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The electric demand of the countries is increasing day by day and the 
available resources are quite insufficient to fulfill this demand. The 
reasons are that the conventional energy resources are diminishing and 
available with finite sources. Due to these reasons, the solar power is 
one of the promising alternatives that is easily available, pollution free 
and having higher operating life. The solar system also provides higher 
operating efficiency for the load, and the cost of the solar panel is 
minimum. To improve the switching technology used for the power 
conversion, we presented a smart flower system powered by 
photovoltaic panels that could supply standalone AC/DC load. In this 
system, solar panels produce a direct current, which can be converted 
into AC by the converter and used in home, industrial and agriculture 
applications. The output of the panels depends on the direction of sun's 
rays (solar energy), and the solar photovoltaic cell converts the solar 
energy into useful electrical energy. The aim of this paper is to develop 
the solar photovoltaic generation system based on a standard power 
electronics cell for micro industrial, commercial, home as well as 
agriculture applications. The proposed system is capable to provide 
protection from wind and rain, thereby the efficiency of the solar panels 
will increase. The generation of the electricity is more with trackers than 
stationary counterparts due to direct exposure to sun's rays. This 
increase can be as much as 25% depending upon the geographic 
location of the tracking system. The generated output voltage can be 
used for various purposes, and we used the store energy to run an 
agriculture water pump by using the internet of things (IoT).   

 
Keywords:  Solar Flower; Energy Generation; IoT; Water Pump; Motor; Solar Tracker 

 

 
1. Introduction  
  

The smart flower was named after its design, in which the solar cells are arranged 

on individual “petals” that open at the beginning of each day and look like a flower 

(https://news.energysage.com/smartflower-solar-complete-review/). After the sun sets, 

the petals of the smart flower fold up and the self-cleaning process begins. The smart 

flower system includes a dual-axis tracker that allows the petals to follow the sun through 

the sky throughout the day. According to smart flower’s survey, with this tracking 

feature, the smart flower system can generate 40% more electricity than a rooftop solar 

panel system of the same size. The smart flower system has the same solar power benefits 

as a regular solar system, as well as an integrated battery that provides more energy 

storage. 
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It has been more than fifteen years since the term of Internet of Things (IoT) was 

introduced to the public. It is basically used to connect living and non living things with 

each other through the internet. IoT allows people and things to be connected anytime, 

anyplace, with anything and anyone, by using ideally in any path/network and any 

service. 

As the non-renewable energy resources are decreasing, the use of renewable 

resources for producing electricity is increasing. Solar panel absorbs the energy from the 

Sun, converts it into electrical energy and stores the energy in a battery. This energy can 

be utilized when required or can be used as a direct alternative to the grid supply. The 

energy stored in batteries can be utilized for the agriculture pump. The coming sun’s rays 

is varying in different directions due to the rotation of the Earth. For an efficient usage of 

the solar energy, the solar panels should absorb energy to a maximum extent. This can be 

done only if the panels are continuously placed towards the direction of the Sun. So, solar 

panels should continuously rotate in the direction of sun as we are introducing the smart 

flower with it.   

 

 
2. Literature Review 
 

In recent year, the solar energy system is one of the most popular things for the 

homes and also for the business in India. Believe it or not, this desire to use the Sun to 

power people’s electricity needs is anything but new. Ever since scientists discovered 

materials that can produce the electrical current by simply being exposed to the light, 

people have been excited about this energy source. This article outlines the details of 

solar power generation and the expanding world. 

 The operating principles for modern photovoltaic (PV) cells were first discovered 

in 1839 by a French physicist named A.E. Becquerel. After that, a number of scientists 

played with and improved on Becquerel’s original discovery. This technology soon found 

its way back down to earth for use in telecommunications applications in remote areas. 

People began using PV modules to charge batteries from the year 1970s and 1980s and 

then used these batteries to run various appliances in their remote homes. These 

discoveries help the people in today’s environment [1, 2]. 

The first PV module isn’t sufficient for various applications. They were also quite 

costly. Yet over the years, researchers and manufacturing companies increased 

efficiencies and reliability and managed to drive down costs drastically. All of these 

contributions have led to the widespread use of solar modules and their availability to you 

and me. In the following sections, we describe some common PV applications, a few 

brief pros and cons of PV systems, and the future of the PV industry. 

The improvement in the PV systems can be found in a wide variety of 

applications, such as the power calculators, pump water, help offset the energy used by 

floodlights along highways, and, of course, power homes and businesses [3, 4]. 

The smart flower at the University of Applied Sciences Kufstein (FH Kufstein, 

Austria), also known as the ‘FH smart flower’, fulfills multiple purposes. The power 

generated from the FH smart flower is fed into the school’s electrical grid and is also 

used as a tool for teaching in the discipline of applied energy data management. Its 

location in the city park makes it not only an eye catcher for employees and tourists, but 

also a catalyst for conversation about photo voltaic between students of all disciplines 

and their peers in the energy management program (https://www.pfisterenergy.com/ 
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smartflower/). The smart flower has several photovoltaic panels that fan out like the 

petals of a flower during the day to capture energy from the Sun. Since solar panels are 

more efficient when they are pointed directly at the Sun, the smart flower tracks the sun 

east to west and up and down all day to provide the maximum possible energy from the 

available sunlight [5-7]. 

The cost of the solar system is always a concern to the public. The best way to 

compare solar panel system prices is to determine the cost per watt of electricity 

generation. The installed cost depends on distance of the installed smart flower from the 

home, whether a concrete slab foundation needs to be poured, and whether the 

installation requires additional electrical work. By comparison, the median price for a 

standard ground-mounted solar energy system without tracking capabilities on the Energy 

Sage Solar Marketplace was just $3.43/Watt, or $13,720 for a 4 kW system [8, 9]. 

In the literature of [10-12], the review report provided in this paper provides the 

best choice for a variety of technologies and agricultural pumps that can be used in pump 

systems. In other papers, it explains the applicability of motors to pump systems. 

 

 
3. Proposed System 
 

The design of the solar tracker system can be classified into three sections (Figure 

1). There is the input stage that is composed of sensors and potentiometers, a program in 

embedded software in the microcontroller and lastly the driving circuit that has the servo 

motor. The input stage considers with two light dependent resistors (LDR) and that are 

assembled to form a voltage divider circuit. A ‘C’ program loaded into the Atmega328P 

microcontroller forms the embedded software. The all components are mounted in the 

metallic frame. The three stages are designed independently before being joined into one 

system. This approach similar to stepwise refinement in modular programming has been 

employed as it ensures an accurate and logical approach which is straight forward and 

easy to understand. This also ensures that if there are any errors, they are independently 

considered and corrected. 

The main purpose to write the paper is to satisfy two main objectives:  

• Design a solar system which can track the solar UV light for solar panels 

through the day. 

• Design a tracking system for the solar panel to increase the efficiency of the 

system than the ordinary solar system. 

The system is designed so that the sun's rays fall vertically on the solar panels to 

get the most solar energy. This is harnessed into the electrical power. Maximum energy is 

obtained between 1200 h and 1400 h, with the peak being around midday. At this time, 

the sun is directly overhead. At the same time, the least energy will be required to move 

the panel, which will further increase the system efficiency. The system is designed to 

address the challenge of low power, accurate and economical microcontroller-based 

tracking system which is implemented within the allocated time and with the available 

resources. It is supposed to track the sun’s movement in the sky. In order to save power, 

it is supposed to sleep during the night by getting back into a horizontal position. There is 

implementation of an algorithm that solves the motor control that is then written into C- 

program. 

The main supply is fed to the load under normal conditions. When the main 

supply gets shut down, the supply from the battery connected to the system will be fed to 
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the load to fulfill the desired output. The battery is switched to the circuit by switching 

the relay. The main part of the system is that we are using two sources for charging the 

battery. 

 

 
Figure 1. Designed circuit 

 

The main supply is coming from the distribution board and the other is a power 

generated from the solar panel of the smart solar flower. Priority of a charging is given to 

the solar panel, i.e., when the solar power generated exceeds the desired limit, it comes 

into the supply to get battery charged. The output voltage of the solar panel is kept at 12 

V and is compared with the main voltage supply. When the solar panel voltage goes 

beyond 12 V, the battery starts charging on a solar energy. Transformer is used to step 

down the AC voltage 230V/12-0-12V. It is fed to the rectifier circuit which converts AC 

to pulsating DC. Further pulsating DC is made pure by connecting the filter in the circuit. 

Five V DC is fed to the Node MCU 32S and relay driving circuit. Relay switches the 

operations as per the instructions are given in the microcontroller ATmega328p 

programming. According to the relay, the motor will operate (Figure 2). 

Here, we used a rain water sensor, which is connected in the circuit via two wires. 

One is from ground and the other is from the microcontroller’s logic pin. Initially, logic is 

1. But when water falls on chip, the logic will be zero and hence the flower will close. 

We also used a soil moisture sensor, in which initially there is logic 1 and when the logic 

became 0, the pump will operate. The relay used for switching purpose is electromagnetic 

in nature and the switching operation of the relay is performed by the controller. 
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Figure 2. Block diagram of actual work 

 

 
 

Figure 3. Working flowchart 

 

The solar panel voltage is monitored by the microcontroller through an analog-to-

digital (A/D) converter. The microcontroller is the main control core and adjusts the 

stepper motor so that the platform is optimally located for efficient electricity generation. 

The system receives the sunlight onto the Light Dependent Resistor (LDR), where 

the LDR acts as the solar direction tracking sensor. The position of the LDR is obtained 
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when the two LDRs having the same light intensity. In the morning time, the right side 

LDR is turned on (as the small resistance is nearly shorted), which causes a signal to turn 

the motor to continuously move in clockwise until the two LDRs getting the same light 

intensity again. As the day slowly progresses, the left LDR is turned on and the motor 

turns counter clockwise. The cycle continues until the end of the day, or until the 

minimum detectable light level is reached. Figure 3 shows that when the sun is at the 

right to the solar panel, the right LDR has small value resistance, the left LDR has no 

light (large resistance), and the software in the micro-controller translates this to signals 

to control the stepper motor to rotate the panel to the right. There is a reset button for 

positioning the panel to an initial position which is at an inclination of 40 degrees. This is 

done preferably in the evening after the sun has set. It makes the LDR go back to an 

initial position, ready for tracking the sunlight on the next day. There is also a push 

button for initializing the servo motor. It switches it on, leaving it on standby mode. Pins 

number 7, 20 and 21 are used for powering the microcontroller. It requires 5 V. The 

inputs to the LDR are simulated.  

The proposed model of the solar flower system is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 4. Proposed model 

 

 

4. Results 
 

We have gained the result that the system is more efficient as it includes the dual-

axis solar tracking principle in it. Also, the system is smarter and safer as it contains the     

sensors such as wind sensor, soil moisture sensor, rainwater sensor and LDRs. Therefore, 

whenever there is a high wind or high raining, the solar flower unfolds its petals and 

hence protects the system from sudden damage. Since the IoT is used in this project, the 

project is usable in the remote areas. Due to the use of the soil moisture sensor, we could 

turn on or off the water pump. Here, it is a smarter energy management system with 
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strategy and planning based on real-time data collection and processing. This technology 

gave a high-tech makeover to the agriculture industry. 

Advantages and disadvantages of this system include:  

Advantages: 

• Size of the system is small. 

• System has a dual-axis tracking technology which helps in maximizing the solar 

energy absorption by continuously tracking the sun. 

• No fuel burning in this system and therefore any pollution. 

• The maintenance cost is very low. 

• Because the use of solar energy is not limited, it can be used for longer period of 

time. 

Disadvantage 

• Cost of system is very high. 

• The system is complex due to the batteries and motors. They are heavy and 

occupy more space and require time to time maintenance. 

 
 
5. CONCLUSIONS 
  

 The system was designed for the benefits of various users and farmers. By using 

the IoT based irrigation system, it optimizes the usage of water by reducing wastage and 

human efforts. Proposed system is easy to implement and environment friendly solution 

for irrigating fields. The system was found to be successful when implemented for bore 

holes as they pump over the whole day. Solar pumps offer clean solutions with no danger 

of borehole contamination. The system has no maintenance and it also self-starting. The 

system can be used with application to provide energy for the pumping requirements for 

sprinkler irrigation. Even though there is a high capital investment required for this 

system to be implemented, the overall benefits are high and in long run this system is 

economical.   
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Based on a set of indicative overhead and underground medium voltage 
broadband over power lines (OV and UN MV BPL) topologies,  
initial statistical hybrid model (iSHM) and modified statistical hybrid 
model (mSHM) are statistical channel models suitable for the distribution 
BPL networks. Both iSHM and mSHM statistically process channel 
attenuation and capacity values of assumed indicative OV and UN MV 
BPL topologies by exploiting channel attenuation statistical distributions 
(CASDs). iSHM exploits a set of well-known CASDs (i.e., Gaussian, 
Lognormal, Wald, Weibull and Gumbel CASDs) while mSHM exploits the 
Empirical CASD. Each indicative OV and UN MV BPL topology acts as 
the representative one of a respective OV and UN MV BPL topology 
class (i.e., rural, suburban, urban and aggravated urban class) that 
consists of a number of respective statistically equivalent OV and UN MV 
BPL topologies. The contribution of this paper is the theoretical 
framework presentation of the creation of new virtual indicative OV and 
UN MV BPL topologies by appropriately adjusting the parameters of 
iSHM and mSHM CASDs. These new virtual indicative OV and UN MV 
BPL topologies will enrich the respective today’s OV and UN MV BPL 
topology classes with respective OV and UN MV BPL topology 
subclasses while each subclass will be enriched by a number of 
respective statistically equivalent OV and UN MV BPL topologies.  
The procedure of defining new virtual distribution BPL topologies by 
applying iSHM and mSHM will allow a better capacity study of OV and 
UN MV BPL topology classes. Apart from the definition procedure of the 
virtual indicative OV MV and UN MV BPL topologies and their respective 
virtual subclasses by adjusting CASD parameters of iSHM and mSHM, 
the contribution of this paper is the class map that analytically describes 
the taxonomy of distribution BPL topology classes and subclasses. 
 
 

Keywords: Smart Grid; Broadband over Power Lines (BPL) networks; Power Line Communications 

(PLC); Distribution Power Grids; Capacity; Statistics; Modeling 
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The today’s traditional power grid is evolving to an intelligent IP-based 

communications network enhanced with a plethora of broadband applications, widely 

referred to as smart grid [1]-[13]. Actually, smart grid can support two types of flows; 

say, a two-way power and a two-way information flow [14]-[16]. As the two-way power 

flow is concerned, apart from the traditional power flow from power generators to the 

customers, there is the power that is generated by the customers and be injected back into 

the power grid. As the two-way information flow is concerned, the proposed broadband 

applications can help either power utilities to monitor, meter, control and provide 

valuable real-time detailed information on actual operation of the power grid or 

customers to control dynamic power flows and meet more profitably their power 

demands. Among the available communications solutions that can support this two-way 

information flow of smart grid is the Broadband over Power Lines (BPL) technology that 

can play important role since it may support an electronic communications channel  

(i.e., BPL channel) upon the already installed wired power grid infrastructure and,  

at the same time, interconnect with other already installed communications solutions of 

the smart grid through its wireline/wireless interfaces [3], [17]-[28]. 

Dealing with the BPL statistical channel modeling, the initial statistical hybrid 

model (iSHM) has been proposed in [17, 18], while the modified statistical hybrid model 

(mSHM) has been proposed in [29]. Both models consist of six phases  

(i.e., Phase A-F) while their core is the deterministic hybrid model of Phase B that has 

extensively been validated in transmission and distribution BPL networks and comprises 

two interconnected submodules, namely: (i) the bottom-up approach module; and  

(ii) the top-down approach module [4], [23]-[27], [30]-[34]. The common input data basis 

is the consideration of a set of indicative distribution BPL topologies that acts as the 

representative topologies of a set of respective distribution BPL topology classes  

–i.e., rural, suburban, urban and aggravated urban classes– where each distribution BPL 

topology class is filled with statistically equivalent BPL topologies [17], [18], [29].  

