, 32, 41]:  

 
 

Figure 6. Basic structure of ANN model 

 

1

n

i j i j

i

X w a b
=

 
= + 
 


 
(18) 

 

Then this sum X passes through transfer function F which generates an output. 

1

( )
n

j i j i j

i

F X u F w a b
=

  
= = +  

  


 
(19) 
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The most used transfer functions in the hidden layer are tansig and logsig. The nonlinear 

activation function, which is widely used, is called as sigmoid function whose output lies 

in between 0 and 1, and it is given as: 
1

( )
1 X

F X
e−

=
+  

(20) 

  

The performance index of different training algorithm is mean square error (MSE) and it 

is formulated as  

2

, ,

1

1
( )

n

A i P i

i

MSE X X
n =

= −  (21) 

 

where XA and XP are actual value and predicted value, respectively. 

 
Selection Criteria for Optimal ANN Model 
 

The optimal ANN model to predict the exergetic performance is based on the 

criteria of selection of minimum errors of root mean square error (RMSE), mean absolute 

error (MAE) and best fit of ANN predicted data with experimental data on the basis of 

coefficient of determination (COD, R2). 

 

Root mean square error (RMSE): 

2

, ,

1

1
( )

n

A i P i

i

RMSE X X
n =

= −  (22) 

Mean absolute error (MAE): 

, ,

1

1
( )

n

A i P i

i

MAE X X
n =

= −  (23) 

Coefficient of determination (COD): 

2

, ,
2 1

2

,

1

( )

1

n

A i P i

i

n

P i

i

X X

R

X

=

=

−

= −



 

 

(24) 

 

Modeling of ANN Structure  
 

Neural Structure Development  

In the present analysis, total 50 sets of  experimental data were collected by 

conducting experiments for 10 days. The proposed MLP ANN model for prediction of 

energy and exergy analyses is shown in Fig. 7, which was structured with an input layer, 

hidden layer and output layer. Six parameters in the input layer including time of 

experiments, mass flow rate of air, atmospheric temperature, air mean temperature, plate 

temperature and solar intensity, and two parameters of thermal efficiency and exergy 

efficiency in output layer have been taken. The ranges indicating the minimum and 

maximum values of input and output parameters are listed in Table 2.   
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Figure 7. Present ANN model 

 

 

Table 2. Minimum and maximum values of input and output parameters for ANN 
Model 

 
Parameters Range 

Input Minimum value Maximum value 

Mass flow rate of air, mf (kg/sec)   0.0235 0.0270 

Atmospheric temp. Ta (oC) 32 42 

Mean temp. of air, Tm (oC) 38 47.5 

Absorber Plate temp., Tp (oC) 63.2 73.40 

Solar Intensity, I (W/m2) 833 905 

Output   

Thermal efficiency, ηth(%) 25.6843 47.9937 

Exergy efficiency, ηII (%) 0.3829 0.7906 

 
 

Data Preparation 

For this model, 50 data sets have been taken out, in which 70% data is designed 

for training process and rest of 30% data is taken for testing process. Feed forward back 

propagation learning algorithm has been applied for learning of present model. Single 

hidden layer was chosen in this model. 

Before developing the ANN model, the input and output sample data must be 

normalized between -1 and 1 for accuracy of prediction. The following equation is used 

to normalize data between -1 and 1. 

 

min

max min

( )i
value value value

Y Y
Y High Low Low

Y Y

−
= − +

−  
(25) 
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Selection of Learning Algorithm and Transfer Function 

For training process, 4-7 neurons have been selected in the hidden layer for the 

optimal network selection to obtain the best results. The two types of training functions 

are selected, which are Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt 

(LM) algorithms. After selecting the training function the adaption learning function was 

selected (LEARNGDM). Tansig transfer function was selected for the hidden layer and 

linear function (purelin) for the output layer. This model is performed in MATLAB 

software using nntool for computation.  

 

Modelling Procedures 

 

In order to find the result, for predicting the performance parameters of SAHs, 

following steps are followed in MATLAB ANN simulation: 

 

Step 1. Selection of nntool command.  

The nntool for starting the neural network technique in MATLAB software is first 

selected. 

 

Step 2. Selection of the input and target variables. 

For structuring a neural model, mainly, the input and output variables from the 

experimental data and calculated values of solar air heater have been selected.  

 

Step 3. Selection of training and testing data. 

Out of total 50 data sets, 70% data is used for training process and 30% data is used for 

testing process. 

 

Step 4. Selection of training function and adaption learning function. 

In present work, two types of training functions are used such as TRAINLM and 

TRIANSCG, and the LEARNGDM is selected as adaption learning function.  

 

Step 5. To choose the number of neurons and layers in the hidden layer with transfer 

functions. 

The number of neurons is selected in the hidden layer by trial and error method, 

accordingly 4-7 number of neurons have been selected to obtain the best model for 

prediction. Single layer is used in the hidden layer. Tangent sigmoid (Tansig) and pure 

linear (purlin) transfer functions are used at hidden and output layer respectively. 

 

Step 6. Training of the ANN model with experimental data. 

Different number of neurons using TRAINLM and TRAINSCG for 50 times run for each 

model is trained. 

 

Step 7. To check and compare the performance of different models. 

To obtain the optimal model, different model training performance on the basis of 

RMSE, MAE and R2, which are calculated by using Eqs. (22), (23) and (24), 

respectively, is checked. The performance of training process of different models is 

shown in Table 3. 
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Step 8. To select optimal ANN model. 

It is found that LM algorithm with six neurons (LM-6) in the hidden layer is optimal 

model due to the lowest error and the highest value of R2 for energy and exergy 

efficiencies.  

 

Step 9. To save the predicted results and to compare with actual available data. 

Finally, the predicted results of thermal or energy efficiency and exergy efficiency are 

saved and compared with actual experimental data. The comparison of predicted results 

and their statistical error analysis is shown in Table 4.  

 

The flow chart of ANN simulation is shown in Fig. 8, exhibiting all steps undertaken in 

the analysis. 

 

 

Figure 8. Flow chart of ANN simulation. 
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Results and Discussion 
 

In the optimal neural model, the training algorithm  of LM with 6 neurons 

adjusted the weights and biases iteratively to minimize the error between actual and 

predicted values of ANN model.  

The values of regression coefficient (R) for training, validation, testing and all 

process are 1.0, 1.0, 0.99999 and 1.0, respectively (Fig. 9), which gives the accurate 

result. The best validation performance was found at 4 epoch at which the MSE during 

validation is found to be 0.022696. Also training process stopped at epoch 54 because the 

minimum gradient error reached. 

 

 
Figure 9. Regression plot of TRAINLM-6 

 

A comparison between actual (experimental) data and predicted data from ANN 

model is shown in Fig. 10, while the absolute errors are shown in Fig. 11. As from Fig. 

11, it has been found that the errors between ANN predicted values and actual 

experimental values are very small. Table 4 shows the performance of selected LM-6 

ANN model for estimating the energy and exergy efficiency on the basis of MAE, sum of 

square error (SSE), MSE, coefficient of variance (COV) and R2. The values of MSE, 
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MAE and R2 are calculated by Eqs. (21), (23) and (24), respectively. The rest errors are 

calculated by using following formulas: 

 

Sum of square error (SSE): 

2

, ,

1

( )
n

A i P i

i

SSE X X
=

= −  (26) 

 

Coefficient of variance (COV): 

,

1

100
1 n

P i

i

RMSE
COV

X
n =

= 


 (27) 

 

Table 3. Statistical results of training process 

Parameters Training 

Function 

MAE R2 RMSE 

Thermal efficiency, ηth LM-4 2.64395 0.99337 3.11437 

SCG-4 2.40804 0.99384 2.99610 

LM-5 1.23885 0.99787 1.77980 

SCG-5 2.45031 0.99382 2.99867 

LM-6 0.02445 0.99999 0.04560 

SCG-6 2.21554 0.99465 2.81480 

LM-7 1.55907 0.99689 2.14564 

SCG-7 1.92430 0.99534 2.62551 

Exergy efficiency, ηII LM-4 0.12917 0.93749 0.15481 

SCG-4 0.10456 0.95916 0.13370 

LM-5 0.08096 0.97094 0.09779 

SCG-5 0.13626 0.94039 0.16690 

LM-6 0.03123 0.99509 0.03922 

SCG-6 0.07991 0.96475 0.11359 

LM-7 0.10223 0.95511 0.10032 

SCG-7 0.16794 0.83109 0.20452 

 

From Table 4, it has been found that values of MAE, SSE, MSE and COV are 

0.06220, 1.3244, 0.026488 and 0.43471, respectively, for thermal efficiency. Similarly, 

for exergy efficiency, these values are 0.014689, 0.02257, 4.514E-4 and 0.36241E-1, 

respectively. Also the values of R2 are 0.99921 and 0.95737 for thermal efficiency and 

exergy efficiency, respectively. 
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The comparison of results of present work and those available in the literature is 

shown in Table 5. The comparisons are based on the value of R in training, testing, 

validation and all processes combined. It is clearly observed that the values of R of 

present work in training, testing, validation and all processes were the highest, as 

compared to previous work of ANN models based on single and multiple output 

parameters. The above results reveal that the ANN model accurately predicted the energy 

and exergy efficiencies of the solar air heater. 

 
Table 4. Performance of proposed MLP ANN model predicting energy and 

exergy efficiencies. 

Parameters MAE SSE MSE COV R2 

Thermal efficiency, ηth 0.06220 1.3244 2.648E-2 0.43471 0.99921 

Exergy efficiency, ηII 0.01468 0.02257 4.514E-4 0.362E-1 0.95737 

 

Table 5. The comparisons of results of present work and those available in the 
literature. 

Authors Model 

Structure  

Statistical results 

Training Validation Testing All 

  R1 R2 R3 R 

Caner et al. [ 25] 8-20-1 0.99998 0.99985 0.99995 0.99997 

Hamdan et al. [30] 5-20-5 0.99997 0.99998 0.99996 0.99997 

Ghritlahre and Prasad  [33] 5-5-3 0.99985 0.99991 0.99958 0.9998 

Ghritlahre and Prasad  [37] 6-6-1 0.99994 0.99943 0.99453 0.99942 

Present work 6-6-2 1 1 0.99999 1 
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(a) 

 
(b) 

 
Figure 10. Comparison of experimental energy and exergy efficiency with ANN predicted energy 

and exergy efficiency. 
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(a) 

 
(b) 

 
 

Figure 11. Absolute error for ANN predicted energy and exergy efficiency. 

 
 
 
CONCLUSIONS 
 

In this paper, ANN technique has been used to predict the energy and exergy 

efficiencies of roughened solar air heater. To achieve this objective, total 50 sets of 
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experimental data and calculated values of energy and exergy efficiencies were collected 

using traverse wire rib roughened absorber plate. The neural model has been developed 

with MLP structure using 6 parameters in the input layer and 2 parameters in the output 

layer. The neural model has been trained with 4 to 7 number of hidden neurons using two 

different types of learning algorithms, i.e., LM and SCG. The 6-6-2 neural structure with 

LM learning algorithm is obtained as the optimal neural model for prediction of data. The 

performance prediction of ANN model has been evaluated on the basis of statistical error 

analysis. The values of MAE, SSE, MSE and COV for thermal efficiency were obtained 

as 0.06220, 1.3244, 2.648E-2 and 0.43471, respectively. Similarly, these values for 

exergy efficiency were found to be 0.01468, 0.02257, 4.514E-4 and 0.362E-1, 

respectively, which are very low as desired. The values of coefficient of determination 

(R2) for energy efficiency and exergy efficiency are 0.99921 and 0.95737, respectively, 

which are very close to unity and thus perform accurate results of predicted values. 

In view of high accuracy obtained in the predicted results of energy and exergy 

efficiencies of roughened solar air heater, the proposed MLP ANN model is 

recommended for energetic and exergetic performance analysis of any solar energy 

systems.  
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A good working knowledge of photosynthetically active radiation (PAR) is 
of vital requirement for determining the terrestrial photosynthesis, primary 
productivity calculation, ecosystem-atmosphere carbon dioxide, plant 
physiology, biomass production, natural illumination in greenhouses, 
radiation climate, remote sensing of vegetation, and radiation regimes of 
plant canopy, photosynthesis, productivity models of vegetation, etc. 
However, routine measurement of PAR is not available in most location of 
interest across the globe. During the past 77 years in order to estimate 
PAR on hourly, daily and monthly mean basis, several empirical models 
have been developed for numerous locations globally. As a result, 
numerous input parameters have been utilized and different functional 
forms applied. This study was aim at classifying and reviewing the 
empirical models employed for estimating PAR across the globe. The 
empirical models so far utilized were classified into ten main categories 
and presented base on the input parameters applied. The models were 
further reclassified into numerous main sub-classes (groups) and finally 
presented according to their developing year. In general, 757 empirical 
models, 62 functional forms and 32 groups were reported in literature for 
estimating PAR across the globe. The empirical models utilized were 
equally compared with models developed using different artificial neural 
network (ANN); and the result revealed that ANN models are more suitable 
for estimating PAR across the globe. Thus, this review would provide solar 
energy researchers with input parameters and functional forms that have 
been widely used to up to date, and recognizing their importance in 
estimating PAR globally.  

 
Keywords:  Photosynthetically active radiation; empirical models; classification; functional forms; world 

review 

 

 
1. Introduction  
  

 Photosynthetically active radiation (PAR) is a component of global solar radiation 

(H) that covers both photon and energy terms between 400-700 nm waveband incident per 

unit time on a unit surface. This radiometric flux (PAR) is both photon and energy term 

capable for driving electron transport within the photosynthetic process used by plants in 

synthesizing their food as shown by the chemical equation given by Nwokolo [1] and 

Nwokolo and Ogbuezie [2]: 
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                             (1) 

where the light (PAR) represents light energy wavelength range (400-700 nm) that is the 

best fit for photosynthesis to occur. 

PAR is not only important for single plant leaves, plant communities and modeling 

vegetation growing due to its relationship with botanical photosynthesis process but a 

viable irradiance energy needed as a baseline for estimating and understanding PAR 

parameters such as gross primary productivity (GPP), light use efficiency (LUE) and net 

ecosystem exchange of carbon dioxide (NEE) for agricultural and ecological studies, etc.  

The accurate determination and clear understanding of PAR is needed for many 

applications such as analyzing terrestrial photosynthesis, primary productivity calculation 

and ecosystem-atmosphere carbon dioxide [3,4]; plant physiology, biomass production and 

natural illumination in greenhouses [5]; comprehensive studies of radiation climate, remote 

sensing of vegetation, radiation regimes of plant canopy, photosynthesis and productivity 

models of vegetation [6]; carbon dynamic, agricultural productivity, and atmospheric 

Physics [7-9]; terrestrial photosynthesis modeling [10-12]; radiation forcing effect, energy 

management, hydrological process and biometeorology [13-14]; studies of crop 

production, remote sensing of vegetation and carbon cycle modeling [15-16]; evolution of 

environmental and agricultural fields [17]; agriculture, atmospheric physics, forestry, 

ecology, energy management and photon science [18-19]; plant physiology, crop growth, 

biomass production and agricultural meteorology [20-21]; controlling the exchange of 

carbon between atmosphere, oceans and the terrestrial biosphere [22-25]; radiation 

intercepted by the canopy, the establishment of leaf photosynthesis and the productivity of 

agricultural crops and forests [26-27]; and calculating the euphotic depth in the ocean [28].   

PAR as a component of solar radiation spectrum is extremely important because it 

is the solar energy source for vegetative photosynthesis to provide mankind with products 

such as food and fiber sources, biofuels carriers and additional materials sources that 

support industrial process. PAR also plays significant roles in plant growth, and it is the 

principal factor in the rate of solar energy conversion into biological mediated energy. 

Therefore, PAR is an indispensable atmospheric radiometric flux nature needed for 

balance distribution of varieties of plants and perfecting the ecosystem in the horizons 

across different climatic and geographical regions of the world. The oxygen (O2) needed 

by man for respiration is powered by PAR. Thus, the study of PAR is a necessity for 

understanding how plants, animals and mankind interact and relate with its immediate 

ecosystem. 

Measurement of PAR have been performed in many parts of the world using a 

variety of instrument such as Eppley precision spectral pyrometer (PSP) and PAR lite. 

Apart from these radiometric flux instruments, quantum sensor often used for PAR 

measurement have problems, such as cosine errors, spectral errors, and the lack of a 

standard absolute PAR value [29-31]. 

As a result of cost of measuring equipment, its maintenance and calibration 

requirements, in rural and developing countries in Africa and several places around the 
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world, a worldwide routine network for the measurement of PAR on like global solar 

radiation is not yet established. In order to correct these anomalies, different empirical 

models have been developed [32-34], few of them using satellite data [22, 35]. In another 

technique, PAR is commonly estimated as a constant ratio of the global solar radiation (H).  

Numerous authors have studied this ratio [36-43]. 

Therefore, empirical models that estimate PAR based on global solar radiation (H) 

are important and are classified into two types. One employed the constant ratio of the 

global solar radiation (PAR/H). Depending on weather PAR is expressed in energy units 

(PARe Wm-2, MJm-2 etc.) or photon units (PARP, E/mJ, µEm-2S-1 etc.), there are two types 

of ratios: 

H

e
PAR

(unitless)          (2) 

H

p
PAR

(Unit: µmolJ-1, E/mJ, µEm-2S-1 etc.)      (3) 

 

According to Walczak et al. [44], since the photosynthetic efficiency of green 

plants is directly proportional to the number of photons absorbed in the spectral range (400-

700nm) and not to their energy, therefore, it is more convenient to express PAR using 

photon number e.g. µEm-2S-1 (quanta mol-1s-1 or µmol-1s-1) than radiant energy (Wm-2, 

MJm-2). 

In addition to the above mentioned ratio, the following conversion ratio has been 

employed [4, 45-46]: 

e
PAR

p
PAR

(Unit: µmolJ-1, E/mJ, µEm-2S-1 etc.)      (4) 

McCree [45] recorded the value of ePAR
p

PAR as 4.57 µmolJ-1. Assuming this value 

to be constant, many studies [47-48] have applied it. However, Jacovides et al. [46] and 

Dye [4] reported slightly different values – 4.53 µmolJ-1 and 4.56 µmolJ-1, respectively. 

Although these values are quite similar, the influence of ePAR
p

PAR on climatic conditions 

is not well documented. As a result, Akitsu et al. [49] observed that ePAR
p

PAR may change 

within 3 % around McCree’s constant value (4.57 µmolJ-1) in response to changes in water 

vapour pressure, solar zenith angle and clearness index. Thus, Akitsu et al. [49] 

recommended the use of McCree’s value as it have been accepted by numerous researchers, 

though the ratio is not strictly constant. 

However, numerous researchers have observed that PAR ratio varied according to 

location [48]; seasons [43, 50]; sky conditions [51-53]; sky clearness, sky brightness and 

atmospheric depth for the solar beam [54-55]; relative sunshine duration and water vapour 

pressure [50, 55]; altitude [56]; irradiance intensity [57]; day length [57-58]; Ozone and 

other atmospheric gases [53, 58-59]; relative humidity [60], minimum and maximum 

temperature [61]; optical air mass [62-64]; cloud amount and turbidity [55]; global solar 

radiation [41, 65-67]; clearness index [48, 68-73]; site, season, local time and weather 

conditions [49]. Thus, each ratio remains incompletely understood as to how it varies with 
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climatic factors such as water vapour pressure (WVP); solar zenith angle (ϴ) and sky 

cloudiness. Therefore, it is practically difficult to assume reasonable values of these ratio 

at specific sites and in specific seasons. 

For these reasons, numerous studies have employed meteorological parameters, 

geographical parameters, geometrical factors and astronomical parameters as a single 

variable or combine parameters to relate with PAR, PAR/H, PAR fraction (PAR/PARo) or 

PAR coefficient (PAR/Ho) etc. (where Ho and PARo are the extraterrestrial solar radiation 

and extraterrestrial PAR respectively) for their estimation [41, 50, 55,61-62, 64-67, 74]. 

However, solar radiation components have been estimated using different artificial 

neural network (ANN) techniques in recent decades which constitute a widely accepted 

method offering an alternative way to synthesize complex problems associated with solar 

energy estimation such as applying only calculable atmospheric, meteorological, 

astronomical, geographical, geometrical parameters such as extraterrestrial solar radiation, 

latitude, altitude, longitude, maximum sunshine duration, azimuth angle, solar declination, 

cosine of solar zenith angle, and hour angle to estimate PAR. The capacity of ANN 

technique to accept many input parameters for a particular model which is not possible 

applying empirical technique that strengthened its reliability is one of highest discoveries 

and attainment of solar energy researchers in recent times. Moreover, the technique of 

applying ANN models compared to conventional techniques according to recent studies 

[75-77] have offer greater accuracy with estimation error in a range (less than 20 %) and 

could be very good in terms of PAR estimation as much more ANN and other soft 

computing approaches are demanding in the domain of renewable energy resource 

estimation. 

Therefore, the main purpose of the study was to review empirical models fitted in 

literature for estimating PAR at numerous geographical locations distributed around the 

globe and its objectives are identifying several input parameters and functional forms ever 

applied for estimating PAR across the globe; classify the empirical models commonly 

employed across the globe according to the main input parameters; compare the 

performance of empirical and ANN computing models applied and decide the best 

technique that can yield high accuracies of estimation for future purposes and finally 

identify the research gap. 

Thus, this review would be helpful to solar energy researchers to identify and 

determine to a large extent the numerous utilized input parameters and functional forms 

with their corresponding categories ever applied for estimating PAR across the globe and 

also recognize their significance. 

 

 
2. Model Parameters 
 

Basic parameters such as maximum sunshine duration, daily and hourly 

extraterrestrial solar radiation on the horizontal surfaces, hourly and daily PAR, standard 

atmospheric pressure at sea level (1013 hPa), solar constant, zenith angle, clearness of the 

sky (ε), and brightness of the skylight (Δ) are significant for the models employed in this 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 236-327. doi: 10.17737/tre.2018.4.2.0079 240 

 

 

 

review for estimating PAR. The maximum sunshine duration is expressed mathematically 

as: 

  tantancos
15

2 1 −= −

oS         (5) 

( )







 +
=

365

284360
sin45.23

n
         (6) 

where  is the latitude,   is the solar declination given by Yaniktepe and Genc [78] and n 

the number of days of the year starting from first January. The daily extraterrestrial solar 

radiation is the solar radiation intercepted by horizontal surface during a day without the 

atmosphere and hourly extraterrestrial radiation has similar definition. 

Hourly extraterrestrial solar radiation on the horizontal surface is given by Zhang 

et al. [79] as: 
















 −
+−+


= 





sinsin

180

)12(
sin)1sin2(sincoscos

365

360
cos033.01

360012

S

nSCI

oI  (7) 

While the daily extraterrestrial solar radiation on the horizontal surface is given by 

Yaniktepe and Genc [78] as: 



















++= 





sinsin

360

2
sincoscos

365

360
cos033.01

24 S
S

n

SCIoH    (8) 

Where the mean sunrise hour angle ( )s   can be evaluated as:  

  tantancos 1 −= −

s         (9) 

ISC is the solar constant, 1 and 2 are the limit hour angle of an hour, in which 2  is the 

larger, all in degrees and other symbols retain their usual meaning. 

Hourly extraterrestrial PAR flux (PARo) according to Frouin and Pinker [15] and 

Hu et al. [80] can be estimated from extraterrestrial solar radiation (Ho), with a fraction of 

0.5. Therefore, hourly and daily PARo can be calculated by multiplying the ratio 4.57 of 

the energy flux density to photosynthetic photon flux density as suggested by Dye [4]. 

Thus, the hourly PARo can be expressed as:  

 ( )oIoPAR 57.45.0 =          (10) 

And daily PARo can be calculated as: 

( )oHoPAR 57.45.0 =          (11) 

The sky clearness (ε) and brightness of the skylight (Δ) can be evaluated as proposed by 

Wang et al. [71]: 

d
H

b
H

d
H +

=           (12) 

( )cos
b

H

d
H

=           (13) 

The cosine of sun zenith angle ( ) is expressed as: 

( ) ( ) sinsincoscoscoscos +=        (14) 
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While the relative optical mass ( )m  can be calculated as proposed by Wang et al. [71]: 

( ) ( ) 253.1
885.9315.0cos

1

−
−+

=


m        (15) 

Where 
d

H  and 
b

H are the diffuse and direct radiation on the earth horizontal surface and 

other symbols retain their usual meaning.  

 

 

3. Evaluation Metrics 
 

Evaluation, principally, compares how good the observed and estimated fit each 

other. This evaluation is applied at numerous steps of the computing model development 

as for instance during the evaluation of the estimation model itself (during the training of 

a statistical model for instance), for judging the improvement of the computing model after 

some modifications and for comparing numerous computing models. As previously 

mentioned, this performance comparison is not easy for numerous reasons such as different 

estimated time horizons, numerous time scale of the estimated data and variability of the 

meteorological conditions from one site to another one. It works by comparing the 

estimated outputs 𝑦̂) with observed data y which are also measured data themselves linked 

to an error (or precision) of a measure. 

Graphic tools are available for estimating the adequacy of the computing model 

with the experimental measurements via: 

1. Time series of estimated global radiation in comparison with measured global 

radiation which allows to visualize easily the prediction quality. In Fig. 1a, for 

instance, a high estimate accuracy in clear-sky conditions and a low one in partly 

cloudy conditions can be seen. 

2. Scatter plots of estimated over measured global radiation (as shown in Fig. 1b) 

which can reveal systematic bias and deviations depending on the global radiation 

conditions and show the range of deviations that are related to the estimates.  

3. Receiver Operating Characteristic (ROC) curves which compare the rates of true 

positives and false positive.  
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Figure 1: a) Time series of predicted and measured global radiation for 2008 in Ajaccio (France); b) Scatter 

plot of predicted vs. measured global radiation in Ajaccio (France); c) Example of ROC curve (an ideal ROC 

curve is near the upper left corner) Lauret et al. [81]. 

 

Up till now, there is no standard evaluation measures accepted for 

photosynthetically active radiation measurement, which makes the comparison of the 

estimating methods difficult. Sperati et al. [82] presented a benchmarking exercise within 

the framework of the European Actions Weather Intelligence for Renewable Energies 

(WIRE) with the purpose of evaluating the performance of state of the art computing 

models for short term renewable energy estimation or forecasting. This research is a very 

good example of reliability parameter utilization. They concluded that: “More work using 

more test cases, data and computing models needs to be performed in order to achieve a 

global overview of all possible conditions. They also pointed out that test cases located all 

over Europe, the US and other relevant countries should be considered, in an effort to 

represent most of the possible meteorological conditions”. This study therefore illustrates 

very well the difficulties of performance comparisons encountered for photosynthetically 

active radiation estimation. 

The commonly applied statistics for photosynthetically active radiation estimation 

include the following: 

The mean bias error (MBE) represents the mean bias of the estimation: 

( ) ( )( )
=

−=
N

i
iyiy

N
MBE

1
ˆ

1
       (16) 

  

a) 
b) 

c) 
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with 𝑦̂  is the estimated photosynthetically active radiation, y the measured 

photosynthetically active radiation and N the number of observations. The estimation will 

under-estimate or over-estimate the observations. Thus, MBE is not a good statistical 

indicator for the relatability of a computing model because the errors compensate each 

other but it allows to see how much it overestimates or underestimates. 

 The mean absolute error (MAE) is appropriate for comparing photosynthetically 

active radiation estimation with linear cost functions, i.e., where the costs resulting from a 

poor estimation are proportional to the estimation error: 

     ( ) ( )
=

−=
N

i
iyiy

N
MAE

1
ˆ

1
                    (17) 

 

 The mean square error (MSE) applies the squared of the difference between 

observed and predicted data. This statistical indicator penalizes the highest gaps: 

    ( ) ( )( )
=

−=
N

i
iyiy

N
MSE

1

2
ˆ

1
        (18) 

MSE is principally the statistical parameter which is minimized by the training algorithm.  

The root mean square error (RMSE) is more sensitive to big estimation errors, and 

thus is good for applications where small errors are more tolerable and larger errors cause 

disproportionately high costs, as in the case of utility applications [83]. It is probably the 

reliability parameter that is most appreciated and employed: 

( ) ( )( )
=

−==
N

i
iyiy

N
MSERMSE

1

2
ˆ

1
                    (19) 

 The mean absolute percentage error (MAPE) is close to the MAE but each gap 

between observed and predicted value is divided by the observed value so as to consider 

the relative gap. 

( ) ( )

=

−
=

N

i iy

iyiy

N
MAPE

1 )(

ˆ1
                    (20) 

This statistical indicator has a challenge that it is unstable when y(i) is near zero and it 

cannot be defined for y(i)=0. 

Of recent, these errors are normalized particularly for the RMSE; as reference the 

mean value of global radiation is generally employed but other definitions can be applied:  

( ) ( )( )

y

N

i
iyiy

N
nRMSE


=

−

=
1

2
ˆ

1

        (21) 

with 𝑦̅ is the mean value of y. Other statistical indicators exist and can be employed as the 

correlation coefficient (R), coefficient of determination (R2), or the index of agreement (d) 

which are normalized between 0 and 1. 

 As the estimation accuracy strongly depends on the location and time period 

applied for evaluation and on other parameters, it is difficult to evaluate the quality of an 

estimation from accuracy metrics alone. Then, it is the best to compare the accuracy of 

different estimations against a common set of test data Pelland et al. [84]. “Trivial” 

estimation approach can be applied as a reference [83], the most common one is the 
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persistence model (“things stay the same”, Trapero et al. [85] where the estimation is 

always equal to the last known data point. The photosynthetically active radiation has a 

deterministic component due to the geometrical path of the sun. This characteristic may be 

included as a constraint to the simplest form of persistence in considering as an example, 

the measured data of the previous day or the previous hour at the same time as an estimation 

value. Other common reference forecasts include those based on climate constants and 

simple autoregressive methods. Such comparison with referenced NWP computing model 

is shown in Figure 2. Generally, after 1 hour the forecast is better than persistence. For 

forecast horizons of more than two days, climate averages show lower errors and should 

be preferred for photosynthetically active radiation estimation.  

 

 
Figure 2: Relative RMSE of forecasts (persistence, auto regression, and scaled persistence) and of reference 

models depending on the forecast horizon Lauret et al. [81]. 
 

Classically, a comparison of performance is performed with a reference computing 

model and to do it, a skill factor is employed. The skill factor or skill score defines the 

difference between the forecast and the reference forecast normalized by the difference 

between a perfect and the reference forecast Lauret et al. [81]: 

reference
MSE

forecatd
MSE

reference
Metric

castperfectfoe
Metric

reference
Metric

forecasted
Metric

SkillScore −=
−

−

= 1     (22) 

Its value thus ranges between 1 (perfect forecast) and 0 (reference forecast). A negative 

value indicates a performance which is even worse compared to the reference (observed 

data). Skill scores can be adopted not only for comparison between observed and estimated 

PAR values but also for inter-comparisons of different photosynthetically active radiation 

estimation techniques. 
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4. Empirical Models 
 

An empirical model correlates PAR, PAR/H, PAR/PARo and PAR/Ho with other 

easily measureable and calculable parameters such as clearness index, global solar 

radiation, relative humidity, minimum and maximum temperature, optical air mass, cloud 

amount, water vapour pressure, turbidity, sunshine duration and combination of the above 

parameters by employing concise mathematical functions. Numerous empirical models 

have been reported in literature for estimating PAR on the horizontal surface either on 

hourly mean basis (HB) or daily mean basis (DB) or monthly mean daily basis (MB) across 

the globe. In this review, the PAR models are classified according to the basis of their input 

parameters applied in correlating with PAR, PAR/H, PAR/PARo and PAR/Ho. it has been 

established that PAR is relatively influenced by meteorological parameters, astronomical 

factors, geographical factors, and geometrical factors. This could be attributed to the 

uniqueness of local climate in determining the atmospheric and meteorological parameters 

that best fit that particular locality. This also depends on the availability of input 

meteorological/atmospheric parameters that a given radiometric station or an individual is 

capable of measuring or calculating routinely which finally turned out to be the best input 

parameter at the disposal of the researcher for estimating PAR in that locality. Thus, in this 

review, the empirical models for estimating PAR can be classified into ten (10) following 

categories based on the applied meteorological and atmospheric parameters via: 

1. Global solar radiation-based models 

2. Relative humidity-based models 

3. Temperature-based models 

4. Optical air mass-based models 

5. Cloud amount-based models 

6. Water vapour pressure-based models 

7. Turbidity-based models 

8. Sunshine duration-based models 

9. Clearness index-based models 

10. Hybrid parameter-based models 

 

4.1 Global Solar Radiation-Based Models 
 Since PAR is a component of global solar radiation (H) on the horizontal surface, 

solar radiation researcher applied it for estimating PAR and the ratio of PAR/H as a result 

of its great important and influence for determining the PAR striking a particular location 

at the top of the atmosphere and its comprehensive impact on PAR on the horizontal 

surface. Thus, the functional forms and models employed across the globe are presented in 

this section.  

 

4.1.1 Group 1 

  

 Empirical models from this group are parameterized as the ratio of 

photosynthetically active radiation ( )p
PAR  to global solar radiation ( )H  expressed in photon 
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units (µmolJ-1, E MJ-1 etc.) according to their developing year. The functional form is given 

as: 

( )Ha
p

PAR =           (23) 

Where a is the regression coefficient 

McCree [36] developed the following MB model for New Zealand as: 

( )H
p

PAR 70.2=          (24) 

Monteith [86] developed the following DB model for the tropics under clear sky 

as: 

( )H
p

PAR 23.2=          (25) 

Szeicz [57] proposed the following DB model from January-December for 

Cambridge, UK as: 

( )H
p

PAR 33.2=          (26) 

Britton and Dodd [56] developed the following DB model for January-December 

in College Station, TX, USA as:  

 ( )H
p

PAR 17.2=          (27) 

Hodges and Kanemasu [87] proposed the following DB model for Manhattan, 

Kanas as: 

( )H
p

PAR 17.2=          (28) 

Stanhill and Fuchs [88] obtained the following HB models for numerous locations. 