The result of iSHM and mSHM is the capacity range of each distribution BPL topology 

class for given operation frequency range, power grid type, injected power spectral 

density (IPSD) limits, noise level, coupling scheme and channel attenuation statistical 

distribution (CASD). As the CASDs are concerned, iSHM applies five well-known 

CASDs of the communications literature, say, Gaussian, Lognormal, Wald, Weibull and 

Gumbel ones [17, 18], while mSHM applies the Empirical CASD [29]. The selection of a 

CASD plays a critical role during the capacity range computation of each distribution 

BPL topology class since it mainly affects the results of the random number generator 

module (Phase D of iSHM and mSHM) through the maximum likelihood estimators 

(MLE) computation module (Phase C of iSHM) or Empirical CASD module (Phase C of 

mSHM). As the Phase C of iSHM is concerned, MLE computation method helps towards 

the MLE estimation of the applied CASDs given the coupling scheme channel 

attenuation differences of the Phase B [17], while the Phase C of mSHM computes the 

cumulative density function (CDF) given the coupling scheme channel attenuation 

differences of the Phase B [29].  

The issue that this paper is dealing with is the underrepresentation of the 

aforementioned distribution BPL topology classes, as defined in this paper, through the 

insertion of virtual indicative OV and UN MV BPL topologies and their respective 

subclasses. In fact, the indicative distribution BPL topologies, which have been presented 
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in [17], [18], [29], also stand in this paper and define the respective main indicative 

distribution BPL topology subclasses as well as the titles of the respective distribution 

topology classes. As the operation of iSHM and mSHM is concerned, each indicative 

distribution BPL topology is characterized by a set of parameters regarding either iSHM 

(i.e., MLEs) or mSHM (i.e., Empirical CDF). Based on the set of parameters of an 

indicative distribution BPL topology, the respective main indicative distribution BPL 

topology subclass is filled with statistically equivalent BPL topologies, which are 

generated by a random number generator and are characterized by the same parameters 

with the representative topology of the examined main subclass for given power grid 

type, coupling scheme and CASD. In fact, by appropriately adjusting the parameters of 

iSHM and mSHM, new virtual indicative distribution BPL topologies can be proposed 

that further define their respective distribution BPL topology subclasses, which will 

further be enriched with statistically equivalent BPL topologies. In this paper,  

distribution BPL topology classes are defined as capacity areas (i.e., capacity ranges) that 

comprise distribution BPL topology subclasses, whose average capacities lie in the 

middle of the distribution BPL topology class capacity ranges. Hence, distribution BPL 

topology classes will be filled with respective subclasses while the capacity ranges of 

distribution BPL topology classes are going to define valid combinations of parameters of 

iSHM and mSHM (CASD parameter mapping). On the basis of the CASD parameter 

mapping, virtual distribution BPL topology subclasses are identified while these 

subclasses are categorized into appropriate distribution BPL topology classes in terms of 

their average capacities (Subclass and Class Mapping). The numerical results of the full 

deployment of class mapping are presented: (i) for OV MV and UN MV BPL networks 

in [35]; and (ii) for OV high-voltage (HV) BPL networks in [36]. 

The rest of this paper is organized as follows: In Section II, the usual OV MV and  

UN MV MTL configurations with a set of indicative BPL topologies are presented. 

Section III summarizes the basics of the iSHM and mSHM. In Section IV, the definition 

procedure of the virtual indicative OV MV and UN MV BPL topologies and their 

respective virtual subclasses, briefly denoted as definition procedure, by adjusting CASD 

parameters of iSHM and mSHM is detailed. Section V concludes this paper. 

 

 

2. OV MV and UN MV MTL Configurations and BPL Topologies 
 

 In this section, a small briefing regarding the applied OV MV and UN MV MTL 

configurations is given while the topological characteristics of the indicative OV MV and 

UN MV BPL topologies are reported. Note that these indicative distribution BPL 

topologies will act either as the reference topologies so that the capacity ranges of the 

distribution BPL topology classes are defined or representative topologies of the first 

respective distribution BPL topology subclasses of the corresponding BPL topology 

classes (main subclasses). Also, various distribution BPL topologies are presented that 

are going to be classified in the proposed distribution BPL topology classes and will 

further help the analysis. 

 

2.1 OV MV and UN MV MTL Configurations 

 The OV MV and UN MV distribution lines that are used in the first two papers 



 

Peer-Reviewed Article   Trends in Renewable Energy, 5 

 

 

 

Tr Ren Energy, 2019, Vol.5, No.3, 237-257. doi: 10.17737/tre.2019.5.3.0099 240 

 

 

are depicted in Figs. 1(a) and 1(b) of [17], respectively. As the OV MV distribution lines 

are concerned, these lines consists of three parallel non-insulated phase conductors 

( ) spaced by  and hang at typical heights  above lossy ground. As the 

UN MV distribution lines are concerned, these lines are the three-phase sector-type PILC 

distribution-class cable (8/10kV, 3×95mm2 Cu, PILC) surrounded by the shield and the 

armor conductor ( ). The exact dimensions of the OV MV and UN MV MTL 

configurations are given in [30] as well as the ground properties, the applied grounding 

practices and the BPL signal propagation / transmission when a lossy ground is 

considered. 

 

2.2 OV MV and UN MV BPL Topologies and Respective Topology Subclasses 
and Classes 

 With reference to Fig. 1, BPL networks are divided into cascaded BPL topologies. 

Each BPL topology is bounded by its transmitting and receiving end where BPL devices 

(i.e., either injector or repeater or extractor) are installed. Depending on the power grid 

type environment of the BPL topology (i.e., rural, suburban, urban or aggravated urban), 

different number of branches , distribution cable lengths  

and branch lengths  are encountered across the  

BPL signal transmission path. To study distribution BPL topologies, hybrid model further 

divides the BPL topology into concatenated network modules [4], [23]-[27], [30]. 

 

 

 
Fig. 1.  Typical distribution BPL topology with N branches [17]. 

 

 

 In accordance with [5], [17], [23]-[26], [30], five distribution BPL topology 

classes –i.e., “Line-of-Sight” (“LOS”), rural, suburban, urban and aggravated urban–  

are required, so that a thorough analysis regarding the distribution BPL network 

performance is accomplished. Until now, an indicative distribution BPL topology has 

been adopted as the representative one for each distribution BPL topology class  

(say, urban case A, urban case B, suburban case, rural case and “LOS” case for 

distribution BPL typical urban, aggravated urban, suburban, rural and “LOS” topology 

class, respectively). In these papers, each indicative distribution BPL topology will act as 

the representative one for the main subclass of the respective distribution BPL topology 

class. In Tables 1 and 2, the indicative OV MV and UN MV BPL topologies of the main 

subclasses per each class, which are characterized by their unique topology number, are 

reported, respectively, as well as their corresponding topological characteristics. Also, 
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apart from the indicative OV MV and UN MV BPL topologies of the main subclasses 

per each class, two indicative OV MV and UN MV BPL topologies, which are also 

characterized by a unique topology number, are added per each OV MV and UN MV 

BPL topology class, respectively. Note that distribution “LOS” cases describe the  

Line-of-Sight BPL signal transmission path and for that reason, distribution “LOS” 

topology classes consist of only one topology; say, distribution “LOS” cases.  

In accordance with [5], [17], [23]-[26], [30], note that average long end-to-end 

connections of 1000 m and 200 m are assumed for the indicative OV MV and UN MV 

BPL topologies, respectively, as the typical case holds. 

 
Table 1 

Indicative OV MV BPL Topologies and Respective BPL Topology Classes [17], [5] 

OV MV BPL 

Topology Class 

BPL 

Topology 

Number 

(and BPL 

Topology 

Subclass 

Number) 

(l) 

BPL Topology 

Name 

(and BPL 

Topology Subclass 

Name) 

Number 

of 

Branches 

Length of Distribution 

Lines 

Length of Branching Lines 

Typical OV MV 

BPL urban 

topology class 

OV MV 1 OV MV Urban case 

A (main subclass) 

3 L1=500m, L2=200m, 

L3=100m, L4=200m 

Lb1=8m, Lb2=13m, Lb3=10m 

Aggravated OV 

MV BPL urban 

topology class 

OV MV 2 OV MV Urban case 

B 

(main subclass) 

5 L1=200m, L2=50m, 

L3=100m, L4=200m, 

L5=300m, L6=150m 

Lb1=12m, Lb2=5m, Lb3=28m, 

Lb4=41m, Lb5=17m 

OV MV BPL 

suburban topology 

class 

OV MV 3 OV MV Suburban 

case (main subclass) 

2 L1=500m, L2=400m, 

L3=100m   

Lb1=50m, Lb2=10m 

OV MV BPL rural 

topology class 

OV MV 4 OV MV Rural case 

(main subclass) 

1 L1=600m, L2=400m Lb1=300m 

OV MV BPL 

“LOS” topology 

class 

OV MV 5 OV MV “LOS” case 

(main subclass) 

0 L1=1000m - 
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Table 2 

Indicative UN MV BPL Topologies and Respective BPL Topology Classes [17], [5] 

UN MV BPL 

Topology Class 

BPL 

Topology 

Number 

(and BPL 

Topology 

Subclass 

Number) 

(l) 

BPL Topology 

Name 

(and BPL 

Topology Subclass 

Name) 

Number 

of 

Branches 

Length of Distribution 

Lines 

Length of Branching Lines 

Typical UN MV 

BPL urban 

topology class 

UN MV 1 UN MV Urban case 

A (main subclass) 

3 L1=70m, L2=55m, 

L3=45m, L4=30m 

Lb1=12m, Lb2=7m, Lb3=21m    

Aggravated UN 

MV BPL urban 

topology class 

UN MV 2 OV MV Urban case 

B 

(main subclass) 

5 L1=40m, L2=10m, 

L3=20m, L4=40m, 

L5=60m, L6=30m   

Lb1=22m, Lb2=12m, Lb3=8m, 

Lb4=2m, Lb5=17m   

UN MV BPL 

suburban topology 

class 

UN MV 3 UN MV Suburban 

case (main subclass) 

2 L1=50m, L2=100m, 

L3=50m 

Lb1=60m, Lb2=30m   

UN MV BPL rural 

topology class 

UN MV 4 UN MV Rural case 

(main subclass) 

1 L1=50m, L2=150m Lb1=100m   

UN MV BPL 

“LOS” topology 

class 

UN MV 5 UN MV “LOS” case 

(main subclass) 

0 L1=200m - 

 

 

3. The Basics of iSHM and mSHM 
 

In this Section, the flowcharts of iSHM and mSHM, which are given in terms of 

business process modeling notation (BPMN) diagrams, are demonstrated. On the basis of 

these BPMN diagrams, the Phases of iSHM and mSHM are presented while the required 

modifications for creating virtual distribution BPL topologies (i.e., definition procedure 

of virtual distribution BPL topologies) are also given. 

 

3.1 iSHM 

 The BPMN diagram of iSHM flowchart is presented in Fig. 2(a). In accordance 

with [17] and with respect to Fig. 1(a), iSHM consists of six phases; say, Phase A-F. 

Each phase is depicted as a grey container while their corresponding modules and 

produced files are shown in light blue color. iSHM receives as inputs the distribution 

power grid type, the indicative distribution BPL topology, the respective distribution 

MTL configuration, the applied coupling scheme and the capacity related parameters 

while it gives as output the capacity range of each distribution BPL topology subclass 

 where  denotes the examined 

distribution power grid type (i.e., OV MV or UN MV),  denotes the applied coupling 

scheme (see Sec.3.2 of [17]),  denotes the applied CASD (i.e., Gaussian or 

Lognormal or Wald or Weibull or Gumbel distribution),  denotes the examined 

distribution BPL topology subclass number (see Tables 1 and 2) and ,  
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and  computes the minimum, the average and the maximum value of distribution 

BPL topology class capacity  that consists of all the capacities of its P+1 members 

of the examined distribution BPL topology subclass.  

 

 
Fig. 2.  Business Process Reengineering of the Statistical Hybrid Model. (a) BPMN diagram of the iSHM 

[17]. (b) BPMN diagram of the mSHM [29]. 

 

 

 Although the Phases of iSHM and the input/output of iSHM are detailed in [17], 

the Phases that deserve further attention in this paper are Phases C and D since they are 

mainly affected by the definition procedure of virtual indicative OV MV and UN MV 

BPL topologies and their respective virtual subclasses. In fact, Phase C consists of the 

MLE computation module that receives as input the coupling scheme channel attenuation 

difference and gives as output the MLEs for each of the five CASDs for given indicative 

distribution BPL topology and coupling scheme where the coupling scheme channel 

attenuation difference of an indicative distribution BPL topology expresses the channel 

attenuation difference between the examined BPL topology and its respective “LOS” 
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case for given power grid type and coupling scheme. Then, the random number generator 

of Phase D receives as input the MLEs of each CASD and gives as output the random 

number 1×Q line vector  for given power grid type, coupling scheme and indicative 

distribution BPL topology where  is the number of flat-fading subchannels in the 

examined 3-30MHz frequency range, p, p=1,…,P+1 is the member number in the BPL 

topology subclass and P is the member number of each subclass.  

In Fig. 2(a), the additional BPMN elements, which will allow the application of 

the definition procedure of virtual indicative OV MV and UN MV BPL topologies and 

their respective virtual subclasses in iSHM, are shown in red color. More specifically, the 

required modifications of iSHM are gathered into the virtual topology module of  

Phase D. Then, the output of the virtual topology module (i.e., virtual MLEs per channel 

attenuation statistical distribution) is delivered as the new input of the random number 

generator module. In fact, virtual topology module can operate by ignoring the MLEs per 

CASD so far defined by Phase A-C and introduce new pairs of MLEs (virtual MLEs) per 

CASD without the need for the applied indicative distribution BPL topology.  

Thus, the random number generator module is fed by virtual MLEs per CASD while  

it defines the corresponding P random number 1×Q line vectors  per virtual MLE 

pair set. In total, after the processing of the P+1 random number line vectors by the Phase 

E and F of the iSHM, a new virtual distribution BPL topology subclass rises with P+1 

virtual topology members where the virtual indicative distribution BPL topology of the 

topology subclass is only characterized by its virtual MLEs proposed by the virtual 

topology module without any information concerning its topological characteristics.  

In Sec.4.1, details concerning the operation of the virtual topology module of 

iSHM are given. More specifically, the definition procedure of virtual MLEs per CASD 

is presented as well as the restrictions that should be imposed so that valid virtual 

distribution BPL topologies can be defined in iSHM.  

 

3.2 mSHM 

The introduction of mSHM focuses on the application of only one CASD, say, the 

Empirical CASD, thus bypassing the time-consuming identification of the best CASD 

among the five CASDs of iSHM that anyway takes into consideration each time the 

current operation settings. Here it should be noted that the Empirical CASD is the 

distribution function associated with the Empirical measure of coupling scheme channel 

attenuation differences.  