For Rockeville, MD, USA (January-December) 

( )H
p

PAR 24.2=          (29a) 

For Washington DC (January-December) 

( )H
p

PAR 23.2=          (29b) 

For Jerusalem, Isreal (January-December) 

( )H
p

PAR 19.2=          (29c) 

For Dar es Salaan, Tanzania (October-January) 

( )H
p

PAR 33.2=          (29d) 

For Washington, Rockville and Jerusalem 

( )H
p

PAR 24.2=          (29e) 

Arkin et al. [89] stimulated the following DB model for Temple, Texas as: 

( )H
p

PAR 89.2=          (30) 

Hodges et al. [90] reported the following DB model for Manhattan, Kanas as: 

( )H
p

PAR 55.2=          (31) 

Howell et al. [91] proposed the following DB models for University of California 

USA as: 

( )H
p

PAR 058.2=          (32) 

Kvifte et al. [92] established the following DB models for several locations as 

follows: 
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For Copenhagen, Denmark 

( )H
p

PAR 239.2=          (33a) 

For Aas, Norway 

( )H
p

PAR 194.2=          (33b) 

For Ultuna, Sweden (May-October) 

( )H
p

PAR 102.2=          (33c) 

For Reykjavik, Iceland (May-October) 

( )H
p

PAR 102.2=          (33d) 

For Sodankyla, Finland (May-October) 

( )H
p

PAR 194.2=          (33e) 

For Tromso, Norway (May-October) 

( )H
p

PAR 056.2=          (33f) 

Rodskjer [93] established the following DB model for Ultuna, Sweden as: 

( )H
p

PAR 125.2=          (34) 

Meek et al. [41] obtained the following MB mo   (42m) 

Finch et al. [43] obtained thee following DB models under various sky conditions 

for Lusaka, Zambia as follows: 

For clear sky 

( )H
p

PAR 914.1=          (43a) 

For cloudy sky 

( )H
p

PAR 111.2=          (43b) 

Wang et al. [54] reported the following MB model for Naeba Mountain in China 

as: 

( )H
p

PAR 94.1=          (43c)  

Wang et al. [71] recorded the following MB models in Wuhan, China 

For January 

( )H
p

PAR 70.1=          (44a) 

For February  

( )H
p

PAR 73.1=          (44b) 

For March 

( )H
p

PAR 78.1=          (44c) 

For April 

( )H
p

PAR 87.1=          (44d) 

For May 

( )H
p

PAR 92.1=          (44e) 

For June 
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( )H
p

PAR 97.1=          (44f) 

For July 

( )H
p

PAR 00.2=          (44g) 

For August 

( )H
p

PAR 06.2=          (44h) 

For September 

( )H
p

PAR 96.1=          (44i) 

For October 

( )H
p

PAR 92.1=          (44j) 

For November 

( )H
p

PAR 83.1=          (44k) 

For December 

( )H
p

PAR 75.1=          (44L) 

For January-December 

( )H
p

PAR 93.1=          (44m) 

For Dry Seasons 

( )H
p

PAR 78.1=          (44n) 

For Humid season 

( )H
p

PAR 95.1=          (44o) 

For clear sky 

( )H
p

PAR 78.1=          (44p) 

For intermediate 

( )H
p

PAR 94.1=          (44q) 

For cloudy 

( )H
p

PAR 01.2=          (44r) 

Wang et al. [98] reported the following MB models for Wuhan in Central China. 

For January 

( )H
p

PAR 81.1=          (45a) 

For July 

( )H
p

PAR 0.2=          (45b) 

For December 

( )H
p

PAR 83.1=          (45c) 

For January-December 

( )H
p

PAR 90.1=          (45d) 

Anjorin et al. [99] fitted the following HB models for Jos, Nigeria as follows: 
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For January 

( )H
p

PAR 92.1=          (46a) 

For February 

( )H
p

PAR 06.2=          (46b) 

For March 

( )H
p

PAR 10.2=          (46c) 

For April 

( )H
p

PAR 14.2=          (46d) 

For May 

( )H
p

PAR 15.2=          (46e) 

For June 

( )H
p

PAR 14.2=          (46f) 

For July 

( )H
p

PAR 11.2=          (46g) 

For August 

( )H
p

PAR 09.2=          (46h) 

For September 

( )H
p

PAR 11.2=          (46i) 

For October 

( )H
p

PAR 13.2=          (46j) 

For November 

( )H
p

PAR 06.2=          (46k) 

For December 

( )H
p

PAR 96.1=          (46L) 

For January-December 

( )H
p

PAR 08.2=          (46m) 

Hu and Wang [62] estimated the following MB models for Sangjiang, Hailun and 

Changbai Mountain in Northeast China. 

For Sangjiang 

For January 

( )H
p

PAR 83.1=          (47a) 

For February  

( )H
p

PAR 82.1=          (47b) 

For March 

( )H
p

PAR 83.1=          (47c) 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 236-327. doi: 10.17737/tre.2018.4.2.0079 250 

 

 

 

For April 

( )H
p

PAR 89.1=          (47d) 

For May 

( )H
p

PAR 97.1=          (47e) 

For June 

( )H
p

PAR 99.1=          (47f) 

For July 

( )H
p

PAR 01.2=          (47g) 

For August 

( )H
p

PAR 97.1=          (47h) 

For September 

( )H
p

PAR 96.1=          (47i) 

For October1 

( )H
p

PAR 91.1=          (47j) 

For November 

( )H
p

PAR 85.1=          (47k) 

For December 

( )H
p

PAR 86.1=          (47L) 

For HB 

( )H
p

PAR 81.1=          (47m) 

For Hailun 

For January 

( )H
p

PAR 73.1=          (47n) 

For February  

( )H
p

PAR 74.1=          (47o) 

For March 

( )H
p

PAR 79.1=          (47p) 

For April 

( )H
p

PAR 93.1=          (47q) 

For May 

( )H
p

PAR 92.1=          (47r) 

For June 

( )H
p

PAR 98.1=          (47s) 

For July 

( )H
p

PAR 00.2=          (47t) 
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For August 

( )H
p

PAR 93.1=          (47u) 

For September 

( )H
p

PAR 87.1=          (47v) 

For October 

( )H
p

PAR 92.1=          (47w) 

For November 

( )H
p

PAR 84.1=          (47x) 

For December 

( )H
p

PAR 81.1=            (47y) 

For Changbai Mountain 

For January 

( )H
p

PAR 84.1=          (47z) 

For February  

( )H
p

PAR 89.1=          (47aa) 

For March 

( )H
p

PAR 90.1=          (47ab) 

For April 

( )H
p

PAR 01.2=          (47ac) 

For May 

( )H
p

PAR 01.2=          (47ad) 

For June 

( )H
p

PAR 04.2=          (47ae) 

For July 

( )H
p

PAR 04.2=          (47af) 

For August 

( )H
p

PAR 01.2=          (47ag) 

For September 

( )H
p

PAR 98.1=          (47ah) 

For October 

( )H
p

PAR 93.1=          (47ai) 

For November 

( )H
p

PAR 92.1=          (47aj) 

For December 

( )H
p

PAR 92.1=          (47ak) 
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Pankoew et al. [100] obtained the following HB model across UK using MSG 

SEVIRI data as: 

( )H
p

PAR 9455.1=          (48) 

Wang et al. [63] obtained the following HB and DB models for Inner Mongolia, 

China from 1990 to 2012 

Hourly basis (HB) 

For January 

( )H
p

PAR 78.1=          (49a) 

For February  

( )H
p

PAR 84.1=          (49b) 

For March 

( )H
p

PAR 80.1=          (49c) 

For April 

( )H
p

PAR 74.1=          (49d) 

For May 

( )H
p

PAR 76.1=          (49e) 

For June 

( )H
p

PAR 83.1=          (49f) 

For July 

( )H
p

PAR 86.1=          (49g) 

For August 

( )H
p

PAR 89.1=          (49h) 

For September 

( )H
p

PAR 88.1=          (49i) 

For October 

( )H
p

PAR 87.1=          (49j) 

For November 

( )H
p

PAR 80.1=          (49k) 

For December 

( )H
p

PAR 69.1=          (49L) 

For January-December 

( )H
p

PAR 80.1=          (49m) 

Daily basis (DB) 

For January 

( )H
p

PAR 73.1=          (49n) 

For February  



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 236-327. doi: 10.17737/tre.2018.4.2.0079 253 

 

 

 

( )H
p

PAR 79.1=          (49o) 

For March 

( )H
p

PAR 79.1=          (49p) 

For April 

( )H
p

PAR 70.1=          (49q) 

For May 

( )H
p

PAR 76.1=          (49r) 

For June 

( )H
p

PAR 83.1=          (49s) 

For July 

( )H
p

PAR 86.1=          (49t) 

For August 

( )H
p

PAR 89.1=          (49u) 

For September 

( )H
p

PAR 88.1=          (49v) 

For October 

( )H
p

PAR 85.1=          (49w) 

For November 

( )H
p

PAR 80.1=          (49x) 

For December 

( )H
p

PAR 68.1=          (49y) 

For January-December 

( )H
p

PAR 80.1=          (49z) 

Akitsu et al. [49] stimulated the following MB models for Tsukuba, Japan. 

For Summer period (a wet season): 

( )H
p

PAR 12.2=          (50a) 

For Winter (a dry season) 

( )H
p

PAR 92.1=          (50b) 

Peng et al. [101] proposed the following MB models for Lhasa located on the 

Tibetan Plateau in China as follows: 

For January 

( )H
p

PAR 81.1=          (51a) 

For July 

( )H
p

PAR 0.2=          (51b) 

For December 
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( )H
p

PAR 83.1=          (51c) 

For January-December 

( )H
p

PAR 84.1=          (51d) 

Hu et al. [64] fitted the following HB models for several stations in Beijing site as 

follows: 

For Beijing 

( )H
p

PAR 88.1=          (52a) 

For Luancheng 

( )H
p

PAR 80.1=          (52b) 

For Yuchen 

( )H
p

PAR 87.1=          (52c) 

For Jiaozhouwan 

( )H
p

PAR 95.1=          (52d) 

For Changwu 

( )H
p

PAR 89.1=          (52e) 

For Fengqin 

( )H
p

PAR 85.1=          (52f) 

Nwokolo and Ogbulezie [70] calibrated the following MB models for several 

locations in Nigeria.  

Gusau 

For January 

( )H
p

PAR 921.1=           (53a) 

For February  

( )H
p

PAR 908.1=          (53b) 

For March 

( )H
p

PAR 923.1=          (53c) 

For April 

( )H
p

PAR 933.1=          (53d) 

For May 

( )H
p

PAR 968.1=          (53e) 

For June 

( )H
p

PAR 954.1=          (53f) 

For July 

( )H
p

PAR 984.1=          (53g) 

For August 
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( )H
p

PAR 982.1=          (53h) 

For September 

( )H
p

PAR 946.1=          (53i) 

For October 

( )H
p

PAR 928.1=          (53j) 

For November 

( )H
p

PAR 890.1=          (53k) 

For December 

( )H
p

PAR 889.1=          (53l) 

For January-December 

( )H
p

PAR 936.1=          (53m) 

For Rainy Seasons 

( )H
p

PAR 956.1=          (53n) 

For Dry season 

( )H
p

PAR 909.1=          (53o) 

Port Harcourt  

For January 

( )H
p

PAR 950.1=           (53p) 

For February  

( )H
p

PAR 955.1=          (53q) 

For March 

( )H
p

PAR 980.1=          (53r) 

For April 

( )H
p

PAR 987.1=          (53s) 

For May 

( )H
p

PAR 010.2=          (53t) 

For June 

( )H
p

PAR 052.2=          (53u) 

For July 

( )H
p

PAR 060.2=          (53v) 

For August 

( )H
p

PAR 044.2=          (53w) 

For September 

( )H
p

PAR 054.2=          (53x) 

For October 
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( )H
p

PAR 038.2=          (53y) 

For November 

( )H
p

PAR 999.1=          (53z) 

For December 

( )H
p

PAR 960.1=          (53aa) 

For January-December 

( )H
p

PAR 007.2=          (53ab) 

For Rainy Seasons 

( )H
p

PAR 027.2=          (53ac) 

For Dry season 

( )H
p

PAR 980.1=          (53ad) 

Enugu 

For January 

( )H
p

PAR 985.1=          (53ae)   

For February  

( )H
p

PAR 973.1=          (53af) 

For March 

( )H
p

PAR 972.1=          (53ag) 

For April 

( )H
p

PAR 961.1=          (53ah) 

For May 

( )H
p

PAR 966.1=          (53ai) 

For June 

( )H
p

PAR 976.1=          (53aj) 

For July 

( )H
p

PAR 003.2=          (53ak) 

For August 

( )H
p

PAR 005.2=          (53aL) 

For September 

( )H
p

PAR 001.2=          (53am) 

For October 

( )H
p

PAR 041.2=          (53an) 

For November 

( )H
p

PAR 971.1=          (53ao) 

For December 
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( )H
p

PAR 977.1=          (53ap) 

For January-December 

( )H
p

PAR 986.1=          (53aq) 

For Rainy Seasons 

( )H
p

PAR 983.1=          (53aw) 

For Dry season 

( )H
p

PAR 989.1=          (53ax) 

Abeokuta 

For January 

( )H
p

PAR 938.1=           (53ay) 

For February  

( )H
p

PAR 936.1=          (53az) 

For March 

( )H
p

PAR 944.1=          (53aaa) 

For April 

( )H
p

PAR 968.1=                    (53aab) 

For May 

( )H
p

PAR 975.1=          (53aac) 

For June 

( )H
p

PAR 997.1=                    (53aad) 

For July 

( )H
p

PAR 025.2=          (53aae) 

For August 

( )H
p

PAR 011.2=          (53aaf) 

For September 

( )H
p

PAR 039.2=                    (53aag) 

For October 

( )H
p

PAR 981.1=                    (53aah) 

For November 

( )H
p

PAR 952.1=          (53aai) 

For December 

( )H
p

PAR 927.1=          (53aaj) 

For January-December 

( )H
p

PAR 975.1=                    (53aak) 

For Rainy Seasons 
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( )H
p

PAR 995.1=                    (53aaL) 

For Dry season 

( )H
p

PAR 947.1=                   (53aam) 

Ilorin 

For January 

( )H
p

PAR 917.1=                     (53aan) 

For February  

( )H
p

PAR 922.1=         (53aao) 

For March 

( )H
p

PAR 923.1=         (53aap) 

For April 

( )H
p

PAR 934.1=         (53aaq) 

For May 

( )H
p

PAR 946.1=         (53aar) 

For June 

( )H
p

PAR 966.1=         (53aas) 

For July 

( )H
p

PAR 989.1=         (53aat) 

For August 

( )H
p

PAR 005.2=         (53aau) 

For September 

( )H
p

PAR 004.2=         (53aav) 

For October 

( )H
p

PAR 946.1=         (53aaw) 

For November 

( )H
p

PAR 918.1=         (53aax) 

For December 

( )H
p

PAR 906.1=         (53aay) 

For January-December 

( )H
p

PAR 943.1=         (53aaz) 

For Rainy Seasons 

( )H
p

PAR 967.1=         (53aaaa) 

For Dry season 

( )H
p

PAR 922.1=         (53aaab) 

Sokoto 
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For January 

( )H
p

PAR 917.1=          (53aaac) 

For February  

( )H
p

PAR 907.1=         (53aaad) 

For March 

( )H
p

PAR 905.1=         (53aaae) 

For April 

( )H
p

PAR 915.1=         (53aaaf) 

For May 

( )H
p

PAR 909.1=         (53aaag) 

For June 

( )H
p

PAR 919.1=         (53aaah) 

For July 

( )H
p

PAR 935.1=         (53aaai) 

For August 

( )H
p

PAR 955.1=         (53aaaj) 

For September 

( )H
p

PAR 934.1=         (53aaak) 

For October 

( )H
p

PAR 926.1=         (53aaaL) 

For November 

( )H
p

PAR 911.1=         (53aaam) 

For December 

( )H
p

PAR 916.1=         (53aaan) 

For January-December 

( )H
p

PAR 921.1=         (53aaao) 

For Rainy Seasons 

( )H
p

PAR 931.1=         (53aaap) 

For Dry season 

( )H
p

PAR 914.1=         (53aaaq) 

 

4.1.2 Group 2 

 Empirical models from this group are parameterized as the ratio of 

photosynthetically active radiation ( )e
PAR  to global solar radiation ( )H  expressed in 

energy (unitless) according to their developing year. The functional form is given as: 
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( )Ha
e

PAR =           (54) 

where a is the regression coefficient 

 

Moon [36] computed spectral distribution of direct sunlight for sea level and 

suggested the ratio of PAR to H as: 

( )H
e

PAR 44.0=          (55) 

Yocum et al. [102] established the following MB model for Ithaca, NY, USA in 

the month of August as: 

( )H
e

PAR 47.0=          (56) 

Williams [103] obtained the following MB model for a wide variety of climatic 

conditions as: 

( )H
e

PAR 45.0=  

Goldberg and Klein [104] fitted the following DB model between January-

December for Jerusalem, Israel and Rockeville, MD, USA. 

For Jerusalem, Israel 

( )H
e

PAR 45.0=          (57a) 

For Rockeville, MD, USA 

( )H
e

PAR 45.0=          (57b) 

Stigter and Musabilha [105] established the following HB models for Dar es 

Salaam, Tanzania under various sky conditions 

For clear sky 

( )H
e

PAR 510.0=          (58a) 

For cloudy sky 

( )H
e

PAR 630.0=          (58b) 

Rao [51] developed the following HB model for Corvallis, Oregon, USA under 

various sky conditions and from January-December. 

For January-December 

( )H
e

PAR 46.0=          (59a) 

For clear sky 

( )H
e

PAR 443.0=          (59b) 

For partially cloudy sky 

( )H
e

PAR 447.0=          (59c) 

For cloudy sky 

( )H
e

PAR 483.0=          (59d) 

Hansen [106] reported the following DB model for Aas, Norway (May-August) as: 

( )H
e

PAR 44.0=          (60) 
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Papaioannou et al. [52] reported the following DB and HB models for Anthens, 

Greece under various sky conditions 

Hourly Basis (HB) 

For clear sky 

( )H
e

PAR 480.0=          (61a) 

For cloudy sky 

( )H
e

PAR 490.0=          (61b) 

Daily Basis (DB) 

For clear sky 

( )H
e

PAR 463.0=          (61c) 

For cloudy sky 

( )H
e

PAR 472.0=          (61d) 

Papaioannou et al. [107] reported the following MB model for Anthens, Greece as: 

( )H
e

PAR 43.0=          (62) 

Zhou et al. [108] fitted the following HB models for Yucheng, China under varying 

local standard time (hours). 

For January, 1992 (08:00) 

( )H
e

PAR 39.0=          (63a) 

For January, 1992 (09:00) 

( )H
e

PAR 42.0=          (63b) 

For January, 1992 (10:00) 

( )H
e

PAR 43.0=          (63c) 

For January, 1992 (11:00) 

( )H
e

PAR 42.0=          (63d) 

For January, 1992 (12:00) 

( )H
e

PAR 43.0=          (63e) 

For January, 1992 (13:00) 

( )H
e

PAR 43.0=          (63f) 

For January, 1992 (14:00) 

( )H
e

PAR 43.0=          (63g) 

For January, 1992 (15:00) 

( )H
e

PAR 42.0=          (63h) 

For January, 1992 (16:00) 

( )H
e

PAR 42.0=          (63i) 

For July, 1991 (07:00) 

( )H
e

PAR 47.0=          (63j) 
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For July, 1991 (08:00)  

( )H
e

PAR 50.0=          (63k) 

For July, 1991 (09:00) 

( )H
e

PAR 51.0=          (63L) 

For July, 1991 (10:00) 

( )H
e

PAR 52.0=          (63m) 

For July, 1991 (11:00) 

( )H
e

PAR 53.0=          (63n) 

For July, 1991 (12:00) 

( )H
e

PAR 51.0=          (63o) 

For July, 1991 (13:00) 

( )H
e

PAR 51.0=          (63p) 

For July, 1991 (14:00) 

( )H
e

PAR 51.0=          (63q) 

For July, 1991 (15:00) 

( )H
e

PAR 52.0=          (63r) 

For July, 1991 (16:00) 

( )H
e

PAR 51.0=          (63s) 

For July, 1991 (17:00) 

( )H
e

PAR 49.0=          (63t) 

For July, 1991 (18:00) 

( )H
e

PAR 45.0=          (63u) 

Jacovides et al. [53] stimulated the following DB and HB models for Athalassa, 

Cyprus under various sky conditions 

Hourly Basis (HB) 

For Cloudy Sky 

( )H
e

PAR 411.0=          (64a) 

For cloudy sky 

( )H
e

PAR 440.0=          (64b) 

Daily Basis (DB) 

For Clear sky 

( )H
e

PAR 408.0=          (64c) 

For intermediate sky 

( )H
e

PAR 421.0=          (64d) 

For Overcast 
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( )H
e

PAR 440.0=          (64e) 

Tsubo and Walker [48] established the following HB and DB models for 

Bloemfontein, South Africa. 

For Daily Basis (DB) 

( )H
e

PAR 48.0=          (65a) 

For Hourly Basis (HB) 

( )H
e

PAR 49.0=          (65b) 

Aguiar et al. [66] proposed the following MB models for Fazenda Noosa Sen hora 

in Rondonia. 

For January 

( )H
e

PAR 48.0=           (66a) 

For February  

( )H
e

PAR 48.0=          (66b) 

For March 

( )H
e

PAR 48.0=          (66c) 

For April 

( )H
e

PAR 47.0=          (66d) 

For May 

( )H
e

PAR 47.0=          (66e) 

For June 

( )H
e

PAR 46.0=          (66f) 

For July 

( )H
e

PAR 46.0=          (66g) 

For August 

( )H
e

PAR 44.0=          (66h) 

For September 

( )H
e

PAR 43.0=          (66i) 

For October 

( )H
e

PAR 46.0=          (66j) 

For November 

( )H
e

PAR 47.0=          (66k) 

For December 

( )H
e

PAR 47.0=          (66L) 

For Dry Season 

( )H
e

PAR 43.0=          (66m) 
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For Rainy Season 

( )H
e

PAR 48.0=          (66n) 

Jacovides et al. [109] developed the following HB models for Athens, Greece under 

various sky conditions 

For clear sky 

( )H
e

PAR 434.0=          (67a) 

For intermediate sky 

( )H
e

PAR 442.0=          (67b) 

For cloudy sky 

( )H
e

PAR 461.0=          (67c) 

Escobedo et al. [110] developed the following DB and HB under various sky 

conditions at Botucatu, Brazil. 

Hourly Basis (HB) 

( )H
e

PAR 501.0=   35.0oHH       (68a) 

( )H
e

PAR 495.0=   55.035.0  oHH      (68b) 

( )H
e

PAR 490.0=   65.055.0  oHH      (68c) 

( )H
e

PAR 489.0=   63.0oHH       (68d) 

( )H
e

PAR 491.0=   10  oHH       (68e) 

For clear sky 

( )H
e

PAR 489.0=          (68f) 

For cloudy sky 

( )H
e

PAR 501.0=          (68g) 

Daily Basis (DB) 

( )H
e

PAR 512.0=   35.0oHH       (68h) 

( )H
e

PAR 496.0=   55.035.0  oHH      (68i) 

( )H
e

PAR 490.0=   65.055.0  oHH      (68j) 

( )H
e

PAR 485.0=   63.0oHH       (68k) 

( )H
e

PAR 489.0=   10  oHH       (68L) 

For clear sky 

( )H
e

PAR 481.0=          (68m) 

For cloudy sky 

( )H
e

PAR 512.0=          (68n) 
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Li et al. [55] stimulated the following HB models for Wuhaoliang site in Northern 

Tibetan Plateau, China under various local standard time (hours). 

For January, 1994-1997 (08:00) 

( )H
e

PAR 50.0=          (69a) 

For January, 1994-1997 (09:00) 

( )H
e

PAR 46.0=          (69b) 

For January, 1994-1997 (10:00) 

( )H
e

PAR 44.0=          (69c) 

For January, 1994-1997 (11:00) 

( )H
e

PAR 43.0=          (69d) 

For January, 1994-1997 (12:00) 

( )H
e

PAR 42.0=          (69e) 

For January, 1994-1997 (13:00) 

( )H
e

PAR 42.0=          (69f) 

For January, 1994-1997 (14:00) 

( )H
e

PAR 41.0=          (69g) 

For January, 1994-1997 (15:00) 

( )H
e

PAR 40.0=          (69h) 

For January, 1994-1997 (16:00) 

( )H
e

PAR 39.0=          (69i) 

For January, 1994-1997 (17:00) 

( )H
e

PAR 49.0=          (69j) 

For July, 1994-1997 (07:00) 

( )H
e

PAR 50.0=           (69k) 

For July, 1994-1997 (08:00)  

( )H
e

PAR 48.0=          (69L) 

For July, 1994-1997 (09:00) 

( )H
e

PAR 46.0=          (69m) 

For July, 1994-1997 (10:00) 

( )H
e

PAR 45.0=          (69n) 

For July, 1994-1997 (11:00) 

( )H
e

PAR 44.0=          (69o) 

For July, 1994-1997 (12:00) 

( )H
e

PAR 43.0=          (69p) 

For July, 1994-1997 (13:00) 
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( )H
e

PAR 43.0=          (69q) 

For July, 1994-1997 (14:00) 

( )H
e

PAR 43.0=          (69r) 

For July, 1994-1997 (15:00) 

( )H
e

PAR 42.0=          (69s) 

For July, 1994-1997 (16:00) 

( )H
e

PAR 41.0=          (69t) 

For July, 1994-1997 (17:00) 

( )H
e

PAR 38.0=          (69u) 

For July, 1994-1997 (18:00) 

( )H
e

PAR 36.0=          (69v) 

Guefeng et al. [111] fitted the following DB model within the Poyang Lake 

National Nature Reserve, China as: 

( )H
e

PAR 45.0=          (70) 

Escobedo et al. [112] fitted the following HB and DB models for Botucatu, Brazil 

Hourly Basis (HB) 

For 2001 

( )H
e

PAR 4896.0=          (71a) 

For 2002 

( )H
e

PAR 4892.0=          (71b) 

For 2003 

( )H
e

PAR 4866.0=          (71c) 

For 2004 

( )H
e

PAR 5000.0=          (71d) 

For 2001-2004 

( )H
e

PAR 491.0=          (71e) 

Daily Basis (DB) 

For 2001 

( )H
e

PAR 4919.0=          (71f) 

For 2002 

( )H
e

PAR 4887.0=          (71g) 

For 2003 

( )H
e

PAR 4893.0=          (71h) 

For 2004 

( )H
e

PAR 4926.0=          (71i) 
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For 2001-2004 

( )H
e

PAR 489.0=          (71j) 

Wang et al. [9] stimulated the following MB models under different sky conditions 

in Wuhan, Central China 

For January 

( )H
e

PAR 3940.0=   35.0oHH       (72a) 

( )H
e

PAR 3787.0=   65.035.0  oHH      (72b) 

( )H
e

PAR 3764.0=   65.0oHH       (72c) 

For February 

( )H
e

PAR 3997.0=   35.0oHH       (72d) 

( )H
e

PAR 3631.0=   65.035.0  oHH      (72e) 

For March 

( )H
e

PAR 3985.0=   35.0oHH       (72f) 

( )H
e

PAR 3751.0=   65.035.0  oHH      (72g) 

( )H
e

PAR 3745.0=   65.0oHH       (72h) 

For April 

( )H
e

PAR 41.0=   35.0oHH       (72i) 

( )H
e

PAR 3848.0=   65.035.0  oHH      (72j) 

( )H
e

PAR 3832.0=   65.0oHH       (72k) 

For May 

( )H
e

PAR 4156.0=   35.0oHH       (72L) 

( )H
e

PAR 3919.0=   65.035.0  oHH      (72m) 

( )H
e

PAR 3877.0=   65.0oHH       (72n) 

For June 

( )H
e

PAR 4217.0=   35.0oHH       (72o) 

( )H
e

PAR 3947.0=   65.035.0  oHH      (72p) 

For July 

( )H
e

PAR 4377.0=   35.0oHH       (72q) 

( )H
e

PAR 4114.0=   65.035.0  oHH      (72r) 

( )H
e

PAR 4011.0=   65.0oHH       (72s) 

For August 
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( )H
e

PAR 4236.0=   35.0oHH       (72t) 

( )H
e

PAR 4107.0=   65.035.0  oHH      (72u) 

( )H
e

PAR 4146.0=   65.0oHH       (72v) 

For September 

( )H
e

PAR 4313.0=   35.0oHH       (72w) 

( )H
e

PAR 3994.0=   65.035.0  oHH      (72x) 

( )H
e

PAR 3838.0=   65.0oHH       (72y) 

For October 

( )H
e

PAR 4245.0=   35.0oHH       (72z) 

( )H
e

PAR 3847.0=   65.035.0  oHH      (72aa) 

( )H
e

PAR 3771.0=   65.0oHH       (72ab) 

For November 

( )H
e

PAR 4173.0=   35.0oHH       (72ac) 

( )H
e

PAR 3751.0=   65.035.0  oHH      (72ad) 

( )H
e

PAR 3885.0=   65.0oHH       (72ae) 

For December 

( )H
e

PAR 3966.0=   35.0oHH       (72af) 

( )H
e

PAR 3639.0=   65.035.0  oHH      (72ag) 

Bat-Oyun et al. [59] reported the following MB models for Mongolian grassland. 

For January 

( )H
e

PAR 425.0=           (73a) 

For February  

( )H
e

PAR 437.0=          (73b) 

For March 

( )H
e

PAR 427.0=          (73c) 

For April 

( )H
e

PAR 420.0=          (73d) 

For May 

( )H
e

PAR 421.0=          (73e) 

For June 

( )H
e

PAR 448.0=          (73f) 

For July 
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( )H
e

PAR 459.0=          (73g) 

For August 

( )H
e

PAR 439.0=          (73h) 

For September 

( )H
e

PAR 438.0=          (73i) 

For October 

( )H
e

PAR 449.0=          (73j) 

For November 

( )H
e

PAR 429.0=          (73k) 

For December 

( )H
e

PAR 423.0=          (73L) 

For January-December 

( )H
e

PAR 435.0=          (73m) 

For Growing Seasons (May-August) 

( )H
e

PAR 442.0=          (73n) 

For cloudy sky 

( )H
e

PAR 456.0=   33.0oHH       (73o) 

For partly cloudy sky 

( )H
e

PAR 439.0=   67.033.0  oHH      (73p) 

For clear sky 

( )H
e

PAR 430.0=   67.0oHH       (73q) 

For All sky 

( )H
e

PAR 434.0=   10  oHH       (73r) 

Abolfazi [61] obtained the following MB model for Southern Iran (January-

December) as: 

( )H
e

PAR 584.0=          (74a) 

Yu and Guo [76] fitted the following HB models for Bonville, Illinois and Sioux 

Falls, South Dakota in Midwestern United States under various sky conditions. 

For Bonville, Illinois 

( )H
e

PAR 463.0=   35.0oHH       (75a) 

( )H
e

PAR 429.0=   65.035.0  oHH      (75b) 

( )H
e

PAR 416.0=   65.0oHH       (75c) 

 ( )H
e

PAR 422.0=   10  oHH       (75d) 

For Sioux Falls, South Dakota 
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( )H
e

PAR 475.0=   35.0oHH       (75e) 

( )H
e

PAR 446.0=   65.035.0  oHH      (75f) 

( )H
e

PAR 433.0=   65.0oHH       (75g) 

 ( )H
e

PAR 438.0=   10  oHH       (75h) 

Akitsu et al. [49] recorded the following MB models for Tsukuba, Japan. 

For Summer Period (a wet season) 

( )H
e

PAR 465.0=          (76a) 

For Winter Period (a dry season) 

( )H
e

PAR 420.0=          (76b) 

Yu et al. [113] established the DB model for several locations in the contiguous 

United States under various sky conditions. 

For Bonville, Illinois 

( )H
e

PAR 4642.0=   3.0oHH       (77a) 

( )H
e

PAR 4271.0=   7.03.0  oHH      (77b) 

( )H
e

PAR 4169.0=   7.0oHH       (77c) 

( )H
e

PAR 4169.0=   All Sky      (77d) 

For Desert Rock, Nevada         

( )H
e

PAR 4906.0=   3.0oHH       (77e) 

( )H
e

PAR 4486.0=   7.03.0  oHH      (77f) 

( )H
e

PAR 4346.0=   7.0oHH       (77g) 

( )H
e

PAR 4371.0=   All Sky      (77h) 

For Fort Pecks, Montana 

( )H
e

PAR 4767.0=   3.0oHH       (77i) 

( )H
e

PAR 4447.0=   7.03.0  oHH      (77j) 

( )H
e

PAR 4360.0=   7.0oHH       (77k) 

( )H
e

PAR 4415.0=   All Sky      (77L) 

For Goodwin Creek/Mississippi 

( )H
e

PAR 4623.0=   3.0oHH       (77m) 

( )H
e

PAR 4317.0=   7.03.0  oHH      (77n) 

( )H
e

PAR 4220.0=   7.0oHH       (77o) 

( )H
e

PAR 4284.0=   All Sky      (77p) 
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For Penn, State University, Pennsylvania 

( )H
e

PAR 4519.0=   3.0oHH       (77q) 

( )H
e

PAR 4221.0=   7.03.0  oHH      (77r) 

( )H
e

PAR 4116.0=   7.0oHH       (77s) 

( )H
e

PAR 4196.0=   All Sky      (77t) 

For Sioux Falls, South Dakota 

( )H
e

PAR 4714.0=   3.0oHH       (77u) 

( )H
e

PAR 4452.0=   7.03.0  oHH      (77v) 

( )H
e

PAR 4370.0=   7.0oHH       (77w) 

( )H
e

PAR 4409.0=   All Sky      (77x) 

For Table Mountain, Boulder, Colorado 

( )H
e

PAR 4626.0=   3.0oHH       (77y) 

( )H
e

PAR 4301.0=   7.03.0  oHH      (77z) 

( )H
e

PAR 4231.0=   7.0oHH       (77aa) 

( )H
e

PAR 4266.0=   All Sky      (77ab) 

For All Sites  

( )H
e

PAR 4638.0=   3.0oHH       (77ac) 

( )H
e

PAR 4342.0=   7.03.0  oHH      (77ad) 

( )H
e

PAR 4286.0=   7.0oHH       (77ae) 

( )H
e

PAR 4381.0=   All Sky      (77af) 

Nwokolo et al. [70] calibrated the following MB models for several locations in 

Nigeria. 