The BPMN diagram of mSHM flowchart is presented in Fig. 2(b). In accordance 

with [29] and with respect to Figs. 2(a) and 2(b), mSHM consists of six phases; say, 

Phase A-F, similarly to iSHM. Each phase is depicted as a grey container while their 

corresponding modules and produced files are shown in light blue color. Actually, Phases 

A, B, E and F remain identical between the iSHM and mSHM. Conversely, the cause of 

differences in the Phases C and D between iSHM and mSHM is the adoption of the 

Empirical CASD by mSHM. In fact, the adoption of Empirical CASD, which is only 

used by mSHM, has as a result the substitution of all the five applied CASDs of iSHM 

(i.e., Gaussian or Lognormal or Wald or Weibull or Gumbel distribution). In accordance 

with [29], the adoption of Empirical CASD achieves comparable performances to the 

ones of the five applied CASDs of iSHM and, at the same time, this adoption bypasses 

the time loss required to identify the best CASD of iSHM by taking into consideration 
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each time the current operation settings. As the Phase differences between iSHM and 

mSHM are concerned, instead of the MLE computation module of iSHM in Phase C,  

the Empirical channel attenuation statistical distribution module is here added for mSHM 

that receives as input the coupling scheme channel attenuation difference while it gives as 

output the empirical CDF of the coupling scheme channel attenuation difference  

for given distribution BPL topology and coupling scheme. In Phase D of mSHM,  

the random number generator receives as input the Empirical CDF of the examined 

coupling scheme channel attenuation difference instead of MLEs in iSHM.  

With reference to [37], [38], random number generator module performs an inverse 

interpolation to achieve CDF projection of the random values thus giving as output the 

random number 1×Q line vector  for given coupling scheme and indicative 

distribution BPL topology.  

Similarly to iSHM, the additional BPMN elements, which will allow the 

application of the definition procedure of virtual indicative OV MV and UN MV BPL 

topologies and their respective virtual subclasses in mSHM, are shown in red color in 

Fig. 2(b). Again, the required modifications of mSHM are gathered into the virtual 

topology module of Phase D. In contrast with iSHM, the output of the virtual topology 

module that is a virtual CDF is delivered as the new input of the random number 

generator module. To operate, virtual topology module needs CDF so far defined by 

Phase A-C and can introduce new CDFs (virtual CDFs) by vertically and horizontally 

shifting CDF of the applied indicative distribution BPL topology. Thus, the random 

number generator module is fed by virtual CDFs while it defines the corresponding  

P random number 1×Q line vectors . In total, the new virtual distribution BPL 

topology subclass of mSHM with P+1 virtual topology members is defined where the 

virtual indicative distribution BPL topology of the topology subclass is only 

characterized by its virtual Empirical CDF proposed by the virtual topology module 

without any information concerning its topological characteristics. 

In Sec.4.2, details concerning the operation of the virtual topology module of 

mSHM are given. More specifically, the definition procedure of a virtual CDF per 

indicative distribution BPL topology is presented in mathematical terms as well as the 

restrictions that should be imposed to the horizontal and vertical shifts of the virtual CDF 

so that valid virtual distribution BPL topologies can be defined in mSHM.  

 

 

4. CASD Parameters Adjustment for Defining Virtual Distribution BPL 
Topologies and Respective Subclasses 

 

In this Section, the definition procedure of the virtual indicative OV MV and  

UN MV BPL topologies and their respective virtual subclasses by adjusting CASD 

parameters of iSHM and mSHM is detailed while the required restrictions concerning the 

proper definition are presented.   
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Fig. 3.  Flowcharts of the CASD parameter adjustment for defining virtual distribution BPL topologies and 

subclasses of the Statistical Hybrid Model.  

(a) Definition procedure flowchart for the iSHM. (b) Definition procedure flowchart for the mSHM.  
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4.1 Definition Procedure of iSHM 

 Actually, in this subsection, the operation of the virtual topology module of  

Phase D of Fig. 2(a) is studied as well as its output, say virtual MLEs per CASD.  

In fact, the internal operation of the virtual topology module cannot be seen without the 

flow of its output until the end and for that reason all this procedure is demonstrated 

through the flowchart of Fig. 3(a). 

 In accordance with Fig. 3(a), there are eleven steps so that the class map, which is 

the result of the definition procedure, can be plotted where class map is a  

two-dimensional contour plot that depicts the average capacity of each possible virtual 

distribution BPL topology subclass classified in specific classes. Note that indicative 

distribution BPL topologies of main subclasses of Tables 1 and 2 are explicitly 

demonstrated in the class map while these BPL topologies become crucial for defining 

the borders between the adjacent distribution BPL topology classes as presented in the 

following analysis. With reference to Fig. 3(a), after the definition of the indicative 

distribution BPL topologies of main subclasses of Tables 1 and 2 (step FL1.01), the result 

of class mapping is accomplished through three groups of steps, namely: 

1. Group1.A: This group consists of two steps (FL1.02 and FL1.03). First, the 

capacities of the indicative distribution BPL topologies of main subclasses  

 are computed in the step FL1.02. Second, given the 

capacities of the indicative distribution BPL topologies of main subclasses from 

FL1.02, which anyway act as the representative BPL topologies of the respective 

distribution BPL topology classes, the capacity borders between the adjacent 

distribution BPL topology classes  are determined by 

   (1) 

From eq. (1), it is evident that , which is equal to the capacity of the 

distribution BPL “LOS” topology case , describes the capacity upper limit 

that can be achieved for given power grid type and coupling scheme. As the other 

distribution BPL topology class capacity borders are considered, these are treated 

as the mean capacity value of the neighboring indicative distribution BPL 

topologies of the main subclasses of Tables 1 and 2. Note that  

 describe the borders: (i) between the aggravated distribution 

BPL urban topology class and typical distribution BPL urban topology class;  

(ii) between the typical distribution BPL urban topology class and the distribution 

BPL suburban topology class; (iii) between the typical distribution BPL suburban 

topology class and the distribution BPL rural topology class;  

(iv) between the typical distribution BPL rural topology class and the distribution 

BPL “LOS” topology class; and (v) the upper capacity bound that is equal to the 

capacity of the distribution BPL “LOS” case, respectively. In total, the capacities 

of the indicative distribution BPL topologies of main subclasses and the capacity 

borders between the adjacent distribution BPL topology classes remain crucial 

elements during the class mapping since they define the placement of the 

capacities of the virtual distribution BPL topology subclasses. 

2. Group1.B: This group consists of five steps (FL1.04-FL1.08). At step FL1.04,  

the MLE estimation of the applied CASD given the coupling scheme channel 
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attenuation differences of the examined distribution BPL topology is 

accomplished at Phase B of iSHM, as described in Fig. 2(a). Actually, according 

to the step FL1.04, the MLE computation module provides a MLE pair given the 

indicative distribution BPL topologies of main subclasses of Tables 1 and 2 per 

CASD. Literally, each MLE pair of the indicative distribution BPL topologies of 

the main subclasses per CASD consists of  and 

. At step FL1.05, the accuracy of the class mapping 

can be adjusted by the length of horizontal and vertical spacings, say  

        (2) 

        (3) 

, respectively, where  and  are the number of spacings for the horizontal 

and vertical axis, respectively. At step FL1.06, all  MLE 

pair combinations of the virtual indicative distribution BPL topologies of virtual 

classes per CASD 

, which are anyway computed by taking into account the horizontal and vertical 

spacings of eqs. (2) and (3), respectively, are computed, namely: 

 
        (4) 

 
        (5) 

Anyway, MLE pair combinations of the virtual indicative distribution BPL 

topologies of virtual subclasses per CASD are considered as the output of the 

virtual topology module of Phase D of Fig. 2(a) and as the essential modification 

of iSHM towards the enrichment of the distribution BPL topology subclasses.  

In fact, at step FL1.07, the random number generator of Phase D of Fig.2(a) 

exploits the MLE pair combinations of the virtual indicative distribution BPL 

topologies of virtual classes per CASD and it generates P members for each 

distribution BPL topology subclass. Finally, step FL1.08 synopsizes the operation 

of Phases E and F of iSHM as described in Fig. 2(a) while the output of  

step FL1.08 is the average capacity value average{  },  

,  of each distribution BPL 

topology subclass. The output of steps FL1.06 and FL1.08 seed the Group1.C that 

is responsible for the mapping of the results. 

3. Group1.C. This group consists of two steps (FL1.09 and FL1.10) and is the 

responsible one for the class mapping. First, step FL1.09 receives as input the 

output of the step FL1.06, say, all  MLE pair 

combinations of the virtual indicative distribution BPL topologies of virtual 

classes per CASD 

. Hence, the minimum and maximum values of horizontal and vertical axes of the 
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2D contour plot of the class map are well defined per CASD as well as all the 

possible combinations of the horizontal and vertical values.  

This procedure is denoted as CASD parameter mapping. Second, FL1.10 

receives: (i) the CASD parameters from FL1.09; and (ii) the average capacity 

values average{  }, ,  

of each distribution BPL topology subclass that correspond to all possible 

combinations of horizontal values  and vertical values . Actually, 

the existing CASD parameter map of FL1.09 is enriched by the average capacities 

of all distribution BPL topology subclasses and the subclass map is treated as the 

output of FL1.10 and, thus, Group1.C. 

The last step of the definition procedure of the virtual indicative OV MV and UN MV 

BPL topologies and their respective virtual subclasses is step FL1.11. By synthesizing its 

inputs into a 2D contour plot, step FL1.11 receives the CASD parameter map from 

Group1.C and the capacities of the indicative distribution BPL topologies of main 

subclasses accompanied with the capacity borders between the adjacent distribution BPL 

topology classes from Group1.A and gives as output the class map that is the result of the 

definition procedure of the virtual indicative OV MV and UN MV BPL topologies and 

their respective virtual subclasses of iSHM. 

 

4.2 Definition Procedure of mSHM 

 Similarly to iSHM, in this subsection, the operation of the virtual topology 

module of Phase D of Fig. 2(b) is studied as well as its output. Conversely to virtual 

MLEs per CASD of iSHM, the output of the virtual tropology module of mSHM is the 

virtual Empirical CDF  of the examined coupling scheme 

channel attenuation difference. Similarly to Sec.4.1, the flow of the virtual topology 

module of Phase D until the end is demonstrated through the flowchart of Fig. 3(b). 

 In accordance with Fig. 3(b), class mapping consists of eleven steps  

(FL2.01-FL2.11) that are further classified into three groups (Group2.A-Group2.C). 

Similarly to the definition procedure of iSHM of Fig. 3(a), with reference to Fig. 3(b), 

after the definition of the indicative distribution BPL topologies of main subclasses of 

Tables 1 and 2 (step FL2.01), the result of class mapping is accomplished through three 

groups of steps, namely: 

1. Group2.A: This group consists of two steps (FL2.02 and FL2.03). Both FL2.02 

and FL2.03 are the same with FL1.02 and FL1.03, respectively. In general,  

the input of the definition procedure of mSHM, which is the output of the step 

FL2.01, remains the same one with the definition procedure of iSHM and the 

output of the definition procedure of mSHM, which is the capacity borders 

between the adjacent distribution BPL topology classes  as 

given in eq.(1), again remains the same one with the definition procedure of 

iSHM. 

2. Group2.B: This group consists of five steps (FL2.04-FL2.08). At step FL2.04, the 

Empirical CDFs  of the indicative distribution BPL 

topologies of main subclasses are delivered by the Empirical Channel Attenuation 

Statistical Distribution module of Phase C of mSHM. Similarly to the role of 

CASD selection of iSHM, the selection of the reference distribution BPL 
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topology among the available indicative distribution BPL topologies of the main 

subclasses will define either the calculations of FL2.05-FL2.08 or the final class 

map. At step FL2.05, the Empirical CDF of the virtual distribution BPL 

topologies of subclasses can be adjusted by the spacing of horizontal shift 

 and vertical shift  of the Empirical CDFs; the horizontal 

shift  ranges from  to  with step  

        (6) 

while the vertical shift  ranges from  to 

 with step 

        (7) 

where  and  are the number of spacings for the horizontal and vertical 

axis, respectively. Given the horizontal and vertical shift spacings of eqs. (6) and 

(7), the possible horizontal and vertical spacings can be computed by: 

 
        (8) 

 
        (9) 

, respectively. In order to explain the operation of the horizontal and vertical shifts 

during the definition of the Empirical CDF of a virtual distribution BPL topology, 

there is first the need for understanding the definition of the Empirical CDF of the 

reference indicative distribution BPL topology by the Empirical channel 

attenuation statistical distribution module of Phase C, as presented in Fig. 2(b).  

In fact, with reference to Phase B of Fig. 2(b), Phase C receives as input the 1×Q 

line vector coupling scheme channel attenuation difference between the reference 

indicative distribution BPL topology l and its respective “LOS” case, say 

         (10) 

In fact, the Empirical CDF  is an increasing function of the coupling 

scheme channel attenuation difference between the reference indicative 

distribution BPL topology l and its respective “LOS” case  sorted in 

ascending order, say  where  is an operator that sorts 

a line vector in ascending order and returns the element at row q. Note that the 

number of elements of line vector  is equal to Q reduced by the 

number of duplicate values . Hence, the Empirical CDF  consists of 

the elements . At step FL2.06,  

all the shift pair combinations of the virtual indicative distribution BPL topologies 

of virtual subclasses per indicative distribution BPL topology of main subclass 

 are first computed as well as the virtual Empirical CDF  per each shift 

pair combination. In general, virtual Empirical CDF is a 
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 array while Empirical CDF can be 

treated as a line vector for given horizontal and vertical 

shift pair. Empirical CDF consists of , , is 

related with the Empirical CDF of the reference indicative distribution BPL 

topology and depends on the horizontal shift  and vertical shift 

, namely:  

 
   (11) 

where  is the number of duplicate values of 

. 

Note that eq.(11) synopsizes all the necessary checks from FL2.06 so that valid 

shift pair combinations can be defined, namely: 

• Non-negative coupling scheme channel attenuation differences for the 

Virtual Empirical CDFs. As already been mentioned in [17], [18], only 

values greater or equal than zero are expected for the coupling scheme 

channel attenuation differences while in the scarce cases of negative 

coupling scheme channel attenuation differences and in “LOS” cases,  

the coupling scheme channel attenuation differences are assumed to be 

equal to an arbitrarily low value, say 1×10-11. Instead of zero, the value 

1×10-11 has been assumed in [18] so that MLEs of Lognormal, Wald and 

Weibull channel attenuation distributions, which comprise natural 

logarithms and denominators, can be calculated and for that reason this 

assumption is also made in this paper through 

 of eq.(11). Note that 

this assumption is not assumed during the computation of MLEs of 

indicative distribution “LOS” cases that was anyway out of the scope of 

[17], [18] but is of interest in these papers. 

• The maximum value of a CDF is equal to 1. By definition, the maximum 

value of a CDF is equal to 1 and, for that reason, the virtual empirical 

CDF is upper bounded by 

 of eq.(11) for given 

horizontal and vertical shift. 

At step FL2.07, the random number generator of Phase D of Fig.2(b) exploits the 

Empirical CDF of the virtual indicative distribution BPL topologies of virtual 

main subclasses per horizontal and vertical shift set and it generates P members 

for each distribution BPL topology subclass. Finally, step FL2.08 synopsizes the 

operation of Phases E and F of mSHM as described in Fig. 2(b) while the output 

of step FL2.08 is the average capacity value average{  }, 

,  of each distribution BPL 

topology subclass. Similarly to the definition procedure of iSHM, the output of 
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steps FL2.06 and FL2.08 seed the Group2.C that is responsible for the mapping of 

the results. 

3. Group2.C. Similarly to Group1.C of iSHM, this group consists of two steps 

(FL2.09 and FL2.10) and is the responsible group for the class mapping. First, 

step FL2.09 receives as input the output of the step FL2.06, say, all 

 shift pair combinations of the virtual indicative 

distribution BPL topologies of virtual classes per representative indicative 

distribution BPL topology of the main subclasses 

. Hence, the minimum and maximum values of horizontal and vertical axes of the 

2D contour plot of the class map are well defined per representative indicative 

distribution BPL topology of the main subclasses as well as all the possible 

combinations of the horizontal and vertical values. This procedure is denoted as 

CASD parameter mapping. Second, FL2.10 receives:  

(i) the CASD parameters from FL2.09; and (ii) the average capacity values 

average{  }, ,  of each 

distribution BPL topology subclass that correspond to all possible combinations 

of horizontal values  and vertical values . Actually,  

average capacities of all distribution BPL topology subclasses enrich the existing 

CASD parameter map of FL2.09. The existing contour plot is the subclass map 

that is delivered by the step FL2.11. 