Port Harcourt 

For January 

( )H
e

PAR 4682.0=           (78a) 

For February  

( )H
e

PAR 4712.0=          (78b) 

For March 

( )H
e

PAR 4838.0=          (78c) 

For April 

( )H
e

PAR 4886.0=          (78d) 

For May 
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( )H
e

PAR 4983.0=          (78e) 

For June 

( )H
e

PAR 5199.0=          (78f) 

For July 

( )H
e

PAR 5231.0=          (78g) 

For August 

( )H
e

PAR 5127.0=          (78h) 

For September 

( )H
e

PAR 5204.0=          (78i) 

For October 

( )H
e

PAR 5134.0=          (78j) 

For November 

( )H
e

PAR 4949.0=          (78k) 

For December 

( )H
e

PAR 4738.0=          (78L) 

For January-December 

( )H
e

PAR 4974.0=          (78m) 

For Dry Season 

( )H
e

PAR 4843.0=          (78n) 

For Rainy Season 

( )H
e

PAR 5064.0=          (78o) 

Enugu 

For January 

( )H
e

PAR 4880.0=           (78p) 

For February  

( )H
e

PAR 4820.0=          (78q) 

For March 

( )H
e

PAR 4811.0=          (78r) 

For April 

( )H
e

PAR 4751.0=          (78s) 

For May 

( )H
e

PAR 4726.0=          (78t) 

For June 

( )H
e

PAR 4833.0=          (78u) 

For July 
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( )H
e

PAR 4974.0=          (78v) 

For August 

( )H
e

PAR 4982.0=          (78w) 

For September 

( )H
e

PAR 4965.0=          (78x) 

For October 

( )H
e

PAR 5027.0=          (78y) 

For November   

( )H
e

PAR 4807.0=          (78z) 

For December 

( )H
e

PAR 4841.0=          (78aa) 

For January-December 

( )H
e

PAR 4868.0=          (78ab) 

For Dry Season 

( )H
e

PAR 4875.0=          (78ac) 

For Rainy Season 

( )H
e

PAR 4863.0=          (78ad) 

Abeokuta 

For January 

( )H
e

PAR 4542.0=           (78ae) 

For February  

( )H
e

PAR 4601.0=          (78af) 

For March 

( )H
e

PAR 4640.0=          (78ag) 

For April 

( )H
e

PAR 4780.0=          (78ah) 

For May 

( )H
e

PAR 4814.0=          (78ai) 

For June 

( )H
e

PAR 4925.0=          (78aj) 

For July 

( )H
e

PAR 5047.0=          (78ak) 

For August 

( )H
e

PAR 5103.0=          (78aL) 

For September 
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( )H
e

PAR 5032.0=          (78am) 

For October 

( )H
e

PAR 4877.0=          (78an) 

For November 

( )H
e

PAR 4643.0=          (78ao) 

For December 

( )H
e

PAR 4542.0=          (78ap) 

For January-December 

( )H
e

PAR 4798.0=          (78aq) 

For Dry Season  

( )H
e

PAR 4641.0=          (78ar) 

For Rainy Season 

( )H
e

PAR 4906.0=          (78as) 

Ilorin  

For January 

( )H
e

PAR 4486.0=           (78at) 

For February  

( )H
e

PAR 4520.0=          (78au) 

For March 

( )H
e

PAR 4559.0=          (78av) 

For April 

( )H
e

PAR 4614.0=          (78aw) 

For May 

( )H
e

PAR 4663.0=          (78ax) 

For June 

( )H
e

PAR 4713.0=          (78ay) 

For July 

( )H
e

PAR 4884.0=          (78az) 

For August 

( )H
e

PAR 4953.0=          (78aaa) 

For September 

( )H
e

PAR 4796.0=                    (78aab) 

For October 

( )H
e

PAR 4665.0=          (78aac) 

For November 
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( )H
e

PAR 4433.0=                    (78aad) 

For December 

( )H
e

PAR 4414.0=          (78aae) 

For January-December 

( )H
e

PAR 4647.0=          (78aaf) 

For Dry Season     

( )H
e

PAR 4504.0=                    (78aag) 

For Rainy Season 

( )H
e

PAR 4740.0=                    (78aah) 

Sokoto 

For January          

( )H
e

PAR 4492.0=           (78aai) 

For February  

( )H
e

PAR 4438.0=          (78aaj) 

For March 

( )H
e

PAR 4419.0=                    (78aak) 

For April 

( )H
e

PAR 4430.0=                    (78aaL) 

For May 

( )H
e

PAR 4444.0=                   (78aam) 

For June 

( )H
e

PAR 4500.0=                   (78aan) 

For July 

( )H
e

PAR 4596.0=                   (78aao) 

For August 

( )H
e

PAR 4715.0=                   (78aap) 

For September 

( )H
e

PAR 4595.0=                   (78aaq) 

For October 

( )H
e

PAR 4545.0=          (78aar) 

For November 

( )H
e

PAR 4453.0=          (78aas) 

For December 

( )H
e

PAR 4483.0=          (78aat) 

For January-December 
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( )H
e

PAR 4535.0=         (78aau) 

For Dry Season 

( )H
e

PAR 4480.0=         (78aav) 

For Rainy Season 

( )H
e

PAR 5580.0=         (78aaw) 

Bauchi 

For January  

( )H
e

PAR 4489.0=          (78aax) 

For February  

( )H
e

PAR 4481.0=         (78aay) 

For March 

( )H
e

PAR 4523.0=         (78aaz) 

For April 

( )H
e

PAR 4566.0=         (78aaaa) 

For May 

( )H
e

PAR 4535.0=          (78aaab) 

For June  

( )H
e

PAR 4534.0=         (78aaac) 

For July 

( )H
e

PAR 4636.0=         (78aaad) 

For August 

( )H
e

PAR 4625.0=         (78aaae) 

For September 

( )H
e

PAR 4596.0=         (78aaaf) 

For October 

( )H
e

PAR 4502.0=         (78aaag) 

For November 

( )H
e

PAR 4466.0=         (78aaah) 

For December 

( )H
e

PAR 4463.0=         (78aaai) 

For January-December 

( )H
e

PAR 4974.0=         (78aaaj) 

For Dry Season 

( )H
e

PAR 4482.0=         (78aaak) 

For Rainy Season  
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( )H
e

PAR 4528.0=         (78aaaL) 

  

4.1.3 Group 3 

 Empirical models from this group are parameterized as the first-order polynomial 

function of the global solar radiation where photosynthetically active radiation ( )p
PAR  is 

expressed in photon units (µmolJ-1, E MJ-1 etc.) and photosynthetically active radiation

( )e
PAR  is expressed in energy terms as shown below in the following forms: 

( ) bHa
p

PAR +=          (79) 

( ) bHa
e

PAR +=          (80) 

where a and b are the regression coefficients and other symbols retain their usual meaning. 

Meek et al. [41] fitted the following MB model for Fresno-West side located at the 

University of California, USA as: 

( ) 163.0017.2 += H
p

PAR         (81) 

Aguiar et al. [66] obtained the following HB and DB models for Fazenda Nossa 

Senhora in Rondonia. 

For Hour Basis, HB 

( ) 747.0478.0 += H
e

PAR            (wet season)     (82a) 

( ) 0689.1471.0 −= H
e

PAR            (wet-dry season)    (82b) 

( ) 578.4452.0 −= H
e

PAR           (dry season)     (82c) 

( ) 877.0466.0 −= H
e

PAR                   (dry-wet season)     (82d) 

For Daily Basis, DB 

( ) 956.4466.0 += H
e

PAR           (wet season)     (82e) 

( ) 735.0466.0 += H
e

PAR           (wet-dry season)     (82f) 

( ) 762.6457.0 −= H
e

PAR           (dry season)     (82g) 

( ) 244.4452.0 += H
e

PAR           (dry-wet season)                  (82h) 

Finch et al. [67] obtained the following MB model for Zambia as: 

( ) 9749.18807.1 += H
p

PAR         (83) 

Aguiar et al. [65] fitted the following HB and DB models for pasture and forest 

sites in South West Amazonia. 

For Pasture Site (Hourly Basis, HB) 

( ) 474.0283.0 += H
e

PAR               (wet season)     (84a) 

( ) 467.088818.0 +−= H
e

PAR   (wet-dry season)    (84b) 

( ) 449.0192.4 +−= H
e

PAR   (dry season)     (84c) 

( ) 464.0160.1 +−= H
e

PAR   (dry-wet season)    (84d) 
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( ) 462.0162.1 +−= H
e

PAR   (Annual)     (84e) 

For Forest Site (Hourly Basis, HB) 

( ) 423.0407.0 +−= H
e

PAR   (wet season)     (84f) 

( ) 420.0766.0 += H
e

PAR   (wet-dry season)    (84g) 

( ) 432.0444.3 +−= H
e

PAR   (dry season)     (84h) 

( ) 427.0594.0 += H
e

PAR   (dry-wet season)    (84i) 

( ) 425.0482.0 +−= H
e

PAR   (Annual)     (84j) 

For Pasture Site (Daily Basis, DB) 

( ) 464.0847.3 += H
e

PAR   (wet season)     (84k) 

( ) 459.0363.2 += H
e

PAR              (wet-dry season)     (84L) 

( ) 449.0044.4 +−= H
e

PAR   (dry season)     (84m) 

( ) 447.0389.5 += H
e

PAR   (dry-wet season)    (84n) 

( ) 443.0254.6 += H
e

PAR              (Annual)     (84o) 

For Forest Site (Daily Basis, DB) 

( ) 416.0881.1 += H
e

PAR   (wet season)     (84p) 

( ) 422.0154.0 +−= H
e

PAR   (wet-dry season)    (84q) 

( ) 433.0017.4 +−= H
e

PAR   (dry season)     (84r) 

( ) 422.0672.2 += H
e

PAR   (dry-wet season)    (84s) 

( ) 421.0795.0 += H
e

PAR              (Annual)     (84t) 

Melina-Maria et al. [77] stimulated the following HB model for Greece as: 

( ) 424.7457.0 −= H
e

PAR         (85) 

 

4.2 Relative Humidity-Based Models 
 Relative humidity-based computing models are often employed for estimating PAR 

in that it has been observed that when the total energy in the near infrared (NIR) portion of 

the solar spectrum greatly reduced, relative humidity is almost transparent to PAR 

wavelength. Thus, increasing global solar radiation in the NIR range will culminate into a 

lower PAR clearness index in the coastal region and higher PAR clearness index in the 

interior region. On this ground, it can be inferred that relative humidity can be employed 

for estimating PAR in geographical regions where relative humidity is greater than 64% 

annually. Hence, solar energy researchers have applied this meteorological parameter to 

stimulate computing models for estimating PAR as presented in this section. Therefore, 

empirical models from this group are parameterized as the first-order polynomial function 
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of the relative humidity (RH) where photosynthetically active radiation ( )e
PAR  is expressed 

in energy terms as shown below in the following form: 









+=

100

RH
ba

oPAR

e
PAR

         (86) 

where a and b are the regression coefficients and other symbols retain their usual meaning. 
 

Nwokolo et al. [60] developed the following MB models for several locations in 

Nigeria under various seasons and all sky conditions. 

For Port Harcourt 









−=

100
209.2300.2

RH

oPAR

e
PAR

  (All sky conditions)    (87a) 









+=

100
354.0118.0

RH

oPAR

e
PAR

  (Rainy season)     (87b) 









−=

100
293.1597.1

RH

oPAR

e
PAR

  (Dry season)     (87c) 

For Owerri 









−=

100
167.1484.1

RH

oPAR

e
PAR

  (All sky conditions)    (87d) 









−=

100
941.0277.1

RH

oPAR

e
PAR

  (Rainy season)     (87e) 









−=

100
603.0074.1

RH

oPAR

e
PAR

  (Dry season)     (87f) 

For Ikeja 









−=

100
364.1651.1

RH

oPAR

e
PAR

  (All sky conditions)    (87g) 









−=

100
600.0990.0

RH

oPAR

e
PAR

  (Rainy season)     (87h) 









−=

100
491.0997.0

RH

oPAR

e
PAR

  (Dry season)     (87i) 

For Abuja 









−=

100
369.0866.0

RH

oPAR

e
PAR

  (All sky conditions)    (87j) 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 236-327. doi: 10.17737/tre.2018.4.2.0079 280 

 

 

 









−=

100
875.1111.2

RH

oPAR

e
PAR

  (Rainy season)     (87k) 









−=

100
095.0763.0

RH

oPAR

e
PAR

  (Dry season)     (87L) 

For Maiduguri 









−=

100
247.0790.0

RH

oPAR

e
PAR

  (All sky conditions)    (87m) 









+=

100
049.0661.0

RH

oPAR

e
PAR

  (Rainy season)     (87n) 









−=

100
406.0816.0

RH

oPAR

e
PAR

  (Dry season)     (87o) 

For Sokoto 









−=

100
141.0779.0

RH

oPAR

e
PAR

  (All sky conditions)    (87p) 









−=

100
224.0835.0

RH

oPAR

e
PAR

  (Rainy season)     (87q) 









−=

100
300.0796.0

RH

oPAR

e
PAR

  (Dry season)     (87r) 

 

4.3 Temperature-Based Models 
Temperature-based model is an adaptation of Hargreaves-Samani [114] type 

computing model for estimating Photosynthetically Active Radiation (PAR) especially 

where sunshine hour, global solar radiation, data, etc. are not readily available. This could 

be attributed to the availability of daily mean minimum and maximum temperature in most 

standard stations around the location of interest; hence, researchers employed this 

meteorological parameter for estimating PAR on the horizontal surface. The basis of 

temperature-based computing models is that the differences between the maximum and 

minimum temperature is directly proportional to the fraction of extraterrestrial PAR 

received at the surface of the earth. However, other factors that affect temperature 

difference include cloudiness, relative humidity, elevation, topography, latitude and 

proximity to a large body of water. In this temperature-based computing model, PAR 

clearness index is a function of maximum and minimum temperature as show in this 

section. Therefore, empirical models from this group were calibrated from Hargreaves and 

Samani [114] computing model where photosynthetically active radiation ( )e
PAR  is 

expressed in energy terms as shown below in the following form: 
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( )minmax TTaHPAR −=         (88) 

where a being the regression coefficient and Tmax and Tmin are the maximum and minimum 

temperature and other symbols retain their usual meaning. 

Abolfazi [61] calibrated the following MB model for Shiraz University in South 

Iran as: 

( )minmax0993.0 TTHPAR −=        (89) 

 

4.4 Optical Air Mass-Based Models 
Optical air mass-based models have been employed by solar energy researchers for 

estimating PAR on hourly, daily and monthly time scales as a result of its observable 

influence on it. PAR changes as atmospheric parameters fluctuate. Experimental reports 

have revealed that PAR generally decrease with increasing optical air mass and the maxima 

were achieved when the sky conditions were cloudless. Meanwhile, PAR under clear skies 

decreased exponentially with optical air mass and the dispersion was much smaller than 

that under all sky conditions, which implies that PAR can be modelled using an exponential 

function of optical air mass in any region of the world as presented in these functional 

forms: 

( ) b
ma

e
PAR

−
=          (90) 

( ) b
ma

p
PAR

−
=          (91) 

where m being the optical air mass, a and b are the regression coefficients and symbols 

retain their usual meaning. 

Wang et al. [9] stimulated the following DB model for Central China as: 

( ) 06.1
1721

−
= m

e
PAR          (92) 

Hu and Wang [62] developed the following MB model for Sanjiang in Northeast 

China under clear sky condition as: 

( ) 3.1
7.2253

−
= m

p
PAR          (93) 

Wang et al. [63] established the following MB model for Inner Mongolia, China 

as: 

( ) 98.0
3.1524

−
= m

p
PAR         (94) 

Hu et al. [64] fitted the following MB model for North China Plain as: 

( ) 1.1
1.1886

−
= m

p
PAR          (95) 

 

4.5 Cloud Amount-Based Models 
Cloud amount as a climate variable is the fraction of the sky obscured by clouds 

when observed from a given locality. Cloud amount data are periodically obtained from 

meteorological stations or satellites-derived and are expressed in percent (%) of the 

maximum cloud amount. Cloud amount is mostly classified into several categories of 0 – 

24%, 25 – 49%, 50 – 74% and 75 – 100%. The implication is that zero percent implies no 

visible cloud in the sky while hundred percent cloud amount indicates no clear sky is 

visible. Researchers in the domain of renewable energy in the past have investigated and 
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simulated empirical computing models to relate cloud amount conditions and PAR owing 

to the fact that as PAR/H increases, cloud amount increases as well. This is because of the 

absorption of water vapour’s waveband selective in the solar spectrum that is, in cloudy 

and humid conditions, the absorption of solar radiation in the infrared portion of the solar 

spectrum is enhanced whereas absorption in the PAR waveband does not vary significantly 

as shown in the relations below. 

( )Cba
H

e
PAR

+=          (96) 

where a and b are the regression coefficients, C is the cloud amount and other symbols 

retain their usual meaning. 
 

Li et al. [55] obtained the following MB model for Northern Tibetan Plateau, China 

as: 

( )C
H

e
PAR

04581.04315.0 +=         (97) 

 

4.6 Water Vapour Pressure-Based Models 
Water vapour pressure-based models have been applied by researchers in the 

domain of renewable energy for estimating PAR in that it causes observable influence on 

the ratio of PAR/H. PAR/H fluctuates with changes in the atmospheric parameters. 

Experimental reports have shown that PAR/H increases with the increase in water vapour 

pressure. This could be attributed to the absorption of water vapour’s waveband selective 

in the solar spectrum. That is, in cloudy and humid conditions, the absorption of solar 

radiation in the near infrared (NIR) portion of the solar spectrum is not vary significantly, 

hence, an increase in the PAR/H ratio occur under cloudy and humid conditions. Thus, in 

this section, water vapour is related to PAR/H as shown below.                                   

( )*
EbIna

H

e
PAR

+=          (98) 

where oPPEE =
*

. E is the monthly average value of water vapour pressure at the site. Po 

is the standard atmospheric pressure at the sea level (1013hPa). P is the monthly average 

atmospheric pressure at the site. Where a and b are the regression coefficients and other 

symbols retain their usual meaning. 
 

Li et al. [55] fitted the following model for Northern Tibetan Plateau, China as: 

( )*
0087.04345.0 EIn

H

e
PAR

+=         (99) 

 
4.7 Turbidity-Based Models 

Observable influence of turbidity ( )c  on the ratio of PAR/H in recent 

experimental report have culminated into development of empirical computing models for 

relating turbidity to ratio of PAR/H. This could be attributed to the absorption of water 

vapour pressure and cloud amount waveband selective in the solar spectrum. In cloudy and 
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humid conditions, the absorption of solar radiation in the near infrared (NIR) portion of the 

solar spectrum is enhanced, whereas absorption in the PAR waveband does not vary 

significantly, thus, an increase in the PAR/H ratio is found under cloudy and humid 

conditions. Therefore, in this section, turbidity is related to PAR/H as presented in the 

functional form below. 

( )cba
H

e
PAR

+=          (100) 

where a and b are the regression coefficients, ( )c  being turbidity and other symbols retain 

their usual meaning. 

 

Li et al. [55] fitted the following MB model for Northern Tibetan Plateau, China 

as: 

( )c
H

e
PAR

247.04547.0 −=         (101) 

 

4.8 Sunshine-Based models 
The relative sunshine duration is one of the most commonly employed 

meteorological parameter for estimating PAR globally since sunshine duration is measured 

routinely at numerous meteorological stations across the globe, researchers in the domain 

of renewable energy often apply this parameter for PAR estimating worldwide as presented 

in this section. 