The last step of the definition procedure of the virtual indicative OV MV and UN MV 

BPL topologies and their respective virtual subclasses is step FL2.11. The output of the 

step FL2.11 that coincides with the output of the definition procedure of mSHM is the 

synthesis of inputs of the current step into a 2D contour plot. Similarly to iSHM,  

step FL2.11 receives the CASD parameter map from Group2.C and the capacity borders 

between the adjacent distribution BPL topology classes from Group2.A and gives as 

output the class map that is the result of the definition procedure of the virtual indicative 

OV MV and UN MV BPL topologies and their respective virtual subclasses of mSHM. 

 Synopsizing this Section, the definition procedure of the virtual indicative 

distribution BPL topologies and their respective virtual subclasses by adopting iSHM and 

mSHM allows the class enrichment with distribution BPL topologies that are statistically 

tested without the need for searching topological characteristic combinations that may fit 

any performance requirements. By consulting the class map and selecting appropriate 

CASD parameters, coupling channel attenuation and capacity data can be assumed for 

any class and further being processed. Finally, it is obvious that power grid types and the 

two different versions of SHM have different impact on class maps and to investigate the 

result behavior of the definition procedure, numerical results are presented in the 

companion paper of [35] for OV MV and UN MV BPL topologies. In [36], iSHM and 

mSHM are first applied to OV HV BPL networks while the results of the definition 

procedure and the class map are first demonstrated. 
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5. Conclusions 
 

 In this paper, the definition procedure of virtual indicative OV MV and UN MV 

BPL topologies and their respective virtual subclasses has been analyzed through the 

prism of iSHM and mSHM. In fact, on the basis of the theoretical framework and the 

BPMN diagrams of iSHM and mSHM, the respective definition procedure flowcharts 

have been proposed as well as the required theoretical framework. As the theory of the 

definition procedure is concerned, it has been shown that the definition procedures of 

iSHM and mSHM consist of three groups and eleven steps each where the statistical 

processing and the graphical representation of indicative distribution BPL topologies are 

accomplished. By exploiting the knowledge of the deterministic hybrid model,  

iSHM and mSHM, CASD parameter map, subclass map and class map have been 

proposed. Class map, which is a 2D contour plot and the output of the definition 

procedure, illustrates the borders between the neighboring distribution BPL topology 

classes and correspond each CASD parameter pair to its distribution BPL topology 

subclass average capacity for given power grid type, coupling scheme, IPSD limits and 

noise levels. The numerical results of the definition procedure are presented for 

distribution and transmission BPL networks in [35] and [36], respectively.  
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With reference to the initial statistical hybrid model (iSHM) and  
modified statistical hybrid model (mSHM), the theory of the definition 
procedure of new virtual indicative distribution BPL topologies  
by appropriately adjusting the channel attenuation statistical distributions 
(CASDs) parameters of iSHM and mSHM has been presented in [1].  
In this paper, the results of the definition procedure for the OV and UN 
MV BPL networks are first presented through the prism of the proposed 
class maps of iSHM and mSHM. 
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1. Introduction 
 

This set of papers deals with two fervent issues of the broadband over power lines 

(BPL) statistical channel modelling, say: (i) the underrepresentation of the BPL topology 

classes during the BPL statistical channel modelling through the insertion of  

virtual indicative BPL topologies and their respective subclasses; and  

(ii) the graphical representation of the BPL topology classes and subclasses in terms of 

their average capacity through the proposed class maps of the first paper [1].  

First, as the BPL statistical channel modelling is concerned, two versions of the hybrid 

statistical model have already been proposed, say the initial statistical hybrid model 

(iSHM), which has been presented in [2], [3], and the modified statistical hybrid model 

(mSHM), which has been presented in [4]. The basic component of both hybrid statistical 

models is the deterministic hybrid model that has exhaustively been validated in a 

plethora of transmission and distribution BPL network cases [5]-[15]. Apart from the 

deterministic hybrid model, iSHM applies five well-known channel attenuation statistical 

distribution (CASDs) of the communications literature, say, Gaussian, Lognormal, Wald, 

Weibull and Gumbel ones [2], [3], while mSHM applies the Empirical CASD [4] so that 

BPL topology classes –i.e., rural, suburban, urban and aggravated urban subclass– and 
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respective subclasses can be defined. Second, as the underrepresentation of the  

BPL topology classes is concerned, by appropriately adjusting the CASD parameters of 

iSHM and mSHM –i.e., CASD maximum likelihood estimators (MLEs) and Empirical 

cumulative density function (CDF) for iSHM and mSHM, respectively–, new virtual 

indicative distribution BPL topologies can be proposed that are added to the existing real 

ones and further define their respective distribution BPL topology subclasses enriched 

with corresponding statistically equivalent BPL topologies. In [1], the theoretical 

framework for the definition procedure of the virtual indicative BPL topologies and their 

respective virtual subclasses, briefly denoted as definition procedure hereafter, has been 

detailed. Third, as the graphical capacity representation of the real and virtual subclasses 

is concerned, the main output of the definition procedure of [1] is the class map, which is 

a 2D contour plot for given power grid type, coupling scheme, injected power spectral 

density (IPSD) limits and noise levels, that is the graphical synthesis of the CASD 

parameter and subclass map; say, real and virtual distribution BPL subclasses are 

graphically categorized into suitable BPL topology class areas in terms of their 

corresponding average capacities where the axes of the contour plot are proper 

adjustments of CASD parameters of iSHM and mSHM. The numerical results of the full 

deployment of class mapping are first presented in this paper for overhead medium 

voltage (OV MV) and underground medium voltage (UN MV) BPL networks while the 

BPL statistical channel modelling concept along with the class map is first applied to OV 

high-voltage (HV) BPL networks in [16]. 

The rest of this paper is organized as follows: Section II synopsizes the default 

settings that are required for the fine operation of the deterministic hybrid model, iSHM, 

mSHM and the definition procedure. In Section III, the numerical results of the definition 

procedure of iSHM and mSHM are demonstrated on the basis of the class maps of the 

OV MV and UN MV BPL networks. Section IV concludes this paper. 

 

 

2. The Operation Settings of Class Mapping 
 

To coexist the deterministic hybrid model, iSHM and mSHM with the definition 

procedure, a set of operation settings, which have already been reported in [2]-[4], should 

be assumed. In this Section, a synopsis of these assumptions is given as well as the set of 

scenarios that is studied in this paper. 

 

2.1 Operation Settings Concerning the Operation of the Deterministic Hybrid 
Model 
 With reference to Fig. 1 of [1], the five indicative OV MV and UN MV BPL 

topologies, which are reported in Tables 1 and 2 of [1], respectively, are considered as the 

representative ones of the respective main OV MV and UN MV BPL topology 

subclasses. Note that with reference to [5], [8], [10], [17], the indicative OV MV and UN 

MV BPL topologies concern average long end-to-end connections of 1000m and 200m, 

respectively.  

As the the circuital parameters of the above indicative OV MV and UN MV BPL 

topologies are concerned for the operation of the deterministic hybrid model, these are 

detailed in [5], [7]-[15], [18]-[33]. Synoptically, the required assumptions can be 
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synopsized as follows: (i) the branching cables are assumed identical to the distribution 

cables; (ii) the interconnections between the distribution and branch conductors are fully 

activated; say all the phase and the neutral conductors of the branching cables are 

connected to the respective ones of the distribution cables; (iii) the transmitting and the 

receiving ends are assumed matched to the characteristic impedance of the modal 

channels; and (iv) the branch terminations are assumed open circuit since MV/LV 

transformers are assumed to be installed. 

 

2.2 iSHM Operation Settings 

Already been identified in [3], the distribution power grid type,  

the BPL topology class, CASD, electromagnetic interference (EMI) policy, noise level 

and applied coupling scheme are factors that should be carefully selected during the 

operation of the deterministic hybrid model and iSHM. Hence, additional details should 

be given for iSHM operation settings as reported in this subsection. 

First, the BPL operation frequency range and the flat-fading subchannel 

frequency spacing are assumed to be equal to 3-30 MHz and 0.1 MHz (i.e, 0.1 MHz), 

respectively. Hence, there are 270 subchannels in the frequency range of interest  

(i.e., 270). In accordance with [8], [10], [11], [19], [21], [34], the assumption of the 

flat-fading subchannels, which is a typical scenario, remains a crucial element towards 

the capacity computation of the examined distribution BPL topologies, that is anyway the 

output measure of iSHM.  

Second, to compute coupling scheme channel attenuations of the distribution BPL 

topologies, CS2 module, which has been detailed in [35], [36], is applied as the default 

coupling scheme system of the deterministic hybrid model. Among the available coupling 

schemes that are supported by CS2 module, WtG1 and StP1 coupling schemes are 

assumed to be the default ones for the assessment of OV MV and UN MV BPL topology 

subclasses, respectively, so that a direct comparison between the results of this paper and 

those of [3] and [4], can be achieved.  

Third, during the computation of the coupling scheme channel attenuation 

differences in the Phase B of [2], values that are greater or equal to zero are expected in 

the vast majority of the cases. However, in the scarce cases of negative coupling scheme 

channel attenuation differences and in “LOS” cases, the coupling scheme channel 

attenuation differences are assumed to be equal to an arbitrarily low value, say 1×10-11. 

This assumption is made in order to prevent the presence of infinite terms due to the 

natural logarithms and denominators of Lognormal, Wald and Weibull channel 

attenuation distributions in iSHM.  

Fourth, as the members of each BPL topology subclass are concerned in Phase D, 

100 member distribution BPL topologies (i.e., P=100) are assumed to be added in each 

BPL topology subclass per CASD through the statistical hybrid model procedure 

described in [2]. 

Fifth, during the capacity computations of iSHM, FCC Part 15 is considered as 

the default IPSD limit proposal concerning EMI policies for BPL systems in this paper. 

Among the available EMI policies, which are FCC Part 15, German Reg TP NB30 and 

the BBC / NATO Proposal and their impact on the performance of hybrid statistical 

models has already been studied in [3], [4], FCC Part 15 is assumed to be the default EMI 

policy in this paper due to its proneness to the broadband character of BPL networks and 
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its high performance results of statistical hybrid models. In the frequency range 3-30 

MHz of this paper, -60 dBm/Hz and -40 dBm/Hz are the FCC Part 15 IPSD limits 

suitable for the operation of OV MV and UN MV BPL topologies, respectively [8], 

[10], [37].  

Sixth, during the capacity computations, uniform additive white Gaussian noise 

(AWGN) PSD levels are assumed in accordance with the FL noise model of [38], [39]. 

As it regards the noise properties of OV MV and UN MV BPL networks in the 3-30MHz 

frequency range [8], [10], [19], [34], [40], -105dBm/Hz and -135dBm/Hz are the 

appropriate AWGN PSD limit levels  for OV MV and UN MV BPL networks, 

respectively. 

 Seventh, in accordance with [3], [4], the performance of iSHM and the accuracy 

of its capacity results significantly depend on the selection of the CASD. Based on the 

findings of Table 3 of [3], it has been demonstrated for the iSHM that Weibull and Wald 

CASDs perform the best capacity estimations in OV MV and UN MV power grid types, 

respectively, regardless of the examined BPL topology subclass when the aforementioned 

operation settings concerning EMI policy, noise level and applied coupling scheme are 

assumed. These two CASDs are going to be only adopted by the following definition 

procedure and during the iSHM study in this paper. 

 

2.3 mSHM Operation Settings 

Similarly to iSHM, the distribution power grid type, the BPL topology class,  

the reference indicative distribution BPL topology, EMI policy, noise level and applied 

coupling scheme are factors that are involved during the operation of the deterministic 

hybrid model and mSHM [4]. In contrast with iSHM operation settings, only one CASD, 

say, the Empirical CASD, is adopted by mSHM by default and, hence, CASD selection is 

not considered among the mSHM operation settings.  

As the BPL operation frequency range, flat-fading subchannel spacing,  

coupling scheme system, the member number of each BPL topology subclass,  

EMI policy and noise level are considered, their properties described in Sec. 2.2 for 

iSHM are assumed to be the same with the ones of mSHM. For comparison reasons 

between iSHM and mSHM and in accordance with [2], [3], [4], the infinity prevention 

assumption remains for the mSHM. 

In general, each indicative distribution BPL topology is characterized by a set of 

parameters regarding either iSHM (i.e., MLEs) or mSHM (i.e., Empirical CDF).  

As already been mentioned in Sec.2.2 for iSHM, Weibull and Wald CASD MLEs 

perform the best capacity estimations in OV MV and UN MV power grid types, 

respectively, and these MLEs are going to be adopted for the rest of this paper.  

As mSHM CASD parameters are concerned, the Empirical CDF of a reference 

distribution BPL topology among the indicative distribution BPL topologies of the main 

subclasses acts as the mSHM CASD parameter that is going to be delivered to the 

following definition procedure. 

 

2.4 Operation Settings for the Definition Procedure 

 In accordance with [1], the BPMN diagrams of iSHM and mSHM flowchart are 

presented in Figs. 2(a) and 2(b) of [1], respectively. With reference to the aforementioned 

figures, the additional BPMN elements (i.e., the virtual topology modules and their 
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corresponding outputs), which will allow the application of the definition procedure, are 

shown in red color. Apart from the BPMN diagrams, the interaction of the virtual 

topology modules with the remaining iSHM and mSHM steps is depicted through the 

flowcharts of Figs. 3(a) and 3(b) of [1], respectively. By comparing Figs. 3(a) and 3(b) of 

[1], several differences concerning these flowcharts can be observed, especially:  

(i) between steps FL1.04 and FL2.04; and (ii) between steps FL1.05 and FL2.05.  

Due to the previous differences, the operation settings concerning the definition 

procedure can be divided into two groups, namely: 

1. iSHM definition procedure: With reference to [2], [3], since Weibull CASD 

performs the best capacity estimations in OV MV BPL networks,  and 

 are Weibull CASD MLEs that are used in FL1.04 of Fig. 3(a) of [1]. 

When UN MV BPL topologies are studied,  and  are the Wald CASD 

MLEs that are used in FL1.04 of Fig. 3(a) of [1]. In accordance with FL1.04 of 

Fig. 3(a) of [1], MLEs of the indicative distribution BPL topologies of main 

subclasses are computed. To compute the MLE spacings per distribution power 

grid type in FL1.05 of Fig. 3(a) of [1],  and , which are the number of 

spacings for the horizontal and vertical axis, respectively, should be assumed.  

In this paper, the number of spacings for the horizontal and vertical axis is 

assumed to be equal to 10 in both cases regardless of the distribution power grid 

type while this selection is going to be proven critical for the simulation time of 

class mapping (see Sec.3.5).  

2. mSHM definition procedure: In contrast with iSHM definition procedure, there is 

only one CASD that is used across the mSHM definition procedure, say Empirical 

CASD, but Empirical CASD is characterized by its CDF and not by 

corresponding MLEs [4]. In accordance with FL2.04 of Fig. 3(b) of [1],  

Empirical CDFs of the indicative distribution BPL topologies of main subclasses 

are computed. Conversely to iSHM, mSHM definition procedure demands the 

assumption of a reference indicative distribution BPL topology among the 

indicative ones so that suitable horizontal and vertical shifts can be added and the 

class map can be plotted. To compute the horizontal and vertical shift spacings in 

FL2.05 of Fig. 3(b) of [1] given the reference indicative distribution BPL 

topology,  and , which are the number of spacings for the horizontal and 

vertical axis, respectively, should be assumed. In this paper, the number of 

spacings for the horizontal and vertical axis is assumed to be equal to 10 in both 

cases regardless of the distribution power grid type examined. At this step of the 

definition procedure, same number of horizontal and vertical spacings is 

considered between iSHM and mSHM definition procedures for duration 

comparison reasons. Note that the maximum and minimum horizontal shift is 

assumed to be equal to 30 dB and -30 dB, respectively, while the maximum and 

minimum vertical shift is assumed to be equal to 1 and 0, respectively. 