 

4.8.1 Group 1 

Empirical models from this group are parameterized as the first-order polynomial 

function of the sunshine where photosynthetically active radiation ( )p
PAR  is expressed in 

photon units (µmolJ-1, E MJ-1 etc.) and photosynthetically active radiation ( )e
PAR  is 

expressed in energy terms as shown below in the following forms: 

 









+=

oS

S
ba

H

e
PAR

         (102) 









+=

oS

S
ba

H

p
PAR

         (103) 









+=

oS

S
ba

oPAR

e
PAR

         (104) 









+=

oS

S
ba

oPAR

p
PAR

         (105) 

where a and b are the regression coefficients, 








oS

S
 being sunshine fraction and other 

symbols retain their usual meaning. 
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Udo and Aro [74] established the following MB models for Ilorin, Nigeria between 

1993-1994. 

For data obtained in 1993 









+=

oS

S

oPAR

p
PAR

06.141.0         (106a) 

For data recorded in 1994 









+=

oS

S

oPAR

p
PAR

89.053.0         (106b) 

For 1993-1994 data 









+=

oS

S

oPAR

p
PAR

99.047.0         (106c) 

For dry season 









+=

oS

S

oPAR

p
PAR

76.059.0         (106d) 

For rainy season 









+=

oS

S

oPAR

p
PAR

18.139.0         (106e) 

For 1993-1994 data 









+=

oS

S

oPAR

e
PAR

22.011.0         (106f) 

Li et al. [55] stimulated the following MB model for Northern Tibetan Plateau, 

China as: 









−=

oS

S

H

e
PAR

0591.04861.0         (107) 

Abolfazi [61] obtained the following MB model for Shiraz University in South Iran 

as: 









+=

oS

S

oPAR

e
PAR

338.0188.0         (108) 

 

4.8.2 Group 2 

Empirical models from this group are parameterized as the second-order 

polynomial function of the sunshine where photosynthetically active radiation ( )p
PAR  is 

expressed in photon units (µmolJ-1, E MJ-1 etc.) as shown below in the following form: 

2

















++=

oS

S
c

oS

S
ba

oPAR

p
PAR

        (109) 
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where a, b and c are the regression coefficients, 








oS

S
 being sunshine fraction and other 

symbols retain their usual meaning. 

Udo and Aro [74] established the following MB models for Ilorin, Nigeria between 

1993-1994. 

2

85.176.207.0 















−+=

oS

S

oS

S

oPAR

p
PAR

       (110) 

 

4.8.3 Group 3 

Empirical models from this group are parameterized as logarithmic fit of the 

sunshine where photosynthetically active radiation ( )p
PAR  is expressed in photon units 

(µmolJ-1, E MJ-1 etc.) as shown below in the following form: 

 









+=

oS

S
bIna

oPAR

p
PAR

         (111) 

where a and b are the regression coefficients, 








oS

S
 being sunshine fraction and other 

symbols retain their usual meaning. 

Udo and Aro [74] established the following MB models for Ilorin, Nigeria between 

1993-1994. 









+=

oS

S
In

oPAR

p
PAR

46.029.1         (112) 

 

4.9 Clearness Index-Based Models 
Clearness index (Kt) indicates that percentage depletion by the sky of the incoming 

solar variation and therefore gives both the level of availability of solar radiation and 

changes in the atmospheric condition in a given environment [1-2]. for this purpose, 

clearness index is closely related to PAR. Thus, clearness index has been known as a 

keynote determinant parameter for estimating PAR across the globe. One of the greatest 

characteristics of the model from this class is their convenient application in that utilizing 

them involve only measured global solar radiation data. Several functional forms and 

computing models have been employed for estimating PAR applying this parameter on 

HB, DB and MB across the globe as outline in this section according to their developing 

year. 

 

4.9.1 Group 1 

Empirical models from this group are parameterized as the first-order polynomial 

function of the clearness index where photosynthetically active radiation ( )e
PAR  is expressed 

in energy terms as shown below in the following forms: 
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







+=

oH

H
ba

oPAR

e
PAR

         (113) 









+=

oH

H
ba

oH

e
PAR

         (114) 









+=

oH

H
bIna

H

e
PAR

         (115) 

Yu et al. [72] fitted the following MB model for contiguous United States as: 









−=

oH

H
In

H

e
PAR

04095.04180.0        (116) 

Etuk et al. [68] establish the following MB models for Calabar, Nigeria as follows: 









+=

oH

H

oH

e
PAR

448.0001.0         (117a) 









+=

oH

H

oPAR

e
PAR

119.1002.0         (117b) 

 

4.9.2 Group 2 

Empirical models from this group are parameterized as the second-order 

polynomial function of the sunshine where photosynthetically active radiation ( )p
PAR  is 

expressed in photon units (µmolJ-1, E MJ-1 etc.) and photosynthetically active radiation

( )e
PAR  is expressed in energy terms as shown below in the following forms: 

2

















++=

oH

H
c

oH

H
ba

H

e
PAR

       (118) 

2

















++=

oH

H
c

oH

H
ba

H

p
PAR

       (119) 

2

















++=

oH

H
c

oH

H
ba

oH

e
PAR

       (120) 

2

















++=

oH

H
c

oH

H
ba

oPAR

e
PAR

       (121) 

2

















++=

oH

H
cIn

oH

H
bIna

H

e
PAR

       (122) 

Tsubo and Walker [48] fitted the following MB and HB models for Bloemfontein, 

South Africa. 

For Daily Basis (DB) 
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2

150.0401.0635.0 















+−=

oH

H

oH

H

H

p
PAR

      (123a) 

For Hourly Basis (HB) 

2

121.0334.0613.0 















+−=

oH

H

oH

H

H

p
PAR

      (123b) 

Wang et al. [71] established the following HB model for Central China as: 

2

659.0625.0567.0 















−−=

oH

H

oH

H

H

p
PAR

      (124) 

Yu et al. [72] fitted the following MB model for contiguous United States as: 

2

01223.0012238.04287.0 















−+=

oH

H
In

oH

H
In

H

e
PAR

     (125) 

Etuk et al. [69] calibrated the following MB models for several locations in Nigeria. 

For Port Harcourt 

2

001.0126.1001.0 















−+=

oH

H

oH

H

oPAR

e
PAR

      (126a) 

For Enugu 

2

027.0101.1005.0 















−+=

oH

H

oH

H

oPAR

e
PAR

      (126b) 

For Abeokuta 

2

003.0128.1001.0 















−+−=

oH

H

oH

H

oPAR

e
PAR

      (126c) 

For Ilorin 

2

192.0919.0053.0 















−+=

oH

H

oH

H

oPAR

e
PAR

      (126d) 

For Bauchi 

2

076.0032.1028.0 















++=

oH

H

oH

H

oPAR

e
PAR

      (126e) 

For Sokoto 

2

051.0186.1018.0 















−+−=

oH

H

oH

H

oPAR

e
PAR

      (126f) 

Etuk et al. [68] proposed the following MB models for Calabar, Nigeria as follows: 
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2

103.0034.1020.0 















++=

oH

H

oH

H

oPAR

e
PAR

      (127a) 

2

050.0406.0009.0 















++=

oH

H

oH

H

oH

e
PAR

      (127b) 

Nwokolo et al. [70] calibrated the following MB models for numerous locations in 

Nigeria. 

For Port Harcourt 

2

126.0338.0614.0 















+−=

oH

H

oH

H

H

e
PAR

      (128a) 

For Enugu 

2

134.0345.0616.0 















+−=

oH

H

oH

H

H

e
PAR

      (128b) 

For Abeokuta 

2

142.0088.0557.0 















−−=

oH

H

oH

H

H

e
PAR

      (128c) 

For Ilorin 

2

007.0201.0576.0 















+−=

oH

H

oH

H

H

e
PAR

      (128d) 

For Sokoto 

2

129.0343.0616.0 















+−=

oH

H

oH

H

H

e
PAR

      (128e) 

For Bauchi 

2

127.0341.0615.0 















+−=

oH

H

oH

H

H

e
PAR

      (128f) 

 

4.9.3 Group 3 

Empirical models from this group are parameterized as the third-order polynomial 

function of the sunshine where photosynthetically active radiation ( )p
PAR  is expressed in 

photon units (µmolJ-1, E MJ-1 etc.) as shown below in the form: 

32

























+++=

oH

H
d

oH

H
c

oH

H
ba

p
PAR       (129) 

Wang et al. [98] obtained the following MB model for Wuhan, Central China as: 
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3

4.1926

2

3.22102.31304.28 























+−+=

oH

H

oH

H

oH

Hp
PAR     (130) 

Wang et al. [63] developed the following MB model for Inner Mongolia, China 

from 1990 to 2012 as: 

3

0.1470

2

3.18232.1185488.110 























−++=

oH

H

oH

H

oH

Hp
PAR     (131) 

Wang et al. [115] proposed the following MB model in China as: 

3

4.734

2

3.7912.17714.58 























−++=

oH

H

oH

H

oH

Hp
PAR     (132) 

Peng et al. [73] fitted the following MB model for Tibatan Plateau, Lhasa, China 

as: 

3

33.846

2

6.10941.148698.88 























−++=

oH

H

oH

H

oH

Hp
PAR     (133) 

Hu et al. [116] stimulated the following model for Tibetan Plateau, China as: 

3

8.1182

2

7.12469.22565.73 























−++=

oH

H

oH

H

oH

Hp
PAR     (134) 

 

4.10 Hybrid Parameter-Based Models 
In as much as input parameters for estimating PAR on the horizontal surface varies 

periodically with the local climate in a given geographical location, it therefore indicates 

that to accurately stimulate a computing model that can fit a specific geographical area, 

solar energy researchers must test the local climate with various input parameters 

depending on the availability of the measurable metrological parameters and atmospheric 

variables at the disposal of the researcher. Numerous solar energy researchers across the 

globe have observed that hybrid parameter-based computing models fit local climate more 

than one variable-global solar radiation-based models, relative humidity-based models, 

temperature-based models, relative humidity-based models, temperature-based models, 

optical air mass-based models, cloud amount-based models, water vapour pressure-based 

models, turbidity-based models, sunshine-based models and clearness index-based models 

employed for estimating PAR. In this section, several hybrid parameter-based models are 

presented and classified based on their input parameters and developing year. 

 

4.10.1 Group 1 

In this group, global solar radiation and clearness index were incorporated with 

PAR in the forms: 

( ) c

oH

H
ba

p
PAR H ++= 








        (135) 
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( ) c

oH

H
ba

e
PAR H ++= 








        (136) 

Aguiar et al. [65] established the following HB models for pasture and forest sites 

in South Amazonia under hourly and daily time scales. 

For Pasture site (Hourly Basis, HB) 

( ) 547.5478.0146.1 −+= 








oH

He
PAR H   (wet season)    (137a) 

( ) 911.6471.0336.1 −+= 








oH

He
PAR H   (wet-dry season)   (137b) 

( ) 669.7445.0633.6 ++−= 








oH

He
PAR H  (dry season)     (137c) 

( ) 641.27480.0904.3 −+= 








oH

He
PAR H  (dry-wet season)   (137d) 

( ) 761.11469.0612.1 −+= 








oH

He
PAR H  (Annual)    (137e) 

For Forest Site (Hourly Basis, HB) 

( ) 882.22437.0074.3 −+= 








oH

He
PAR H  (wet season)     (137f) 

( ) 042.8424.0121.3 −+= 








oH

He
PAR H   (wet-8dry season)   (137g) 

( ) 302.9436.08017.0 −+−= 








oH

He
PAR H  (dry season)    (137h) 

( ) 168.32447.0544.5 −+= 








oH

He
PAR H  (dry-wet season)   (137i) 

( ) 509.16434.0939.2 −+= 








oH

He
PAR H  (Annual)    (137j) 

For Pasture Site (Daily Basis, DB) 

( ) 516.1466.0847.3 −+= 








oH

He
PAR H   (wet season)    (137k) 

( ) 827.39513.0737.2 −+= 








oH

He
PAR H  (wet-dry season)    (137L) 

( ) 082.79335.0946.0 ++−= 








oH

He
PAR H  (dry season)    (137m) 

( ) 374.234709.0109.4 −+= 








oH

He
PAR H  (dry-wet season)   (137n) 
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( ) 375.27479.0257.5 −+= 








oH

He
PAR H  (Annual)     (137o) 

For Forest Site (Daily Basis, DB) 

( ) 467.41457.0738.2 −+= 








oH

He
PAR H  (wet season)     (137p) 

( ) 599.9410.0339.0 ++−= 








oH

He
PAR H  (wet-dry season)    (137q) 

( ) 893.1431.0142.4 ++−= 








oH

He
PAR H   (dry season)   (137r)  

( ) 020.39384.0128.2 ++= 








oH

He
PAR H  (dry-wet season)    (137s) 

( ) 352.4426.0925.0 −+= 








oH

He
PAR H   (Annual)    (137t) 

Hu and Wang [62] reported the following HB model for Northern China as: 

( ) 0.2090.29.61 ++= 








oH

Hp
PAR H        (138) 

Hu et al. [64] developed the following HB models for Beijing site in North China 

Plain as: 

( ) 8.427.24292.1 +−= 








oH

Hp
PAR H        (139) 

4.10.2 Group 2  

In this group, clearness index, daytime length (LD) and solar zenith angle ( )z
 were 

incorporated with PAR in the forms: 

D

e

z

ooo

p L
H

H
d

H

H
c

H

H
baPAR 























+








+








+= 

32

    (140) 

e

z

ooo

p

H

H
d

H

H
c

H

H
baPAR 























+








+








+=

32

     (141) 

D

e

z

ooo

e L
H

H
d

H

H
c

H

H
baPAR 























+








+








+= 

32

    (142) 

e

z

ooo

e

H

H
d

H

H
c

H

H
baPAR 























+








+








+=

32

     (143) 

Wang et al. [98] developed the following DB and I minute models for Wuhan, 

Central China. 

For I minute Basis 
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045.1

32

4.19263.22102.31304.28 z

ooo

p

H

H

H

H

H

H
PAR 























+








−








+=   (144a) 

For Daily Basis (DB) 

Dz

ooo

p L
H

H

H

H

H

H
PAR 























+








−








+= 045.1

32

5.4217.4839.68421.6    (144b) 

Wang et al. [63] fitted the following HB models for Inner Mongolia, China. 

For Hourly Basis (HB) 

941.0

32

14703.18332.118548.110 z

ooo

e

H

H

H

H

H

H
PAR 























−








+








+=   (145a) 

For Daily Basis (DB) 

47.1

32

39.10064.12639.3057.7 z

ooo

p

H

H

H

H

H

H
PAR 























−








+








+=   (145b) 

Peng et al. [73] fitted the following DB and I minute models for Lhasa (Tibetan 

Plateau) in China. 

For Daily Basis (DB) 

Dz

ooo

p L
H

H

H

H

H

H
PAR 























−








+








−= 621.1

32

93.117544.182909.15587.16   (146a) 

For I minute Basis 

027.1

32

33.8466.10941.148698.88 z

ooo

p

H

H

H

H

H

H
PAR 























−








+








−=   (146b) 

Wang et al. [115] developed the following HB and DB model for LZ station, China. 

For Hourly Basis (HB) 

045.1

32

4.7343.7912.17714.58 z

ooo

e

H

H

H

H

H

H
PAR 























−








+








+=   (147a) 

For Daily Basis (DB) 

622.1

32

77.3529.4222.6775.3 z

ooo

p

H

H

H

H

H

H
PAR 























−








+








+=    (147b) 

Hu et al. [116] established the following HB and DB models for Lhasa and Huaibei, 

Tibetan Plateau, China as follows: 

For Hourly Basis (HB)  

09.1

32

8.11827.12469.22565.73 z

ooo

e

H

H

H

H

H

H
PAR 























−








+








+=   (148a) 

For Daily Basis (DB) 
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Dz

ooo

e L
H

H

H

H

H

H
PAR 























−








+








−= 13.1

32

5.159.234.21.2     (148b) 

4.10.3 Group 3  

In this group, the attenuation factor in clear skies (AFC, ratio of measured to 

extraterrestrial (PARo) under clear skies), the attenuation factor with clouds, which can be 

expressed as H/Ho were incorporated with PAR fraction in the form: 
c

o

b

C

o

e

H

H
aAF

PAR

PAR








=         (149) 

where a, b and c are the regression coefficients and other symbols retain their usual 

meaning. 

Wang et al. [63] stimulated the HB model for Inner Mongolia, China as: 
88.0

34.006.1 







=

o

C

o

e

H

H
AF

PAR

PAR
        (150) 

 

4.10.4 Group 4 

In this group, clearness index and optical air mass (m) were incorporated with PAR 

clearness index in the form: 

c

b

oo

p

m
H

H
a

PAR

PAR








=          (151) 

where a, b and c are the regression coefficients and other symbols retain their usual 

meaning. 
 

Hu and Wang [62] developed the HB model for Northern China under all sky 

conditions as: 

7925.0

0012.0

92.0 m
H

H

PAR

PAR

oo

p
−









=        (152) 

Hu et al. [64] fitted the following HB model for Beijing site as: 

09.0

84.0

80.0 m
H

H

PAR

PAR

oo

p









=         (153) 

 

4.10.5 Group 5 

In this group, global solar radiation (H), solar zenith angle ( )z
, columnar 

perceptible water vapour (wv), and aerosol optical depth (AOD) were incorporated with 

PAR in the form: 

 

( ) ( ) ( ) ( ) eAODdwvcHbza
e

PAR ++++=        (154) 
 

Melina-Maria et al. [77] stimulated the following HB model for Greece as: 
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( ) ( ) ( ) ( ) 940.19447.3673.3431.0375.0 +−++−= AODwvHz
e

PAR      (155) 

 

4.10.6 Group 6 

In this group, water vapour pressure and relative sunshine duration were 

incorporated with ratio of PAR/H in the form: 

( ) 







++=

oS

S
cEba

H

e
PAR *         (156) 

where oPPEE =
*

. E is the monthly average value of water vapour pressure at the site. Po 

is the standard atmospheric pressure at the sea level (1013hPa). P is the monthly average 

atmospheric pressure at the site, while a, b and c are the regression coefficients and other 

symbols retain their usual meaning.  