Since all the required assumptions concerning the operation settings of iSHM, 

mSHM and definition procedure have been reported in this Section, the numerical results 

of iSHM and mSHM definition procedure are presented in the following Section for the 

OV MV and UN MV BPL topologies as well as the class maps. 

 

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 5 

 

 

 

Tr Ren Energy, 2019, Vol.5, No.3, 258-281. doi: 10.17737/tre.2019.5.3.00100 263 

 

 

3. Numerical Results and Discussion 
 

 In this Section, numerical results concerning the definition procedure of iSHM 

and mSHM are presented. Taking into account the already identified default operation 

settings of Secs.2.1-2.4, four different scenarios concerning the class mapping are 

presented, namely: (i) iSHM definition procedure for OV MV BPL topologies;  

(ii) iSHM definition procedure for UN MV BPL topologies;  

(iii) mSHM definition procedure for OV MV BPL topologies; and  

(iv) mSHM definition procedure for UN MV BPL topologies. This Section ends with 

observations concerning the simulation time of the aforementioned four scenarios.  

 

3.1 iSHM Definition Procedure for OV MV BPL topologies 

With reference to Table 3 of [3], Weibull CASD achieves the best capacity 

estimations in OV MV BPL topologies with average absolute percentage change that is 

equal to 0.47% and remains the smallest one among the five examined CASDs.  

For the five indicative OV MV BPL topologies of the main subclasses of Table 1 of [1], 

the respective  and , which are the Weibull CASD MLEs, are reported in 

Table 1 of [3] while the respective capacities are given in Table 3 of [3]. On the basis of 

the Weibull CASD MLEs and capacities of the five indicative OV MV BPL topologies of 

the main subclasses of Table 1 of [1], the spacings for the horizontal and vertical axis, as 

dictated by FL1.05 of Fig. 3(a) of [1], are equal to  and  

, respectively, while the capacity borders between the adjacent distribution 

BPL topology classes , as dictated by FL1.03 of  

Fig. 3(a) of [1], are equal to 245Mbps, 289Mbps, 332Mbps and 379Mbps, respectively. 

Summarizing the aforementioned analysis, the class map of OV MV BPL topologies is 

plotted in Fig. 1 with respect to  and  when the operation settings of 

Sec.2 are assumed. In the same 2D contour plot, the Weibull CASD MLEs of the five 

indicative OV MV BPL topologies of the main subclasses of Table 1 of [1] with the 

corresponding capacities are also shown. 
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Fig. 1.  iSHM class map of the OV MV BPL topologies in the 3-30MHz frequency band when  

WtG1 coupling scheme is deployed and FCC Part 15 is applied.   

 

 

By observing Fig. 1, several useful findings can be pointed out for the class map 

of iSHM, namely: 

• Different combinations of Weibull CASD MLEs entail different capacities for the 

corresponding virtual OV MV BPL topologies. With reference to the computed 

capacity borders between the adjacent distribution BPL topology classes,  

five capacity areas between these borders can be clearly delineated in the class 

map; say, the OV MV BPL “LOS” class, OV MV BPL rural class, OV MV BPL 

suburban class, OV MV BPL urban case A class and OV MV BPL urban case B 

class.   

• As it is obvious, the indicative OV MV BPL topologies of the main subclasses of 

Table 1 of [1] are located in the homonymous title class areas. Note that the 

 value of the OV MV BPL “LOS” case has been arbitrarily chosen to be 

equal to zero since a narrow OV MV BPL “LOS” class area extents from the zero 

value up to the infinity of . Similarly, a narrow OV MV BPL “LOS” class 

area extents from the zero value up to the infinity of  creating a capacity 

fluctuation till the second  value of study (say, second  value is 

equal to 0.134). In mathematical terms, this is explained by the definition of the 

Weibull CASD CDF in eqs. (A10)-(A12) of [2] and the involvement of  

and . 

• As the multipath environment of the examined OV MV BPL topologies becomes 

richer (i.e., more frequent and deeper spectral notches [5]-[6], [9], [41]), this has 

as a result the value increase of . Hence, OV MV BPL urban topologies 

tend to be located at the upper right areas of the class map while the OV MV BPL 

rural topologies tend to be located at the lower left areas. Anyway,  is 
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more sensitive to the multipath environment aggravation in contrast with  

that remains relatively insensitive. The last remark is validated by the fact that 

indicative OV MV BPL rural, OV MV BPL suburban and OV MV BPL urban 

case A topologies of Table 1 of [1] are characterized by approximately equal 

values of . 

• Note that for given , the capacity of the virtual OV MV BPL topologies 

increases with respect to the . This is explained by studying Fig. (2) of 

[4], eq. (A10) of [2] and the behavior of Weibull CASD CDF; since  

receives values that are significantly greater than 1 for the practical cases of 

interest, the term  of eq. (10) of [2] can be considered to be greater than 1 in 

the majority of the cases examined in Fig. (2) of [4] where  is the coupling 

scheme channel attenuation difference between the examined OV MV BPL 

topology and its respective “LOS” case at q flat-fading subchannel.  

As  increases,  increases from -1 to infinity and, thus, 

 starts from  and fast tends to 1.  

The last observation has as a result the improvement of the capacities of the 

virtual OV MV BPL topologies that are characterized by greater  values 

for given . Anyway, the capacity improvement is more evident for the 

cases of low  because the term  remains significantly greater than 1 

and this explains the appearance of the class area edges at the bottom of the class 

map and the steep and almost vertical class area borders for  greater than 

1.2. 

 

3.2 iSHM Definition Procedure for UN MV BPL topologies 

With reference to Table 3 of [3], Wald CASD achieves the best capacity 

estimations in UN MV BPL topologies with average absolute percentage change that is 

equal to 0.01% and remains the smallest one among the five examined CASDs. For the 

five indicative UN MV BPL topologies of the main subclasses of Table 2 of [1],  

the respective  and , which are the Wald CASD MLEs, are reported in  

Table 1 of [3] while the respective capacities are given in Table 3 of [3].  

By observing the extent of  values of Table 2 of [1], which ranges from 20.93 to 

2.62×103, and taking under consideration the number of spacings that is equal to 10, the 

proper selection for the vertical axis is the representation of  and the 

corresponding vertical spacings. Therefore, on the basis of the Wald CASD MLEs and 

capacities of the five indicative OV MV BPL topologies of the main subclasses of Table 

2 of [1], the spacings for the horizontal and vertical axis, as dictated by FL1.05 of Fig. 

3(a) of [1], are equal to  and , respectively, 

while the capacity borders between the adjacent distribution BPL topology classes 

, as dictated by FL1.03 of Fig. 3(a) of [1], are equal to 561Mbps, 

619Mbps, 651Mbps and 699Mbps, respectively. Summarizing the aforementioned 

analysis, the class map of UN MV BPL topologies is plotted in Fig. 2 with respect to 



 

Peer-Reviewed Article   Trends in Renewable Energy, 5 

 

 

 

Tr Ren Energy, 2019, Vol.5, No.3, 258-281. doi: 10.17737/tre.2019.5.3.00100 266 

 

 

 and  when the operation settings of Sec.2 are assumed.  

In the same 2D contour plot, the Wald CASD MLEs of the five indicative UN MV BPL 

topologies of the main subclasses of Table 2 of [1] with the corresponding capacities are 

also shown. 

 

 
Fig. 2.  iSHM class map of the UN MV BPL topologies in the 3-30MHz frequency band when  

StP1 coupling scheme is deployed and FCC Part 15 is applied.   

 

 

By observing Fig. 2, additional findings for the class map of iSHM can be added 

to the ones of Sec. 3.1, namely: 

• Similarly to the iSHM class map of OV MV BPL topologies, five capacity areas 

between the computed borders are clearly delineated in the iSHM class map of 

UN MV BPL topologies; say, the UN MV BPL “LOS” class, UN MV BPL rural 

class, UN MV BPL suburban class, UN MV BPL urban case A class and UN MV 

BPL urban case B class. Each of the five capacity areas consists of the 

homonymous indicative UN MV BPL topology of Table 2 of [1]. Also, in 

accordance with eq. (A7) of [2], a narrow UN MV BPL “LOS” class area extents 

from zero up to the infinity when  is equal to zero. This is explained by 

studying eq. (A7) of [2] and the behavior of Wald CASD CDF; since  

receives values that are significantly greater than 0 for the practical cases of 

interest, the terms where  is involved as a denominator receive values that 

are different than infinity. The zero theoretical value of  entails the special 

behaviors of the Wald CASD CDF and capacity regardless of the  

value. 

• As the multipath environment of the examined UN MV BPL topologies becomes 

richer (i.e., more frequent and deeper spectral notches [7], [9], [5], [6], [41]), this 

has as a result the value increase of . Hence, UN MV BPL urban topologies 

tend to be located at the right areas of the class map while the UN MV BPL rural 

topologies tend to be located at the left areas. Similarly to the class map of OV 
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MV BPL topologies,  behaves similarly to  (i.e., CASD MLEs that 

are sensitive to the multipath environment aggravation) while  behaves 

similarly to  (i.e., CASD MLEs that do not depend on the multipath 

environment aggravation). Conversely to iSHM class map of OV MV BPL 

topologies, iSHM class map of UN MV BPL topologies does not comprise class 

area edges of the extent demonstrated in OV MV BPL topologies.  

 

 

3.3 mSHM Definition Procedure for OV MV BPL topologies 

With reference to Table 3 of [4], Empirical CASD of mSHM achieves better 

capacity estimations than the ones of Weibull CASD of iSHM in OV MV BPL topologies 

when OV MV BPL urban case A, OV MV BPL suburban case and OV MV BPL rural 

case are examined while the capacity estimation difference between Empirical and 

Weibull CASDs remains relatively small when OV MV BPL urban case B is examined. 

In total, Empirical CASD of mSHM achieves better average absolute percentage change 

(i.e., 0.09%) than Weibull CASD of iSHM (i.e., 0.47%). 

 In accordance with [1], similarly to the role of CASD selection of iSHM, the 

selection of the reference distribution BPL topology among the available indicative 

distribution BPL topologies of the main subclasses defines the class map of mSHM. In 

contrast with iSHM where one CASD excels over the others in terms of the capacity 

estimation performance (say, Weibull CASD and Wald CASD for the OV MV and UN 

MV BPL topologies, respectively) and is finally selected, all the four indicative OV MV 

BPL topologies of the main subclasses of Table 1 of [1], except for the OV MV “LOS” 

case, should be examined separately during the preparation of mSHM class maps.  

For the reference indicative OV MV BPL urban case A of Table 1 of [1],  

the horizontal shift  and vertical shift  of its corresponding 

Empirical CDF, hereafter denoted simply as  and , respectively, are 

assumed to be both equal to zero while the respective capacity is given in Table 3 of [3]. 

On the basis of the horizontal and vertical shifts of the Empirical CDF and the capacity of 

the reference indicative OV MV BPL urban case A, the spacing for the horizontal axis 

 and the spacing for the vertical axis , as dictated by FL2.05 of 

Fig. 3(b) of [1], are equal to  and , respectively, while the 

capacity borders between the adjacent distribution BPL topology classes 

, as dictated by FL2.03 of Fig. 3(a) of [1], are equal to 245Mbps, 

289Mbps, 332Mbps and 379Mbps, respectively. Note that the capacity borders between 

the adjacent distribution BPL topology classes remain the same during the design of 

iSHM and mSHM class maps. Summarizing the aforementioned analysis, the class map 

of OV MV BPL topologies is plotted in Fig. 3(a) with respect to the horizontal shift 

 and vertical shift  when the operation settings of Sec.2 are assumed.  

In the same 2D contour plot, the capacity borders between the adjacent distribution BPL 

topology classes and the capacity of the reference indicative OV MV BPL urban case A 

of Table 1 of [1] are also shown. In Figs. 3(b)-(d), same plots with Fig. 3(a) are given but 

for the case of the reference indicative urban case B, suburban case and rural case of 

Table 1 of [1], respectively.  
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Fig. 3.  mSHM class map of the OV MV BPL topologies in the 3-30MHz frequency band when  

WtG1 coupling scheme is deployed and FCC Part 15 is applied for different reference indicative OV MV 

BPL topologies. (a) OV MV BPL urban case A. (b) OV MV BPL urban case B. (c) OV MV BPL suburban 

case. (d) OV MV BPL rural case.   

 

 

From Figs. 3(a)-(d), several interesting remarks can be pointed out concerning the 

mSHM class maps, namely: 

• Similarly to the iSHM class map of OV MV BPL topologies, five capacity areas 

between the computed borders can be clearly delineated in the mSHM class map 
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of OV MV BPL topologies; say, the OV MV BPL “LOS” class, OV MV BPL 

rural class, OV MV BPL suburban class, OV MV BPL urban case A class and 

UN MV BPL urban case B class. The virtual OV MV BPL topologies that are 

members of the aforementioned OV MV BPL topology classes can be defined by 

the suitable combined horizontal and vertical shift adjustment of the reference 

indicative OV MV BPL topology with reference to Figs. 3(a)-(d). 

• As the procedure of the Empirical CDF shifting is concerned in this paper,  

the vertical shift is first taken into account and the horizontal shift is second 

executed. This sequence of shifts ensures that the shape of the Empirical CDF 

retains its characteristics as reported in eq.(11) of [1] and its accompanying two 

restrictions regarding the definition of valid shift pair combinations. Anyway, 

since the vertical and horizontal shifts can be considered as linear transformations 

of the Empirical CDFs, the sequence of shifts can be reversed without class map 

modifications if the new horizontal values are not modified during the vertical 

shifts.  

• The vertical shifts that are assumed during the preparation of the mSHM class 

maps are considered to be positive and range from 0 to 1 while the horizontal 

shifts are assumed to range from -30 dB to 30 dB regardless of the examined 

distribution BPL topology. As the vertical shifts are concerned, the positive 

values up to 1, which are combined with the CDF maximum value restriction of 1, 

imply that the virtual Empirical CDF that is produced after the valid shift pair 

combination reaches up to 1. As the horizontal shifts are concerned, since 

coupling scheme channel attenuation differences of the reference indicative OV 

MV BPL topology take values greater than 1×10-11 dB, the negative horizontal 

shifts imply that the virtual OV MV BPL topology is characterized by lower 

channel attenuation than the one of the reference indicative OV MV BPL 

topology while the positive horizontal shifts imply the opposite result. Anyway, 

after the horizontal shift, the virtual coupling scheme channel attenuation 

difference always remains lower bounded by 1×10-11 dB.  

• Regardless of the examined reference indicative OV MV BPL topology, higher 

capacities are observed in the upper left areas of the mSHM class map. Since 

restrictions concerning the virtual Empirical CDF and virtual coupling scheme 

channel attenuation differences have been already reported, the great areas of the 

OV MV BPL “LOS” topology class are observed in the upper left areas of the 

mSHM class map. As the examined reference indicative OV MV BPL topology is 

characterized by high capacity, there is no need for high boost of the Empirical 

CDF (i.e., vertical shift) so that the capacity of the virtual OV MV BPL topology 

reaches up to the capacity maximum that is the capacity of OV MV BPL “LOS” 

topology class. The latter explanation justifies the area expansion of the OV MV 

BPL “LOS” topology class up to the lower left areas of the mSHM class maps 

when OV MV BPL rural and OV MV BPL suburban topology classes are 

illustrated in Figs. 3(c) and 3(d), respectively. 

• Regardless of the examined reference indicative OV MV BPL topology, lower 

capacities are observed especially in the lower right areas of the mSHM class map 

but also, in a certain extent, in upper right areas of the mSHM class map. As the 

lower right areas of the mSHM class map are examined, the high imposed 
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coupling scheme channel attenuation differences by the high values of the 

horizontal shifts that are combined with the relatively low increase of Empirical 

CDF due to the low values of the vertical shifts normally reduce the capacities of 

the virtual OV MV BPL topologies. Here, there is no restriction to the imposed 

coupling scheme channel attenuation differences and, therefore, the capacities of 

the virtual OV MV BPL topologies tend to zero as the horizontal shifts 

significantly increase. As the upper right of the mSHM class map, which can be 

treated as a special case of the low capacity behavior, are investigated, the 

capacities of the virtual OV MV BPL topologies are observed to be decreased but 

remain higher than the capacities observed in the lower right areas of the mSHM 

class map when vertical shifts exceed 0.9. The behavior of the capacities of the 

virtual OV MV BPL topologies in the upper right areas of the mSHM class map is 

explained by the fact that, for given the maximum vertical shift (e.g., 1), as the 

horizontal shift increases above 0dB this implies that the virtual Empirical CDF is 

characterized by a step function of magnitude 1 while the step position is located 

at the examined horizontal step value. Due to the shape of the virtual Empirical 

CDF, the virtual coupling scheme channel attenuation difference is fixed and 

equal to the examined horizontal step value. As the examined horizontal shift 

increases, so does the fixed virtual coupling scheme channel attenuation 

difference, thus having an effect of the reduction of the capacity of the examined 

virtual OV MV BPL topology.  

• By identifying the five capacity areas between the computed borders in each of 

the mSHM class maps of Figs. 3(a)-(d), it is obvious that a plethora of virtual OV 

MV BPL topologies can enrich the different OV MV BPL topology classes by 

adopting different reference indicative OV MV BPL topologies when suitable 

combined horizontal and vertical shift adjustments that comply with the 

respective mSHM class map areas and Empirical CDFs are followed.  

 

 

3.4 mSHM Definition Procedure for UN MV BPL topologies 

With reference to Table 3 of [4], Empirical CASD of mSHM does not achieve 

better capacity estimations than the ones of Wald CASD of iSHM in UN MV BPL 

topologies but the percentage change differences in all the examined cases remain 

significantly low. Anyway, the average absolute percentage change between the 

Empirical CASD of mSHM (i.e., 0.07%) and Wald CASD of iSHM (i.e., 0.01%) again 

remains significantly low while the main advantage of the Empirical CASD against Wald 

CASD remains its execution time (as reported in Sec.3.5). 

 In accordance with [1] and similarly to Sec.3.3, all the four indicative UN MV 

BPL topologies of the main subclasses of Table 2 of [1], except for the UN MV “LOS” 

case, are examined separately during the preparation of mSHM class maps. As the 

horizontal shifts, vertical shifts, horizontal shift spacings and vertical shift spacings of the 

mSHM class maps of UN MV BPL topologies are considered, these are assumed to 

receive the same values with the respective ones of the mSHM class maps of OV MV 

BPL topologies. Also, the capacity borders between the adjacent distribution BPL 

topology classes , which are adopted during the preparation of the 

mSHM class maps, are equal to 561 Mbps, 619 Mbps, 651 Mbps and 699 Mbps, 
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respectively, and remain the same ones with the respective capacity borders during the 

preparation of the iSHM class maps already presented in Sec.3.2. The class map of UN 

MV BPL topologies is plotted in Fig. 4(a) with respect to the horizontal shift  and 

vertical shift  when the operation settings of Sec.2 are assumed.  

In the same 2D contour plot, the capacity borders between the adjacent distribution BPL 

topology classes and the capacity of the reference indicative UN MV BPL urban case A 

of Table 2 of [1] are also shown. In Figs. 4(b)-(d), same plots with Fig. 4(a) are given but 

for the case of the reference indicative UN MV BPL urban case B, UN MV BPL 

suburban case and UN MV BPL rural case of Table 2 of [1], respectively. 
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Fig. 4.  mSHM class map of the UN MV BPL topologies in the 3-30MHz frequency band when  

StP1 coupling scheme is deployed and FCC Part 15 is applied for different reference indicative UN MV 

BPL topologies. (a) UN MV BPL urban case A. (b) UN MV BPL urban case B. (c) UN MV BPL suburban 

case. (d) UN MV BPL rural case.   

 

 

By observing Figs. 4(a)-(d), several interesting conclusions can be reported 

concerning the mSHM class maps, namely: 

• Similarly to the mSHM class maps of OV MV BPL topologies, five capacity 

areas between the computed borders are clearly delineated in the mSHM class 
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map of UN MV BPL topologies whose planning remains the same as that of 

mSHM class maps of OV MV BPL topologies in Figs. 3(a)-(d).  

• Similarly to mSHM class maps of the OV MV BPL topologies, the reference 

indicative UN MV BPL topology of each of the illustrated mSHM class maps is 

located at the axis center of each class map while the capacities of the virtual UN 

MV BPL topologies, which are defined with reference to the Empirical CDF of 

the reference indicative UN MV BPL topology, increase as the horizontal shift 

decreases (i.e., coupling scheme channel attenuation differences decrease) or the 

vertical shift increases (i.e., Empirical CDF shifts upward). 

• By comparing the OV MV BPL “LOS” class areas of Figs. 3(a)-(d) against the 

UN MV BPL “LOS” class areas of Figs. 4(a)-(d), differences concerning the 

location of the right borderline of these areas, which are more clear when high 

values of vertical shifts are adopted, are here mentioned. By comparing Figs. 2 

and 3 of [4], the coupling scheme channel attenuation differences of the UN MV 

BPL topologies are characterized by a fixed difference (i.e., the minimum of the 

coupling scheme channel attenuation difference remains above a channel 

attenuation difference threshold) across the examined frequency range in contrast 

with the coupling scheme channel attenuation differences of the OV MV BPL 

topologies whose minima are equal to zero. This behavior of the coupling scheme 

channel attenuation differences of the UN MV BPL topologies is reflected on the 

class maps where the upper right UN MV BPL “LOS” class area borderline is 

located at the horizontal shift that is equal to the aforementioned channel 

attenuation difference threshold. As it is evident this channel attenuation 

difference threshold is included across the entire right UN MV BPL “LOS” class 

area borderline which is not so evident when the vertical shift is significantly 

lower than 1. 

• Similarly to the mSHM class map of OV MV BPL topologies, by identifying the 

five capacity areas between the computed borders in each of the mSHM class 

maps of Figs. 4(a)-(d), it is obvious that a plethora of virtual UN MV BPL 

topologies can again be defined in order to enrich the different UN MV BPL 

topology classes. By selecting among the different reference indicative OV MV 

BPL topologies and applying suitable combined horizontal and vertical shift 

adjustments in compliance with the respective mSHM class maps, virtual UN MV 

BPL topologies of different Empirical CDF forms that anyway are members of 

the same UN MV BPL topology class can be defined.  

 

 

3.5 Class Mapping and Simulation Time 

With reference to Table 3 of [4], different CASDs and power grid types are 

characterized by different capacity estimation performances (i.e., different percentage and 

average absolute percentage changes). Apart from the different capacity estimation 

performances, class mapping of Secs. 3.1-3.4 requires different simulation times that 

depend primarily on the applied CASD and secondarily on the power grid type given the 

operation settings of Sec. 2. More analytically, in Table 1, the required simulation times 

for the class mapping of Secs. 3.1-3.4, which have been recorded during the class map 

implementation, are reported. 
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Table 1 

The Simulation Time of iSHM and mSHM Class Maps 

SHM Type Power Grid 

Type 

CASD Simulation Time 

(s) 

Paper Section and  

Class Map Figure 

iSHM OV MV Weibull 407 Sec. 3.1 / Fig. 1 

UN MV Wald 22,137 Sec. 3.2 / Fig. 2 

mSHM OV MV Empirical 817 Sec. 3.3 / Figs. 3(a) 

UN MV Empirical 758 Sec. 3.4 / Figs. 4(a) 

 

 

By combining the findings of Secs. 3.1-3.4 and the simulation time data of  

Table 1, several useful conclusions can be expressed regarding the trade-off between the 

performance and the speed of iSHM and mSHM CASDs, more specifically: 

• As the Empirical CASD is the only CASD that is applied by mSHM,  

the simulation time that is required for the class mapping of OV MV and UN MV 

BPL topologies remains approximately the same (i.e., from 758 s to 817 s). The 

small difference between the OV MV and UN MV BPL topology simulation 

times comes from the operation of the deterministic hybrid model. This is an 

evident outcome since the mSHM BPMN diagram of Fig. 2(b) of [1] and the 

mSHM definition procedure flowchart of Fig. 3(b) of [1] anyway remain the same 

regardless of the examined power grid type.  

• With respect to the capacity estimation performance, different CASDs are applied 

by iSHM in order to create the class maps of OV MV and UN MV BPL 

topologies. Actually, Weibull and Wald CASDs are the suitable CASDs for the 

OV MV and UN MV BPL topologies, respectively, while the complexity of the 

respective MLE computation, as indicated in Secs. A.4 and A.3 of [2], differs. 

The different complexity of Weibull and Wald CASD MLE computation is 

reflected on the different simulation times of Table 1 for the iSHM class maps of 

OV MV and UN MV BPL topologies. In fact, with reference to Sec. A.3 of [2], 

the computation of Wald CASD CDF by twice using the Gaussian CDF   

(see eq. A7 of [2]) skyrockets the required simulation time for the class mapping 

of UN MV BPL topologies (i.e., approximately 6.15 hours for iSHM class map of 

UN MV BPL topologies against approximately 7 min for iSHM class map of  

OV MV BPL topologies). 

• Apart from the applied CASD and the power grid type, the simulation times, 

which are presented in Table 1, critically depend on the number of spacings, 

which remains the critical parameter of the operation settings presented in Sec. 2. 

At this moment, the number of spacings for the horizontal and vertical axes for 

iSHM and mSHM is assumed to be equal to 10. This implies that 

 different MLE pair combinations and shift pair 

combinations are evaluated for the preparation of iSHM and mSHM class maps, 

respectively, while the required simulation times are presented in Table 1. If the 

number of spacings for the horizontal and vertical axes increases to 100, 

 different MLE pair combinations and shift pair 

combinations are required for the preparation of iSHM and mSHM class maps, 
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respectively,  

while the simulation times are expected to be increased by approximately  

84 times. By analyzing the simulation time data of Table 1, this becomes a 

prohibitive task for the iSHM class mapping of UN MV BPL topologies  

(i.e., the simulation time is expected to be equal to approximately 21.5 days). 

• By considering the capacity estimation performance and the simulation data of the 

different CASDs for the class mapping of UN MV BPL topologies, an interesting 

trade-off can be established between Empirical CASD of mSHM and the  

Wald CASD of iSHM. Although the capacity estimation performance of Wald 

CASD of iSHM presents slightly improved results with respect to the capacity 

estimation performance in relation with the Empirical CASD of mSHM,  

the simulation time of Wald CASD is six times greater than the one of Empirical 

CASD. Therefore, the slight improved capacity estimation performance is 

exchanged at significantly worse simulation times. Conversely, the same trade-off 

issue holds in OV MV BPL topologies between the Empirical CASD of mSHM 

and the Weibull CASD of iSHM.  

By concluding this Section, it is evident that the definition of class maps of 

distribution BPL topologies can successfully enrich the existing distribution BPL 

topology classes with a plethora of statistically equivalent virtual distribution BPL 

topologies. However, the selection among different CASDs and different SHM types 

offers a diversity regarding the capacity estimation performance and the simulation time. 

 

 

4. Conclusions 
 

 In this paper, the numerical results concerning the class mapping of OV MV and 

UN MV BPL topologies have been presented on the basis of iSHM and mSHM 

flowcharts and definition procedures, which have been analyzed in [1]. In accordance 

with the proposed class maps, it has been verified that distribution BPL topology classes 

can be further enriched with respective distribution BPL topology subclasses that further 

consist of a plethora of corresponding distribution BPL topologies that remain 

statistically equivalent with the indicative distribution BPL topology of the examined 

subclass. Apart from the definition of virtual distribution BPL topologies in terms of 

their capacity by simply selecting appropriate CASD parameters, the capacity estimation 

performance and the simulation time of iSHM and mSHM CASDs have been examined 

revealing an interesting trade-off between the aforementioned two parameters. After the 

class map definition, the statistical approach of SHM can be considered to be more 

robust since a great number of indicative distribution BPL topologies, which can act as 

representative topologies of respective distribution BPL topology subclasses, can be 

assumed. 
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In [1], [2], the theoretical framework and the numerical results concerning 
the class mapping of overhead and underground medium voltage 
broadband over power lines (OV and UN MV BPL) topologies have been 
presented on the basis of the recently proposed initial statistical hybrid 
model (iSHM), modified statistical hybrid model (mSHM) and class map 
definition procedure. In this paper, all the recent findings regarding the 
statistical channel modeling and class mapping are first applied to 
transmission BPL networks; say, OV high voltage (HV) BPL topologies. 
The numerical results of OV HV BPL networks are compared against the 
respective ones of OV and UN distribution networks revealing significant 
similarities and differences. Finally, the impact of considering minimum 
or maximum capacity value instead of the average one during the 
definition procedure is investigated as well as the behavior of  
the total simulation time of class mapping. 
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1. Introduction 
 

 As the BPL channel modeling is concerned for the distribution and transmission 

Broadband over Power Lines (BPL) networks, BPL channel models have typically 

followed either a bottom-up approach or a top-down approach or appropriate synergies 

of the aforementioned approaches until now [3]-[25]. Recently, statistical channel 

models have been proposed for BPL networks [26]-[33]. Among them,  

statistical hybrid models (SHMs) are based on the formality and validity of the 

deterministic hybrid model, which interconnects the bottom-up and top-down approach 

and has extensively been validated in transmission and distribution BPL networks  

[5]-[10], [13], [15], [16], [20], [34], while SHMs results are considered as the filtered 

deterministic hybrid model results through a set of proper channel attenuation statistical 

distributions (CASDs). Initial SHM (iSHM), which has been proposed in [28], [29], 

applies well-known CASDs of the communications research fields, such as Gaussian, 
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Lognormal, Wald, Weibull and Gumbel CASDs [35], while modified SHM (mSHM), 

which has been proposed in [30], exploits the Empirical CASD. As already been 

mentioned in [28]-[30], CASD parameters, which are CASD maximum likelihood 

estimators (MLEs) and CASD cumulative density functions (CDFs) for iSHM and 

mSHM, respectively, can characterize each real distribution BPL topology while virtual 

distribution BPL topologies can be defined by appropriately adjusting the 

aforementioned CASD parameters [1], [2]. The significance of the combined operation 

of SHMs with the definition procedure of the virtual indicative distribution BPL 

topologies, which has been presented in [28], [29], mitigates the underrepresentation of 

the distribution BPL topology classes during the BPL statistical channel modelling and 

the graphical representation of the distribution BPL topology classes and subclasses in 

terms of their average capacity through the proposed class maps. In this paper, all the 

recent findings concerning iSHM, mSHM, CASDs, CASD parameters,  

definition procedure and class maps are first applied to OV HV BPL topologies in this 

paper. The results for the transmission BPL networks are compared against the ones of 

distribution BPL networks. Interesting similarities and differences can be unveiled 

between the distribution and transmission BPL networks since the different BPL signal 

transmission characteristics can influence in different ways the behavior of CASDs and, 

thus, of iSHM and mSHM. Also, an interesting contribution to the definition procedure 

is the impact examination of applying maximum and minimum capacity value of the 

distribution BPL topology subclasses instead of the average one. Finally, the theoretical 

approach of the total simulation time of iSHM and mSHM class mapping is here 

graphically investigated in terms of the time complexity when different number of 

spacings, that is a critical factor of class mapping for the accuracy of the x- and y-axis, 

are applied during the iSHM and mSHM class mapping.  