Li et al. [55] obtained the following MB model for Northern Tibetan Plateau, China 

as: 

( ) 







−+=

oS

S
E

H

e
PAR

024.0
*

0161.0453.0       (157) 

 

4.10.7 Group 7 

In this group, clearness of the sky ( ) , brightness of the skylight ( ) , solar zenith 

angle ( )z
, clearness index, site elevation (h) and perceptible water (wv) were incorporated 

with PAR/H ratio in the forms: 

( ) ( ) ( ) ( )sinheInwvdIncInba
H

p
PAR

++++=        (158) 

( ) ( )Inwvdc

oH

H
Inba

H

p
PAR

+++= 







sinh       (159) 

Wang et al. [71] fitted the following HB models for Wuhan, Central China as: 

 

( ) ( ) ( ) ( )sinh1.0029.005.0054.0444.0 ++−−= InwvInIn
H

p
PAR

     (160a) 

( ) ( )Inwv

oH

H
In

H

p
PAR

025.0sinh027.0058.033.0 ++−= 







    (160b) 

 

4.10.8 Group 8 

In this group, water vapour pressure, global solar radiation and clearness index were 

incorporated with PAR in the form: 

( ) ( ) dEc

oH

H
bHa

e
PAR +++= 








        (161) 

Aguiar et al. [65] developed the following DB and HB models for Pasture and 

Forest Sites in South West Amazonia 
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For Pasture Site (Hourly Basis) 

( ) ( ) 385.0088.6478.0196.11 +−+= 







E

oH

H
H

e
PAR  (wet season)   (162a) 

( ) ( ) 246.0511.6470.0534.4 +−+−= 







E

oH

H
H

e
PAR  (wet-dry season)  (162b) 

( ) ( ) 339.0533.10444.0164.14 +++−= 







E

oH

H
H

e
PAR  (dry season)   (162c) 

( ) ( ) 127.0739.27480.0102.7 −−+= 







E

oH

H
H

e
PAR  (dry-wet season)  (162d) 

( ) ( ) 105.1210.3464.0505.26 +−+−= 







E

oH

H
H

e
PAR  (Annual)   (162e) 

For Forest Site (Hourly Basis) 

( ) ( ) 686.0446.27441.0054.12 +−+−= 







E

oH

H
H

e
PAR  (wet season)   (162f) 

( ) ( ) 436.0972.8425.0610.6 +−+−= 







E

oH

H
H

e
PAR  (wet-dry season)  (162g) 

( ) ( ) 606.0325.4435.0891.15 +−+−= 







E

oH

H
H

e
PAR  (dry season)   (162h) 

( ) ( ) 274.0066.34447.0518.0 +−+= 







E

oH

H
H

e
PAR  (dry-wet season)  (162i) 

( ) ( ) 467.0125.18435.0072.7 +−+−= 







E

oH

H
H

e
PAR  (Annual)   (162j) 

For Pasture Site (Daily Basis) 

( ) ( ) 023.0362.1466.0447.4 −−+= 







E

oH

H
H

e
PAR  (wet season)   (162k) 

( ) ( ) 499.0223.22487.0390.8 +−+−= 







E

oH

H
H

e
PAR  (wet-dry season)  (162L) 

( ) ( ) 927.0718.86347.0462.27 +++−= 







E

oH

H
H

e
PAR  (dry season)   (162m) 

( ) ( ) 629.0430.286766.0423.20 −−+= 







E

oH

H
H

e
PAR  (dry-wet season)  (162n) 

( ) ( ) 495.1944.17435.0302.34 +++−= 







E

oH

H
H

e
PAR  (Annual)   (162o) 

For Forest Site (Daily Basis) 
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( ) ( ) 903.0867.40453.0421.16 +−+−= 







E

oH

H
H

e
PAR  (wet season)   (162p) 

( ) ( ) 396.0108.3418.0834.8 +++−= 







E

oH

H
H

e
PAR  (wet-dry season)  (162q) 

( ) ( ) 069.1893.9442.0878.35 +++−= 







E

oH

H
H

e
PAR  (dry season)   (162r) 

( ) ( ) 773.0392.17398.0179.10 +++−= 







E

oH

H
H

e
PAR  (dry-wet season)  (162s) 

( ) ( ) 703.0702.6426.0566.13 +−+−= 







E

oH

H
H

e
PAR  (Annual)   (162t) 

4.10.9 Group 9 

In this group, solar zenith angle ( )z
, solar elevation angle ( ) , clearness of the sky 

( ) , brightness of skylight ( )  and dew temperature ( )dT  were incorporated with ratio of 

PAR with H in the form: 

( ) ( ) ( ) ( )
2

sine
d

TdIncInba
H

p
PAR

++++=       (163) 

( ) ( ) ( ) ( )
2

cose
d

TdIncInba
H

p
PAR

++++=       (164) 

Alados et al. [5] developed the following HB model at the University of Almeria 

site as: 

 

( ) ( ) ( ) ( )
2

sin032.0005.0202.0192.0786.1 ++−−=
d

TInIn
H

p
PAR

   (165) 

Alados and Alados-Arboledas [117] calibrated the following HB model at the 

University of Almeria site as: 

 

( ) ( ) ( ) ( )
2

cos032.0005.0202.0192.0786.1 ++−−=
d

TInIn
H

p
PAR

   (166) 

Wang et al. [9] developed the following HB models for Wuhan, Central China as: 

( ) ( ) 




+−−= 

2
sin072.0064.0052.0454.0 InIn

H

p
PAR

     (167) 

 

4.10.10 Group 10 

In this group, clearness of the solar zenith angle ( )z
, solar elevation angle ( ) , 

clearness of the sky ( )  and brightness of skylight ( )  were incorporated with ratio of PAR 

with H in the form: 
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( ) ( ) 




+++= 

2
sindIncInba

H

p
PAR

      (168) 

( ) ( ) 




+++= 

2
cosdIncInba

H

p
PAR

      (169) 

Alados et al. [5] fitted the following HB model for University of Almeria site as: 

( ) ( ) 




+−−= 

2
sin076.019.0194.0854.1 InIn

H

p
PAR

     (170) 

Alados and Alados-Arboledas [117] calibrated the following HB model for 

University of Almeria site as: 

( ) ( ) 




+−−= 

2
cos076.0195.0194.0854.1 InIn

H

p
PAR

    (171) 

 

4.10.11 Group 11 

In this group, clearness index (H/Ho), dew point temperature (Td), solar zenith angle 

( )z
 or solar elevation angle ( )  were incorporated with ratio of PAR with H in the form: 

( ) ( )sind
d

Tc

oH

H
Inba

H

p
PAR

+++= 







      (172) 

( ) ( )cosd
d

Tc

oH

H
Inba

H

p
PAR

+++= 







      (173) 

Alados et al. [5] developed the following HB model for University of Almeria site 

as: 

( ) ( )sin049.0005.0190.0791.1 ++−= 







d

T

oH

H
In

H

p
PAR

    (174) 

Alados and Alados-Arboledas [117] calibrated the following HB model for 

University of Almeria site as: 

( ) ( )cos049.0005.0190.0791.1 ++−= 







d

T

oH

H
In

H

p
PAR

    (175) 

Yu et al. [72] fitted the following HB models for contiguous United States as: 

( ) ( ) 4680.0cos049.00001159.0005396.0

2

0138.0 +−+−= 















zd

T

oH

H
In

oH

H
In

H

e
PAR

  (176) 

( ) ( )cos06031.00001166.00385.045.0 −−−= 







d

T

oH

H
In

H

p
PAR

    (177) 

4.10.12 Group 12 

In this group, clearness index, solar elevation angle ( )  or solar zenith angle ( )z
 

were incorporated with PAR to H ratio in the form: 

( )sinc

oH

H
Inba

H

p
PAR

++= 







       (178) 
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( )z

o

p

c
H

H
Inba

H

PAR
cos+




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


+=        (179) 

Alados et al. [5] fitted the following HB model for University of Almeria site as: 

( )sin099.0191.0832.1 +−= 








oH

H
In

H

p
PAR

      (180) 

Alados and Alados-Arboledas [117] calibrated the following HB model for 

University of Almeria site as: 

( )z

o

p

H

H
In

H

PAR
cos099.0191.0832.1 +








−=      (181) 

Wang et al. [71] reported the following HB model for Wuhan, Central China as: 

( )sin045.0061.0336.0 +







−=

o

e

H

H
In

H

PAR
     (182) 

Yu et al. [72] developed the following HB models for Contiguous United States as: 

( )z

o

e

H

H
In

H

PAR
cos06099.003853.04511178.0 −




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


−=     (183a) 
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
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


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


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


+=   (183b) 

 

4.10.13 Group 13 

In this group, clearness index and dew point temperature were incorporated to PAR 

to H ratio, PAR to Ho ratio, and PAR fraction in the forms: 





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


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


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
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



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




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


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d
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
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


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


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


2

      (186) 

 

Yu et al. [72] developed the following HB model for Contiguous United States as: 

( ) 4283.00005011.001632.0

2

01102.0 ++−= 



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
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   (187) 

Etuk et al. [68] fitted the following MB models for Calabar, Nigeria as: 





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



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


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
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e
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4.10.14 Group 14 

 In this group, diffuse fraction (Hd/H), brightness of the skylight ( ) , or solar zenith 

angle 
z

 or dew point temperature (Td) were incorporated with PAR and H ratio in the 

forms: 

( ) ( ) ( ) ezd
d

TcInb
H

d
H

Ina
H

e
PAR

++++= 



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


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2
cos      (189) 

( ) ( ) dzcInb
H
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H

e
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+++= 



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e
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
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


       (191) 

Yu et al. [72] obtained the following HB models for Contiguous United State as: 
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2
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4.10.15 Group 15 

In this group, clearness index and sunshine fraction were incorporated with PAR 

fraction or PAR to Ho in the forms: 
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Etuk et al. [68] recorded the following MB models for Calabar, Nigeria as: 
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4.10.16 Group 16 

In this group, relative humidity (RH) or sunshine fraction, clearness index was 

incorporated to PAR fraction in the forms: 
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Etuk et al. [68] reported the following MB models for Calabar, Nigeria as: 
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4.10.17 Group 17 

In this group, dew point temperature, sunshine fraction, clearness index and ratio 

of minimum and maximum temperature were incorporated to PAR fraction and PAR to Ho 

ratio in the forms: 
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Etuk et al. [68] proposed the following MB models for Calabar, Nigeria as: 
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5. Discussion 
 

As a result of the various empirical computing models reported by peers and 

researchers for estimating photosynthetically active radiation (PAR) applying astronomical 

parameters, meteorological parameters, geographical parameters, geometrical factors and 

atmospheric parameters resulting in a rigorous task for introducing a set input parameter 

with a particular functional form for optimal estimation PAR across the globe because of 

the nature of PAR and PAR/H dependence on latitude and altitude of the site and movement 

of the earth culminating in variations of local climate. 

For this purpose, the author has classified numerous PAR and PAR/H computing 

models into ten (10) categories based on their dependence on atmospheric parameters, 

meteorological parameters, geometrical factors, geographical parameters, astronomical 

factors etc. via: global solar radiation-based models, relative humidity-based models, 

temperature-based models, optical air mass-based models, clouds, cloud amount-based 

models, water vapour pressure-based models, turbidity-based models, sunshine-based 

models, cleanness index-based models and hybrid parameter-based models as mentioned 

earlier. 

The influence of water vapour pressure on PAR/H has been roughly reported in 

literature in season variations such as the higher in summer (wet season) and lower in 

winter (dry season) [51, 59, 107]. This report is in agreement with recent report of 

dependence of PAR/H on water vapour pressure by Akitsu et al. [49] who observed that 

the monthly mean PAR/H recorded higher values (0.465) in summer and lower value 

(0.420) in winter as shown in Fig. 3. In another study, Li et al. [55] observed that PARe/H 

increases with the increase in water vapour pressure and low-level cloud amount. 

According to the authors, this could be attributed to the absorptions of water vapour’s 

waveband selective in the solar spectrum. That is, in cloudy and humid conditions, the 

absorption of solar radiation in the near infrared (NIR) portion of the solar spectrum is 

enhanced, whereas absorption in the PAR waveband does not vary significantly. 
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Fig. 3. Comparison between PE/RS and climatic factors ((a) water vapor pressure e, (b) solar zenith angle _, (c) clearness index kt). Small dots denote 

observed data, while symbol marks denote mean value of simulation output (Rstar). Error bars denote the std. (For interpretation of the references to color 

in this figure text, the reader is referred to the web version of this article.) Akitsu et al. [55] 

 

Moreover, Bat-Oyun et al. [59] equally observed that increases in PARe/H were 

found under cloudy and humid conditions. The authors equally recorded a significant 

correlation between PARe/H and water vapour pressure (r = 0.49, P < 0.001) for day time 

(08:00 – 17:00, local time). However, the correlation was stronger during April – 

September (r = 0.70, P < 0.001) compared to the rest of the study period, i.e. October – 

March (r = 0.26, P < 0.001). McCree [37] recorded that during cloudy skies the energy in 

the PAR region formed a greater part of global solar radiation than on clear days. Another 

researcher, Hu et al. [118] observe similar seasonal variations in PAR/H for Beijing where 

lower PAR/H was observed during the dry season and higher PAR/H recorded in the wet 

season. 

Since water vapour pressure, relative humidity and cloud amount are similar in 

atmospheric behaviour, it can be inferred that increases in PAR/H or PAR culminate in a 

corresponding increase in water vapour pressure [37, 49, 51, 55, 59, 64, 107, 118], low 

level cloud amount [55] and relative humidity [60]. 

Considering clearness index, optical air mass, Angstrom turbidity coefficient and 

relative sunshine, these four factors (classes) increases with decreasing PAR/H. Li et al. 

[55] observed that the correlations between PARe/H and relative sunshine and clearness 

index are relatively good to some degree with the coefficient of correlation (R) value of 

0.65 and 0.69 respectively. According to the authors, compared with relative sunshine and 

clearness index, the correlation coefficient between PAR/H and Angstrom turbidity 

coefficient is relatively poor (0.38). They equally stated that the reason for poor relation 
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between PAR/H and Angstrom turbidity coefficient (β) is that the (β) values are determined 

under the clear sky conditions; they influence PAR significantly with clear sky conditions, 

whereas the PAR/H values are under the real sky conditions. 

Wang et al. [63] observed the dependence of hourly PAR on optical air mass 

defined by Kasten and Young [119] as a measure of length of the path through the 

atmosphere to earth surface, under several sky conditions in inner Mongolia, China that 

PAR generally decreased with increasing optical air mass and the maxima were achieved 

when sky conditions were cloudless as shown in Fig. 4. The same trend was observed by 

other researchers [9, 62, 64]. 

 

 
Figure 4. Dependence of hourly PAR on optical air mass under different sky conditions in Inner Mongolia (NMG) Wang et al. [63]. 

 

In as much as clearness index, optical air mass, Angstrom turbidity coefficient and 

relative sunshine possessed similar characteristics of atmospheric trend, it can be stated 

that increases in PAR/H or PAR brings about a corresponding decrease in clearness index 

[48, 55, 59, 68, 72]; Angstrom turbidity coefficient [55]; relative sunshine [55, 61, 74]; 

optical air mass [62-63, 80]. 

Generally, it is impossible to introduce a set of input parameter with a singular 

functional form for optimal estimation of photosynthetically active radiation. In fact, the 

tendency of enhancing the accuracy of estimation by combing some sets of input 

parameters is solely dependent on local climate and regional geography etc. To restate this, 

a brief review of the qualitative effort of solar energy researchers to enhance the accuracy 

of estimation of photosynthetically active radiation computing models by employing 

varieties of influencing factors are as represented in the following. 

Wang et al. [63] calibrated hybrid empirical consist of the attenuation factor in clear 

skies (AFc, ratio of measured to extraterrestrial PAR under clear skies); attenuation factor 

with clouds, which can be expressed as H/Ho with PAR coefficient (PAR/PARo) under 

hourly time scale (model 1) parameters. The authors equally fitted another hybrid model 

comprises clearness index (H/Ho) – attenuation factor with clouds and cosine of solar zenith 

angle (θz) under hourly and daily time scales (model 2). From the statistical indices, model 
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2 was chosen for reconstructing hourly and daily time scales PAR records in Inner 

Mongolia, China. This indicates that cosine of zenith angle (θz) and clearness index is more 

suitable compared to attenuation factor in clear skies, extraterrestrial PAR and clearness 

index in Inner Mongolia under clear skies in China as shown in Fig. 5 and 6. 

 

 
Figure 5. Scatterplot of hourly measured PAR and estimates in Inner Mongolia (NMG) using model 2 (grey line means 1 : 1 

relationship) Wang et al. [63]. 
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Figure 6. Scatterplot of daily measured PAR and estimates in Inner Mongolia (NMG) using model 2 (grey line means 1 : 1 
relationship) Wang et al. [63]. 
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Yu and Guo [76] calibrated Alados et al. [5] computing models to generate the 

relationship between PAR fraction and model parameters for Bondville station (BON) and 

Sioux Falls Station (SXF) in Midwestern United States using data from 2009 – 2011. The 

authors employed diffuse fraction (Hd/H), the sky brightness (Δ), the dew point 

temperature and cosine of sun zenith angle (cosθz) as model 1 input parameters; diffuse 

fraction, the sky brightness and the cosine of sun zenith angle as model 2 input parameters; 

clearness index, dew point temperature and the cosine of sun zenith angle as model 4 input 

parameters under several sky conditions. From the statistical indices, it was discovered that 

model 1 was more suitable for estimating PAR in Midwestern United States followed by 

model 3 next by model 2 and model 4 recorded the least performance under Overcast Sky 

(OS). Under partially cloudy sky (PS), model 3 was most suitable, followed by model 2, 

next by model 3 and model 4 was the least suitable empirical model for estimation of PAR 

in Midwestern United States. Whereas, under Clear Sky (CS) model 3 recorded the most 

suitable, followed by model 4, next by model 3 and lastly by model 4 for PAR estimation 

in Midwestern United States. Under all sky conditions, model 2 recorded the best, followed 

by model 3, next by model 1 and model 4 reported the least computing model for PAR 

estimation in Midwestern United States as shown in Table 2. 