The rest of this paper is organized as follows: In Section II, the OV HV MTL 

configuration with the set of indicative OV HV BPL topologies of the main topology 

subclasses are presented. In Section III, the numerical results concerning the application 

of iSHM and mSHM are demonstrated as well as the respective CASD parameter 

analysis, definition procedure and class maps. Also, a comparative analysis is given 

between the distribution and transmission BPL topologies. Section IV concludes this 

paper. 

 

 

2. OV HV MTL Configurations and Respective BPL Topologies 
  

Similarly to [1], a small briefing concerning the adopted OV HV MTL 

configuration is given while the topological characteristics of the indicative OV HV BPL 

topologies of the main subclasses are reported.  

 

2.1 OV HV MTL Configurations 

 In Fig. 1, the typical OV HV MTL configuration that is used in the present work 

is illustrated. The MTL configuration of this paper is a typical OV 400kV double-circuit 

configuration with phase lines of radius OVHV

p
r  that hang at typical heights OVHV

p
h  above 

ground –i.e., conductors 1, 2, 3, 4, 5, and 6–. These six phase conductors are divided into 

three bundles. Each bundle is spaced by OVHV

p1
  while the phase conductors of each bundle 
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are connected by non-conducting spacers and are separated by OVHV

p2
 . Apart from the 

phase conductors, two parallel neutral conductors hang at heights OVHV

n
h  –i.e, conductors 7 

and 8–. Neutral conductors are of radius OVHV

n
r  and are spaced each other by OVHV

n
 .  

 

 
Fig. 1.  Typical OV HV MTL configuration [9]. 

 

 

All phase and neutral conductors are Aluminium-conductor steel-reinforced (ACSR)  

[4], [9], [36]-[39]. The exact dimensions concerning the radii, spacings and heights are 

given in [9]. 

 Similarly to distribution BPL networks, the ground is considered imperfect and as 

the reference conductor. A realistic scenario, which is adopted in this paper, holds that 

the conductivity of the ground is assumed 
g

 =5mS/m while its relative permittivity  

rg
 =13 [4]-[6], [9], [13], [40]-[44].  

 

2.2 OV HV BPL Topologies and Respective Topology Subclasses and Classes 

 Transmission BPL topologies adopt the network architecture of distribution BPL 

topologies. Actually, transmission BPL networks are divided into cascaded BPL 

topologies of typical lengths of 25km. Similarly to distribution BPL topologies,  

each transmission BPL topology is bounded by its transmitting and receiving end while 
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different number of branches , distribution cable lengths  

and branch lengths  are encountered between the 

transmitting and receiving end [5]-[10], [34]. 

 
Fig. 2.  Typical OV HV BPL topology with N branches [1]. 

 

As the BPL signal transmission across the transmission BPL topologies is 

concerned, the following five indicative OV HV BPL topologies of the main subclasses 

of the respective transmission BPL topology classes are examined, namely [4], [9], [45]: 

(i) A typical OV HV BPL urban topology (simply denoted as urban case A);  

(ii) An aggravated OV HV BPL urban topology (simply denoted as urban case B);  

(iii) A typical suburban OV HV BPL topology (simply denoted as suburban case);  

(iv) A typical OV HV BPL rural topology (simply denoted as rural case); and  

(v) The “LOS” transmission along the same end-to-end distance L=L1+…+LK+1=25km. 

This topology corresponds to Line of Sight transmission of wireless channels (simply 

denoted as “LOS” case). The topological characteristics of the aforementioned  

five indicative OV HV BPL topologies of the main subclasses are reported in Table 1. 
 

Table 1. Indicative OV HV BPL Topologies of the Main Subclasses and Respective BPL Topology Classes 

OV HV BPL 

Topology Class 

BPL 

Topology 

Number 

(and BPL 

Topology 

Subclass 

Number) 

(l) 

BPL Topology 

Name 

(and BPL 

Topology Subclass 

Name) 

Number 

of 

Branches 

Length of Distribution 

Lines 

Length of Branching Lines 

Typical OV HV 

BPL urban 

topology class 

OV HV 1 Urban case A  

(main subclass) 

3 L1=1,150m, 

L2=12,125m, 

L3=8,425m, L4=3,300m 

Lb1=27,600m, Lb2=17,200m, 

Lb3=33,100m 

Aggravated OV 

HV BPL urban 

topology class 

OV HV 2 Urban case B 

(main subclass) 

4 L1=125m, L2=3,950m, 

L3=3,275m, 

L4=13,875m, L5=3,775m 

Lb1=19,000m, Lb2=22,700m, 

Lb3=17,100m, Lb4=18,000m 

OV HV BPL 

suburban topology 

class 

OV HV 3 Suburban case 

(main subclass) 

2 L1=9,025m, 

L2=12,750m, L3=3,225m   

Lb1=46,800m, Lb2=13,400m 

OV HV BPL rural 

topology class 

OV HV 4 Rural case  

(main subclass) 

1 L1=3,750m, L2=21,250m Lb1=21,100m 

OV HV BPL 

“LOS” topology 

class 

OV HV 5 “LOS” case  

(main subclass) 

0 L1=25,000m - 
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3. Numerical Results and Discussion 
 

 In this Section, numerical results concerning the statistical channel attenuation 

modeling of transmission BPL networks are first presented. First, CASD parameters of 

iSHM and mSHM are computed for the indicative OV HV BPL topologies of the main 

subclasses of Table 1. Second, the maximum, average and minimum of OV HV BPL 

topology main subclass capacities for the CASDs of iSHM and mSHM are presented 

while the percentage change and the average absolute percentage change for the 

indicative OV HV BPL topologies of the main subclasses of Table 1 are reported.  

Third, since CASD parameters of iSHM and mSHM are well defined, the definition 

procedure of iSHM and mSHM is presented by focusing on the class mapping through 

two scenarios, namely: (i) iSHM definition procedure for OV HV BPL topologies; and 

(ii) mSHM definition procedure for OV HV BPL topologies. Fourth, observations 

regarding the simulation time of the aforementioned two scenarios are given.  

Note that the operation settings that are required for the fine operation of the statistical 

modeling in OV HV BPL networks are the same with the ones of OV MV BPL 

topologies that are reported in Secs.2.1-2.4 of [2] for the deterministic hybrid model, 

iSHM, mSHM and definition procedure, respectively. 

 

 

3.1 CASD MLEs of iSHM and mSHM of OV HV BPL Classes for the  
Default Operation Settings 

The Business Process Modeling Notation (BPMN) diagrams of iSHM and 

mSHM, that describe the operation flowcharts of iSHM and mSHM, are given in  

Figs. 1(a) and 1(b) of [30], respectively. By comparing these flowcharts,  

the main difference between iSHM and mSHM is concentrated on the definition of the 

respective CASD parameters. As already been presented, the CASD parameters of iSHM 

are the CASD MLEs of Table 2 while the CASD parameter of mSHM is the Empirical 

CDF for given indicative BPL topology. 

 As the default operation settings are assumed, in Table 2, MLEs of the Gaussian, 

Lognormal, Wald, Weibull and Gumbel CASDs of iSHM are reported for the indicative 

OV HV BPL topologies of main subclasses of Table 1. With reference to Table 2,  

in Fig. 3(a), CDFs of the five channel attenuation statistical distributions (say, Gaussian, 

Lognormal, Wald, Weibull and Gumbel distributions) of the iSHM and of the Empirical 

CASD of the mSHM are plotted versus the coupling scheme channel attenuation 

difference for the case of the OV HV BPL urban case A. In Figs. 3(b)-(d), same plots 

with Fig. 3(a) are given bur for the case of the OV HV BPL urban case B, suburban case 

and rural case, respectively.  
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Table 2 

iSHM CASD MLEs of Indicative OV HV BPL Topologies for the Default Operation Settings 

Topology 

Name 

BPL 

Topology 

Class 

Description 

iSHM 

Gaussian MLEs Lognormal MLEs Wald MLEs Weibull MLEs Gumbel MLEs 

          

Urban case 

A 

Typical OV 

HV BPL 

urban 

topology class 

10.52 1.82 2.24 1.69 10.52 0 11.04 4.49 11.44 2.09 

Urban case 

B 

Aggravated 

OV HV BPL 

urban 

topology class 

14.27 2.88 2.63 0.35 14.27 0.026×103 15.38 4.48 15.81 4.28 

Suburban 

case 

OV HV BPL 

suburban 

topology class 

6.96 1.68 1.91 0.24 6.96 0.11×103 7.62 4.37 7.83 1.81 

Rural case OV HV BPL 

rural topology 

class 

3.56 1.16 1.13 1.63 3.56 0 3.88 2.60 4.25 2.19 

“LOS” case OV HV BPL 

“LOS” 

transmission 

class 

1×10-11 0 -25.33 0 0 2.62×103 0 ∞ 0 0 
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Fig. 3.  CDFs of the indicative OV HV BPL topologies of Table 1 versus coupling scheme channel 

attenuation difference in the 3-30MHz frequency band when WtG1 coupling scheme is deployed for 

CASDs of iSHM and mSHM. (a) Urban case A. (b) Urban case B. (c) Suburban case. (d) Rural case. 

 

 

By comparing Table 2 with Table 1 of [29] and by observing Figs. 3(a)-(d), 

several comparative observations concerning CASD MLEs of iSHM and  

the CDF behavior of the CASDs of iSHM and mSHM can be presented, namely: 
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• Similarly to distribution BPL networks, as the complexity of the OV HV BPL 

topologies increase so do , , ,  and . 

Conversely to distribution BPL topologies, , ,  and 

 of OV HV BPL topologies receive significantly lower values than the 

respective ones of OV MV BPL topologies thus indicating that the variance of 

coupling scheme channel attenuation differences of OV HV BPL topologies 

remain lower than the respective ones of OV MV BPL topologies.  

• , , ,  and  of OV HV BPL topologies 

receive values that are comparable to the respective ones of OV MV BPL 

topologies. This event indicates that the capacities of the main subclasses of  

OV HV BPL networks are expected to have: (i) comparable values to the 

capacities of the main subclasses of OV MV BPL networks; and  

(ii) comparable iSHM class maps to ones of OV MV BPL networks.  

Anyway, the capacities of the main subclasses determine the ones of the 

respective BPL topology classes. 

• In contrast with Figs. 3(a), 3(b) and 3(d), CASD CDFs of Fig. 3(b) start to 

increase from a value different than zero. Actually, coupling scheme channel 

attenuation differences of OV HV BPL urban case A, urban case B and rural case 

present rare deep spectral notches that reach down to zero and, thus,  

their CASD CDFs start from zero. Anyway, this type of spectral notches is not 

present in OV HV BPL suburban case and for that reason its CASD CDFs start 

from approximately 3dB coupling scheme channel attenuation difference. Note 

that the coupling scheme channel attenuation differences of OV HV BPL 

topologies are restricted to range above zero since OV HV “LOS” case is 

characterized by the minimum coupling scheme channel attenuation due to the 

lack of branches across the transmission path. 

• When the CASD CDF starts to increase at zero coupling scheme channel 

attenuation difference, certain CASD CDFs fail to follow the Empirical CASD 

CDF. In the cases of Figs. 3(a), 3(b) and 3(d), Wald and Weibull CASD CDFs 

present significant differences from the Empirical CDF since Wald CASD CDF 

expects to early handle the majority of data while Weibull CASD CDF expects to 

later handle the majority of data with respect to the aforementioned figures.  

Due to the previous observation, Wald CASD CDF early reaches up to 1 but 

Weibull CASD CDF later reaches up to 1. It is expected that these CDF 

deviations will also entail capacity deviations in OV HV BPL topologies and 

subclasses. In Fig. 3(c), CASD CDFs present similar behavior as the lack of zero 

coupling scheme channel attenuation difference forces CASD CDFs to almost 

coincide.  

• By comparing Figs. 3(a)-(d) with respective Figs. 4(a)-(d) of [30],  

there are no coupling scheme channel attenuation difference horizontal steps in 

Empirical CDFs during the study of OV HV BPL topologies. In contrast with OV 

MV BPL topologies, there is no pattern regarding the depth, the extent and the 

location of spectral notches of OV HV BPL topologies and this has as a result  

a variety of values regarding the coupling scheme channel attenuation differences 

that further implies smooth Empirical CDFs with no horizontal steps.  
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In accordance with [2], [29], [30], it has been proven that the capacity 

performance success does not solely depend on the realism of random coupling scheme 

channel attenuation differences of the distribution BPL topology members, which are 

produced by the random number generator module of Phase D of iSHM and mSHM  

–see Figs. (2) and 2(b) of [1]–. In the following subsections, the capacity estimation 

performance, which is assessed by applying the metrics of capacity, capacity percentage 

change and average absolute capacity percentage change, is going to be investigated for 

the different CASDs of iSHM and mSHM. 

 

 

3.2 CASD Capacities and Capacity Estimation Performance Metrics of  
OV HV BPL Main Subclasses for the Default Operation Settings 

 As the default operation settings are assumed, CASD parameters of iSHM and 

mSHM are reported in Table 2 and in Figs. 3(a)-(d), respectively. With respect to Table 1 

and 2, each OV HV BPL topology main subclass is enriched with 100 topology members 

per each CASD through the random number generator of Phase D as described in [28]. 

Similarly to [29], [30], each OV HV BPL topology subclass can be described by the 

maximum, average and minimum capacity of its topology members while the 

corresponding capacity estimation performance metrics, say, capacity percentage change 

and average absolute capacity percentage change, can be computed. In accordance with 

[2], [29], although the graphical analysis can be very descriptive regarding the capacity 

estimation performance of CASDs of iSHM and mSHM, the capacity estimation 

performance of CASDs can also be examined by simply applying capacity estimation 

performance metrics of percentage change and average absolute percentage change. 

Therefore, the percentage change and the average absolute percentage change of each 

CASD of iSHM and mSHM are given in Table 3 per each indicative OV HV BPL 

topology main subclasses. Also, the capacity of the indicative OV HV BPL topologies of 

main subclasses of Table 1 is also reported in the first column of the Table. 

 

 
Table 3 

Percentage Change between the Average Capacity of the OV HV BPL Topology Class and the Capacity of 

the Indicative Topology of the Respective Class for the Five Examined CASDs of iSHM and the Empirical 

CASD of mSHM when the Default Operation Settings are assumed (say, WtG1/StP1 coupling scheme and 

FCC Part 15) 

(grey background: best results, black background: unsuccessful capacity estimation) 

Indicative 

OV HV BPL 

Topology 

Name 

(OV HV 

Capacity in 

Mbps) 

BPL 

Topology 

Class 

Description 

Percentage Change  

(%) 

iSHM mSHM 

 

Gaussian  

 

Lognormal 

 

Wald 

 

Weibull 

 

Gumbel 

 

Empirical 

Urban case A 

(187) 

Typical BPL 

urban class 

-0.0088 -15.44 50.57 2.13 1.38 0.15 

Urban case B 

(153) 

Aggravated 

BPL urban  

0.0031 -1.73 5.52 1.46 5.01 0.38 

Suburban case 

(218) 

BPL suburban 

class 

0.0025 -0.015 -0.0056 0.067 0.64 0.074 



 

Peer-Reviewed Article   Trends in Renewable Energy, 5 

 

 

 

Tr Ren Energy, 2019, Vol.5, No.3, 282-306. doi: 10.17737/tre.2019.5.3.00101 292 

 

 

Rural case 

(249) 

BPL rural 

class 

-0.0045 -13.41 12.86 0.42 0.98 0.078 

Average Absolute Percentage 

Change  

(%) 
0.012 7.65 17.24 1.02 2.00 

 

 

 

0.17 

 

By comparing Table 3 with Table 3 of [29] and Table 3 of [30],  

significant similarities and differences that can be also explained by the study of  

Figs. 1(a)-(d) of [29] and Figs. 6(a)-(d) of [30] can be pointed out for the behavior of 

CASD capacity performance in OV HV BPL networks, namely: 

• CASD capacity estimation performance for OV HV BPL subclasses presents 

significant similarities with the one of OV MV BPL topologies but also several 

differences. Although the typical transmission path of OV HV BPL topologies is 

typically equal to 25km and is significantly greater than the 1km typical 

transmission path of OV MV BPL topologies, the capacities of the indicative  

OV HV BPL topologies are slightly smaller than the respective capacities of the 

indicative OV MV BPL topologies. Actually, OV HV BPL topologies are 

characterized by a stronger “LOS” attenuation mechanism than the one of  

OV MV BPL topologies while the multipath aggravation in OV HV BPL 

topologies remains approximately the same with the one of OV MV BPL 

topologies [10].  