Yu et al. [72] synthesized ten (10) empirical computing models from previous 

studies to compare with their measure PAR in the contiguous United States. Model 1 – 4 

were purposed by Alados et al. [5]. Model 5 – 6 were suggested by Zhang et al. [97]. Model 

7 – 10 were obtained from previous studies [55, 109, 120-121]. From the statistical indices, 

the ten synthetized computing models for estimating PAR from H show that the quadratic 

function model taking (lnH/Ho) as main parameter plus cos θz has the best performance. 

According to the authors, the results equally show that clearness index (H/Ho) is capable 

to be the indicator for estimating PAR from H as one substitute of the combination of 

diffuse fraction (Hd/H) and the skylight brightness (Δ). They also observed that the role of 

dew point temperature in the models is not significant to improve the overall performance. 

Yu and Wang [62] employed only ratio of PAR/H as input parameter for model 1; 

global solar radiation (H) and clearness index as input parameter for model 2; and clearness 

index and optical air as input parameter for model 3 for estimation of PAR in Sanjiang site, 

Northeast China for hourly time scale under all sky conditions. The statistical indicators 

revealed that model 3 is the most suitable computing model for PAR estimation in Sanjiang 

site as shown in Table 1.  

 
Table 1: Comparison results of empirical estimation model for hourly PAR at Sanjiang site Yu and Wang 

[62]. 

Models Slope 

(a) 

Intercept 

(b) 

Coefficient of 

Determination 

(R2) 

MBE 

(µmolm-2s-1) 

RMSE 

(µmolm-2s-1) 

RE 

(%) 

A 1.03 5.6 0.98 35 75.5 10.7 

B 1.01 4.2 0.97 15.3 76.7 11.4 

C 1.01 1.5 0.97 19.5 67.8 9.4 

 

Wang et al. [71] employed sky clearness (ɛ), sky brightness (Δ), precipitate water 

(w), and sin of solar elevation angle (h) as an input parameter for model 1; clearness index, 

sin of solar elevation angle (h) and perceptible water (wv) as input parameter for model 2; 
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only clearness index as input parameter for model 3; sky clearness (kt), sky brightness (Δ), 

and sin of solar elevation angle for input parameter for model 4; and clearness index and 

sin of solar elevation angle as input parameter for Sanya station (SY), Lasa Station (LS), 

Yingtan station (YT), Fergqiv station (FQ), Changshu Station (CS), and other stations in 

central China for estimating PAR under hourly time scale. According to the authors, as 

shown in Fig. 7. the slopes of all the models were higher than expected and the estimated 

values were slightly smaller than the observed results. This reveals that there are some 

influencing factors on PAR/H not being taken into consideration, for example, the 

influence of ozone absorption and surface albedo. The authors equally stated that model 2 

and 3 may be better for calculating PAR from measurement in Wuhan. In order to check 

the level of reliability of the models (2 and 3), the author tested the two models (model 2 

and 3) at seven (7) stations in Central China. The authors revealed that the two models 

work well in most stations in that the relative error in DH station was about 5.9%, which 

produced a better result than that in other stations in China. For instance, Hu et al. [118] 

reported relative error between measured and estimated PAR as about 20% in Beijing. On 

the whole, the statistical results revealed that PAR could be estimated with a high level of 

precision using global solar radiation and a variable that accounts for the sky condition 

dependence of PAR/H in Central China. However, a larger derivation was still found at 

Huitong Station (HS), Taoyuan station (TY), and Qianyanzhou station (QYS), with relative 

error higher than 10%. This according to the authors may be attributed to the higher 

absorption effects for extraterrestrial solar radiation in the above three sites (clouds and 

water vapour), which lie south of Wuhau and close to the tropical regions. 

Li et al. [55] employed water vapour pressure-based model, cloud amount-based 

models, relative sunshine-based models, clearness index-based models and hybrid model 

consisting of relative sunshine and water vapour pressure input parameters to estimate PAR 

in Northern Tibetan Plateau (NTP). From the statistical indices, the hybrid model 

performed better than other four models mentioned above. To check the applicability of 

the model, the authors tested the models in five stations outside the location the models 

were fitted (Wudaoliang, WDL) since PAR is local climate and geographical site 

dependent. The result revealed that the model is practicable for Tibetan Plateau, and 

Southeast of China. They further stated that the model is considered acceptable for 

Northwest of China; but for the East of China, the model is not applicable. 
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Fig. 7. Linear regression between hourly observed and modeled PAR in Wuhan (red line 1:1 relationship) 

Wang et al. [71]. 

 

Aguiar et al. [65] developed three empirical models for estimating PAR in South 

West Amazonia both hourly and daily time scale. The authors employed global solar 

radiation as the only input parameter to develop model 1. Model 2 was fitted by applying 

global solar radiation and clearness index as input parameter while global solar radiation, 

cleanness index and water vapour pressure was employed as input parameter for simulating 

model 3. From the statistical indices on both hourly and daily time scale, the authors 

reported that the least accurate estimates were usually obtained by model 3 for seasonal 

models as well as annual models, which employed solar radiation, clearness index and 

water vapour as input parameters. The exception to this general trend was during the 

transition between the dry and the wet seasons on the pasture site, whereas model 1 (hourly 

time scale) and 2 (daily time scale) reported the worst performance respectively. The 

authors stressed that the relative inferior performance of model 3 is probably due to lack 

of a clear relationship between the ratio of PAR/H and water vapour pressure. However, 

the researchers stated that the models showed no significant differences among themselves. 

That is, significantly, no single model was superior throughout the year, with the best fit 
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alternating between model 1 (global solar radiation as input parameter) and model 2 (global 

solar radiation and cleanness index as input parameters). The authors concluded that the 

results suggest that simple models of PAR based on one or two parameters are robust and 

may provide a strong basis for regionally or ecosystem-based Ecophysiological models in 

this ecologically important part of Brazil. This finding is similar to report found in 

literature. Yu and Guo [76] in an attempt to identify the most relevant input parameter for 

estimating PAR in Midwestern United States excluded relative humidity, dew point 

temperature and perceptible water related to water vapour pressure indicating that water 

vapour pressure is not a key factor for hourly PAR estimation compared with other 

parameters. Lopez et al. [122] suggested that input parameters related to water vapour are 

less important than other sky condition parameters for PAR estimation.  

Also, Wang et al. [63] discovered that employing global solar variation, clearness 

index and cosine of solar zenith angle are sufficient for PAR estimation. However, 

Jacovides et al. (2015) recommended that only the combination of sunshine fraction and 

global solar radiation can estimate the daily PAR with reasonable accuracy.  

In general, out of the ten (10) different classes of empirical models for estimation 

PAR across the globe identified in this paper, seven hundred and fifty-seven (757) 

theoretical models were reported with 62 functional forms and 32 groups (sub-class). Five 

hundred and seventy (570) models with the corresponding 4 functional forms and 3 groups 

were recorded from global solar radiation-based models representing 75.29 %; 18 models 

with the corresponding 1 functional form and 1 group resulting to 2.37 % were applied for 

relative humidity-based models; 1 model with 1 functional form and 1 group amounting to 

0.13 % for temperature-based model; 1 model with 1 functional form and 1 group yielding 

to 0.13 % for cloud amount-based model; 1 model with 1 functional form and 1 group 

yielding to 0.13 % for water vapour pressure-based model; 1 model with 1 functional form 

and 1 group yielding to 0.13 % for turbidity-based model; 4 models with 2 functional forms 

and 1 group yielding to 0.52 % for optical air mass-based models; 10 models with 6 

functional forms and 3 groups yielding to 1.32 % for sunshine-based models; 27 models 

with 9 functional forms and 3 group yielding to 3.56 % for clearness index-based models; 

and 91 models with 36 functional functions and 17 groups resulting to 12.02 % for hybrid 

parameter-based models as presented in Fig 8. 
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Fig. 8: Classification of photosynthetically active radiation (PAR) and corresponding values of models, functional 

forms and groups  
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It is clear that from above literature that introducing an appropriate set of input that 

is hybrid model for photosynthetically active radiation estimation in any site of interest is 

not a viable work. This could be attributed to its complexity involved because of using 

numerous numbers of required input parameters, inaccuracies associated with irrelevant 

parameters, difficulty in explaining the model and time consuming task for selecting the 

required parameter and its inability to accept many input parameters. 

The artificial neutral network (ANN) and other soft computer techniques often 

applied for estimating other component of solar radiation such as diffuse solar radiation, 

direct normal irradiance and global solar radiation etc. can be adopted for estimating PAR 

or PAR/H. Several applications of artificial neural networks are reported in numerous fields 

such image impression, defense, mathematics, character recognition, aerospace, neurology, 

meteorology and engineering [1-2]. These techniques have been employed for prediction 

and empirical analysis in market trend forecasting, solar and weather. 

For instance, Yu and Guo [76] applied artificial neural networks (multiple layers’ 

perception, MLP) and conventional Multiple Linear Regression (MLP) models for 

estimating PAR on hourly time scale under different sky conditions in Midwestern United 

States. The result from the statistical indices revealed that ANN models show higher 

accuracy than the Multiple Linear Regression (MLR) models especially for overcast sky 

and clear sky as shown in Table 2. The authors also commented that using water vapour 

parameters (relative humidity, dew point temperature and precipitable water) do not 

improve the accuracy significantly. They equally concluded that ANN model that combine 

the sky clearness, the cosine of sun zenith angle and the hourly global solar radiation as 

inputs estimated PAR most accurately. This report is in line with findings in literature [63, 

75, 122]. 

Wang et al. [75] applied ANN models (multi-layer perception, MLP; Radial Basis 

Neural Network, RBNN; and Generalized Regression Neural Networks, GRNN) and all-

sky regression PAR model (ALSKY) to estimate hourly PAR under ecosystem such as 

farmland, forest, lake, desert, grassland, bay and wetland. Global solar radiation (H) was 

applied as the only input parameter; combination of H and air pressure (PA); combination 

of H and dew point temperature (Td); combination of H and relative humidity (RH); 

combination of H and Water Vapour Pressure (E*); combination of H and air temperature 

(T); combination of H, T and RH; finally, combination of H, T, RH, Td, E
* and PA as 

input parameters for PAR estimation. From the statistical indicators, MLP and RBNN 

models perform better than GRNN and ALSYK models and the combinations of air 

temperature and air pressure parameters recorded more effects on hourly PAR compared 

with relative humidity, dew point temperature and water vapour pressure parameters 

under agricultural farmland ecosystem stations. This report is in line with the findings in 

literature that water vapour parameters are less important than other sky condition 

parameters for PAR estimation [76, 122]. The author also pointed that under forest 

ecosystem stations, the GRNN model produces the lowest root mean square error and 

mean absolute error by combining global solar radiation and air pressure variables inputs 

at HLF station while MLP, BNN and ALSKY models perform better than the GRNN 

model. It is also indicated that relative humidity is not a key parameter influencing the 

hourly PAR parameter as reported by other researchers [76, 122]. Moreover, under the 
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Bay ecosystem, the ANN models generally provide better estimates than the ALSKY 

model, and MLP and GRNN models significantly overestimate low PAR values while 

the RBNN and the ALSKY model slightly overestimates and underestimates 

respectively. For the grassland stations, the researcher recorded that the MLP and 

AKSKY model yielded more accurate hourly PAR estimates compared with the GRNN 

and RBNN models at NMG ecosystem station, while GRNN model with global solar 

radiation input parameter provides the lowest statistical indices at HBG station whereas 

for the wetland ecosystem SJM ecosystem station, the GRNN model comprising global 

solar radiation input parameter produces slightly lower RMSE values. Under the desert 

ecosystem stations, the MLP model performs better than the GRNN, RBNN and ALSKY 

models at FKD station, and the dew temperature parameter generally has more effect on 

hourly PAR estimates compared with air temperature, relative humidity, air pressure and 

water vapour pressure. While under lake ecosystem stations, the GRNN model yielded 

better estimates than other models at DHI station and the water vapour pressure is the 

most important parameter influencing the hourly PAR fluctuations. The researcher finally 

concluded that the MLP and RBNN models are more accurate in estimating hourly PAR 

at different ecosystems in China compared with GRNN and ALSKY models, which will 

be of vital importance for terrestrial photosynthesis modeling and surface energy budget 

as shown in Fig. 9 – 15. 

 
Table 2: Statistical comparison between observed hourly PAR and modeled PAR from ANN and 

conventional regression models Yu and Guo [76] 
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Fig. 9. The PAR estimates of the optimal models for the FQA station in farm land ecosystem Wang et al. 

[75]. 
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Fig. 10. The PAR estimates of the optimal models for the SJM station in wetland ecosystem Wang et al. [75]. 
 

 
Fig. 11. The PAR estimates of the optimal models for the ALF Station in forest ecosystem Wang et al. [75]. 
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Fig. 12. The PAR estimates of the optimal models for the SYB station in bay ecosystem Wang et al. [75]. 

 
Fig. 13. The PAR estimates of the optimal models for the HBG station in grassland ecosystem Wang et al. 

[75]. 
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Fig. 14. The PAR estimates of the optimal models for the SPD station in desert ecosystem Wang et al. [75]. 

 
Fig. 15. The PAR estimates of the optimal models for the THL station in lake ecosystem Wang et al. [75]. 
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6. Research Gaps 
 

The photosynthetically active radiation (PAR) empirical models examine in this paper 

is distinctive and provide valuable outcome for numerous circumstances. The models 

regarded as capable and convenient for hourly models, temperature-based models, optical 

air mass-based models, relative humidity-based models, cloud amount-based models, 

water vapour pressure-based models, turbidity-based models, sunshine-based models, 

clearness index-based models and hybrid parameter-based models. A number of essential 

areas identified in literature as well as shortcomings with solutions recommended in this 

paper are summed up subsequently below. 

1. In previous studies, authors employed one, two, three, or more years of 

photosynthetically active radiation data as available to build ANN models is not a 

viable work. Thus, employing training and testing data of minimum three years and 

one year respectively can be adopted to estimate photosynthetically active radiation 

accurately; however, further comparative analysis on the aspect can be under taken 

also. 

2. During the development of ANN models, the neurons in ANN hidden layer are 

changed one by one and mean absolute percentage error (MAPE) are calculated 

which is time consuming. Therefore, considerable techniques should be developed 

to find out hidden layer neurons at which estimation error is minimum. 

3. Different artificial neural networks models need to be stimulated employing 

latitude, longitude, altitude, extraterrestrial solar radiation, solar declination, cosine 

of solar zenith angle, optical air mass and other atmospheric and meteorological 

input parameters that can be calculated with standardized formulas and checked for 

accuracy. The goal is that, if an appropriate modelling of this radiometric flux 

(PAR) could be developed, a large data resource of it will be created without the 

substantial cost of the instrumentation network that would otherwise be needed 

thereby meeting the needed meteorological stations and countries (Africa) that 

cannot measure PAR routinely. 

4. Comparison of Niching genetic algorithm, automatic relevance determination 

methodology need to be employed in selecting most relevant input parameters in 

addition with ANN models for estimation 

5. Additional studies are needed for the estimation of beam and diffuse 

photosynthetically active radiation (PAR) using ANN and other soft computing 

models 

6. Drawing from findings in literature, a single model based on the variations of the 

ratio photosynthetically active radiation to global solar radiation under different sky 

conditions, ecosystem, local climate and geographical regions over several sites 

employing empirical models so as to developed weather-dependent functions of 

this ratio should been considered and emerged. The goal is to develop a model 

transferable to these locations that routinely measured the broadband solar radiation 

for appropriation calibration of the model using their measured meteorological data 

to generate and probably recommend a model transferable to other sites, ecosystem, 

local climate and geographical areas as in what was obtainable in Food and 
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Agriculture Organization (FAO) Penman-Monteith model recommended for 

estimating reference evapotranspiration developed by Allen et al. [123] without 

local calibration globally.  

7. It is also essential to mention that soft computing models has newly been initiated 

for estimating renewable energy resources (e.g. PAR), but additional work is 

necessary to increase solar radiation or PAR estimation accuracy pertaining to 

numerous seasons, climate change to supply increasingly reliable efficient solar 

systems on the market. 

 

 

7. Concluding Remarks  
 

This review paper presents a comprehensive review of literature on 

photosynthetically active radiation across the globe. 757 empirical models, 62 functional 

forms, and 32 groups were identified employing global solar radiation-based models, 

relative humidity-based models, temperature-based models, optical air mass-based models, 

cloud amount-based models, water vapour pressure-based models, turbidity-based models, 

sunshine-based models, clearness index-based models, and hybrid parameter-based 

models. The findings in this paper provide future dimension to industry and research 

practitioners for further studies on solar system and photosynthetically active radiation 

estimation in particular. 

From this review, ANN models are found to estimate PAR accurately in different 

climate conditions and ecosystem across the globe. This could be attributed to the fact that 

these models can accept many input parameters as compared with empirical models that 

strengthen its reliability. Moreover, it can also be concluded that ANN models estimations 

offer greater accuracy as compared with empirical models, e.g. Tables 2 and Fig. 9 – 15 

show estimation error in a range (less than 20%) and this could be very good in terms of 

PAR estimation. Therefore, ANN and other soft computing models are much more 

demanding in the domain of renewable energy (e.g PAR) estimation and solar system 

design. It is finally recommended that future studies on PAR estimation should consider 

employing both empirical and soft computing models in order to observe the research gap 

between the two techniques in sites where PAR estimation has not been carried out before 

particularly in Africa continent where few meteorological station are capable of measuring 

this radiometric flux.  
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