• As already been mentioned in [29] for the distribution BPL subclasses,  

from the graphical perspective, a successful CASD capacity estimation 

performance should satisfy the following criteria: (i) capacity range of each 

transmission BPL topology subclass comprises the capacity of its respective 

indicative transmission BPL topology; and (ii) the average capacity value of the 

examined transmission BPL topology subclass remains very close to the 

respective one of the indicative transmission BPL topology. Without significant 

differences, the average capacity of each OV HV BPL topology subclass can be 

assumed to be equal to the capacity of its representative OV HV BPL topology. 

From the capacity estimation metric perspective, the lower the percentage change 

and average absolute percentage change in absolute values remain the better the 

capacity estimation performance is.  

• Similarly to OV MV BPL topology subclasses, Weibull and Empirical CASDs 

succeed in satisfying either the aforementioned criteria for a successful capacity 

graphical estimation or the 3% threshold of percentage change and average 

absolute percentage change in all the OV HV BPL topology subclasses examined. 

But, apart from Weibull and Empirical CASDs, Gaussian CASD also succeeds in 

successfully estimating capacity of OV HV BPL subclasses with excellent 

performance. As the other CASDs are concerned, Lognormal, Wald and Gumbel 

fail in two, three and one OV HV BPL topology subclasses, respectively.  

More analytically, Lognormal CASD presents a mixed capacity estimation 

behavior since it successfully estimates the capacity of OV HV BPL urban case B 

and suburban case subclasses. In accordance with [29], [30], Wald CASD is more 

suitable for estimating capacities of BPL subclasses that are characterized by 

intense “LOS” attenuation and, for that reason, Wald CASD presents the best 
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results when UN MV BPL topology subclasses are examined.  

In OV HV BPL subclasses, Wald CASD only succeeds in estimating the capacity 

of OV HV BPL suburban case subclass. Conversely, Gumbel CASD can be 

considered as a general purpose CASD which prefers OV HV BPL subclasses of 

low multipath aggravation.  

• By recognizing the similarities and the differences of CASD performance,  

it is evident that OV HV BPL topologies can be treated as a middle condition 

between OV MV and UN MV BPL topologies. More specifically,  

since OV HV BPL topologies suffer from both high “LOS” attenuation due to the 

high 25km “LOS” transmission path and intense multipath aggravation,  

Gaussian CASD behaves as the suitable CASD for these complicated 

communications environments. In fact, Gaussian CASD is the middle solution 

between the Weibull and Wald CASDs of OV MV and UN MV BPL topologies, 

respectively. With reference to Table 3, the average absolute percentage change 

of Gaussian, Weibull and Wald CASD is equal to 0.012% (best),  

1.02% (successful capacity estimation) and 17.24% (unsuccessful capacity 

estimation), respectively. Here, it should be noted that Empirical CASD of 

mSHM  

 

 

3.3 iSHM and mSHM Class Mapping for OV HV BPL Classes for the  
Default Operation Settings 

 The definition procedures of iSHM and mSHM have been presented in [1] for the 

distribution BPL classes. For the case of OV HV BPL classes, two scenarios regarding 

the class mapping are here presented, namely: (i) iSHM definition procedure for OV HV 

BPL topologies; and (ii) mSHM definition procedure for OV HV BPL topologies.  

As already been mentioned in Sec.3.2, Gaussian and Empirical CASDs are 

considered to execute successful capacity estimations because the average capacity 

values of the examined transmission BPL topology subclasses remain very close to the 

capacities of the respective indicative transmission BPL topologies. Apart from the 

average capacity value of the examined transmission BPL topology subclass,  

the minimum and maximum capacities of each transmission BPL topology subclass 

surround the capacity of its respective indicative transmission BPL topology while all 

three capacity values lie very close among them for the CASDs that execute successful 

capacity estimations in accordance with Figs. 1(a)-(d) of [29] and Figs. 6(a)-(d) of [30]. 

In this paper, the shift impact on the OV HV BPL topology class borderlines of iSHM 

and mSHM class maps is going to be examined when the minimum and the maximum 

capacities of each transmission BPL topology subclass are assumed to be applied instead 

of the average capacity of each subclass. The latter argument implies that  

the steps FL1.08 and FL2.08 of Figs. 3(a) and 3(b) of [1] that deal with the definition 

procedure of iSHM and mSHM, respectively, are going to be modified; instead of the 

computation of the average capacity of each virtual transmission BPL topology subclass, 

the minimum and maximum capacities are going to be considered. 

As the iSHM class map scenario is concerned, with reference to Table 3, 

Gaussian CASD presents the best capacity estimation metric results among the other 

CASDs in OV HV BPL topologies. For the five indicative OV HV BPL topologies of the 



 

Peer-Reviewed Article   Trends in Renewable Energy, 5 

 

 

 

Tr Ren Energy, 2019, Vol.5, No.3, 282-306. doi: 10.17737/tre.2019.5.3.00101 294 

 

 

main subclasses of Table 1, the respective  and , which are the 

Gaussian CASD MLEs, are reported in Table 2 while the respective capacities are given 

in the first column of Table 3. Based on the Gaussian CASD MLEs and capacities of the 

five indicative OV HV BPL topologies of the main subclasses, the spacings for the 

horizontal and vertical axis are equal to  and , 

respectively, while the capacity borders between the adjacent distribution BPL topology 

classes  are equal to 169Mbps, 202Mbps, 233Mbps and 281Mbps, 

respectively.  

The iSHM class map of OV HV BPL topologies is plotted in Fig. 4(a) with 

respect to  and  for the default operation settings when the minimum 

capacity of each OV HV BPL topology subclass of step FL1.08 of Fig.3(a) of [1] is 

considered instead of the average capacity. In the same class map, the Gaussian CASD 

MLEs of the five indicative OV HV BPL topologies of the main subclasses of Table 1 

with the corresponding capacities are also shown. In Figs. 4(b) and 4(c), same plots with 

Fig. 4(a) are demonstrated but for the case of average and maximum capacities, 

respectively. 
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Fig. 4.  iSHM class map of the OV HV BPL topologies in the 3-30MHz frequency band when  

WtG1 coupling scheme is deployed and FCC Part 15 is applied. (a) Minimum capacities of OV HV BPL 

topology subclasses. (b) Average capacities of OV HV BPL topology subclasses.  

(c) Maximum capacities of OV HV BPL topology subclasses. 

 

As the mSHM class map scenario is concerned, in accordance with [1], [2],  

all the four indicative OV HV BPL topologies of the main subclasses of Table 1,  

except for the OV HV “LOS” case, are examined separately during the preparation of 

mSHM class maps. Since the behavior of different indicative OV HV BPL topologies of 

the main subclasses has been examined in [2], only one of the indicative OV HV BPL 

topologies of the main subclasses is going to be examined in this paper, say, the OV HV 

BPL urban case A. As the horizontal shifts, vertical shifts, horizontal shift spacings and 

vertical shift spacings of the mSHM class maps of OV HV BPL topologies are 

considered, these are assumed to receive the same values with the respective ones of the 

mSHM class maps of OV MV and UN MV BPL topologies, which are reported in [2]; 

say, the maximum and minimum horizontal shift is assumed to be equal to 30dB and  

-30dB, respectively, while the maximum and minimum vertical shift is assumed to be 

equal to 1 and 0, respectively. The capacity borders between the adjacent OV HV BPL 

topology classes  are equal to the respective capacity borders during 

the preparation of the iSHM class maps.  

The mSHM class map of OV HV BPL topologies is plotted in Fig. 5(a) with 

respect to the horizontal shift  and vertical shift  for the default operation 

settings when the minimum capacity of each OV HV BPL topology subclass of  

step FL2.08 of Fig.3(b) of [1] is assumed. In the same 2D contour plot, the capacity 

borders between the adjacent transmission BPL topology classes and the capacity of the 

reference indicative OV HV BPL urban case A of Table 1 are also shown. In Figs. 5(b) 

and 5(c), same plots with Fig. 5(a) are demonstrated but for the case of average and 

maximum capacities, respectively. 
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Fig. 5.  mSHM class map of the OV HV BPL topologies in the 3-30MHz frequency band when  

StP1 coupling scheme is deployed and FCC Part 15 is applied for reference indicative OV HV BPL urban 

case A. (a) Minimum capacities of OV HV BPL topology subclasses. (b) Average capacities of OV HV 

BPL topology subclasses. (c) Maximum capacities of OV HV BPL topology subclasses.  

 

 

By observing Figs. 4(a)-(c) and Figs. 5(a)-(c), several interesting conclusions can 

be reported concerning the iSHM and mSHM class maps, namely: 

• By comparing iSHM class maps of OV HV BPL topologies against iSHM class 

maps of OV MV and UN MV BPL topologies, which are presented in [2],  

iSHM class maps of OV HV BPL topologies present more similarities to the 

iSHM class maps of UN MV BPL topologies due to the existence of five almost 

rectangle capacity areas between the computed borders; say, the slope of the 

capacity area borderlines relative to the horizontal axis is almost equal to  

90 degrees. As the mSHM class maps of OV HV BPL topologies are concerned, 

these are similar in format to the mSHM class maps of OV MV and UN MV BPL 

topologies, which are presented in [2]. Anyway, the mSHM class maps are 

characterized by a large left capacity area of respective “LOS” case capacity value 

while a large capacity degrading area at the bottom right side of the class maps 

occurs.  

• Similarly to  and  of OV MV and UN MV BPL topology 

subclasses, respectively, in iSHM class maps of [2], as the multipath environment 

of the examined OV HV BPL topologies becomes more intense with frequent and 

deep spectral notches, this has as a result the value increase of  and 

. Hence, OV HV BPL urban topologies tend to be located at the right 

areas of the class map while the OV HV BPL rural topologies tend to be located 

at the left areas. 
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• By comparing Figs. 4(a)-(c) of iSHM class maps, there are differences concerning 

the slope of the capacity area borderlines when the minimum, the average and  

the maximum capacity of each transmission BPL topology subclass are 

considered, respectively. Actually, when the minimum capacity of the OV HV 

BPL topology subclasses is assumed, the slope of the capacity area borderlines 

relative to the horizontal axis becomes more than 90 degrees whereas the slope of 

the capacity area borderlines relative to the horizontal axis becomes less than  

90 degrees when the maximum capacity of the OV HV BPL topology subclasses 

is considered. This is due to the fact that  of eq. (A3) of [28] can be treated 

as the variance of the normal distribution that describes the deviation of a random 

coupling scheme channel attenuation difference from its mean while  of 

eq.(A2) of [28] describes the mean. Hence, as  increases for given 

, so decreases the minimum capacity of the OV HV BPL topology 

subclasses that anyway depends on the coupling scheme channel attenuation thus 

having as effect the shift of the capacity areas to the left. The opposite effect holds 

for the study of the maximum capacity of the OV HV BPL topology subclass, 

where the increase of  triggers the increase of the maximum capacity of 

the OV HV BPL topology subclasses. 

• Similarly to the iSHM class map of Fig. 4(b), mSHM class maps of Fig. 5(b)  

can support a plethora of virtual OV HV BPL topology subclasses by simply 

identifying the five capacity areas and by setting the corresponding pair of 

horizontal and vertical shifts of the coupling scheme channel attenuation of the 

reference OV HV BPL topology; say OV HV BPL urban case A.  

• By comparing Figs. 5(a)-(c), it is obvious that the selection among the minimum, 

average and maximum capacity of each OV HV BPL topology subclass has very 

small impact on the location of capacity area borderlines of mSHM class maps 

(i.e., the shift of the capacity area borderlines is almost zero) and this is due to the 

definition procedure of mSHM, which has been presented in [1]. By comparing 

steps FL1.06 of iSHM of Fig.3(a) of [1] and FL2.06 of mSHM of Fig.3(b) of [1], 

the modification of CASD MLEs of iSHM and the creation of CASD MLE pairs 

have as a result the definition of new virtual CDFs that are characterized by 

different CDF characteristics than the indicative CDF ones.  

Conversely, the definition of horizontal and vertical shifts of mSHM and  

the creation of Empirical CDF shift pair have as a result the definition of new 

virtual CDFs that are related in format to the representative Empirical CDF.  

Note that the successful capacity estimation performance of Empirical CASD 

implies that the average capacity value of all the examined OV HV BPL topology 

subclasses remain close to the respective minimum and maximum capacity 

values, as already been mentioned in Sec.3.2, and the latter observation combined 

with the simple linear modifications of the representative Empirical CDF through 

the horizontal and vertical shifts is reflected on the capacity range of all the 

examined OV HV BPL topology subclasses and, thus, on the small impact on the 

location of capacity area borderlines of mSHM class maps. 

With reference to Table 3, although the capacity performance metrics of Gaussian 

CASD of iSHM and Empirical CASD of mSHM reveal the capacity estimation success 

of the aforementioned CASDs, the metrics of Gaussian CASD are better than the ones of 
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Empirical CASD. However, a possible trade-off between the capacity estimation 

performance and the simulation time, which has been proposed in [2], should be 

examined in this paper for the OV HV BPL topologies; say, the simulation time of 

Gaussian CASD capacity estimation performance is examined against the respective one 

of Empirical CASD in Sec.3.4. 

 

 

3.4 iSHM and mSHM Class Map Simulation Times for OV HV BPL Classes for 
the Default Operation Settings 

 The trade-off between the capacity performance metrics and the simulation time 

of class mapping, which has been proposed in [2], for given CASD is investigated for OV 

HV BPL classes in this Section. Already been identified in Table 3,  

different CASDs achieve various capacity estimation performances with respect to the 

percentage change and the average absolute percentage change. Despite the capacity 

estimation performance, a reliable CASD should, at the same time, be a successful one 

and also be characterized by short simulation times of class mapping so that it can 

provide fast and reliable results thus having practical interest. In [30], it has been shown 

that Wald CASD of iSHM performs the best capacity estimation performance among all 

CASDs of iSHM and mSHM but Empirical CASD of mSHM that also performs an 

excellent capacity estimation performance has almost 30 times shorter simulation time 

than the Wald CASD. As the OV HV BPL topologies are concerned, in Fig. 6,  

the simulation time of class mapping is plotted against the number of spacings for the 

Gaussian CASD of iSHM and Empirical CASD of mSHM when OV HV BPL urban case 

A is assumed.  

 

 

 
Fig. 6.  Class map simulation time of the OV HV BPL urban case A in the 3-30MHz frequency band for 

WtG1 coupling scheme and FCC Part 15 when different CASDs are applied and different number of 

spacings is used.  
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 Note that the number of spacings (i.e., no_1, no_2, no_3 and no_4) of the default 

operation settings is assumed to be equal to 10 either for the iSHM class maps or the 

mSHM class maps. From Fig. 6, the simulation time of the Gaussian CASD and 

Empirical CASD is equal to 164.9s and 756.3s, respectively, when the default operation 

settings are assumed. If the aforementioned simulation times are compared against the 

ones of Table 1 of [2] where the default operation settings have also been adopted,  

it is clear that the Empirical CASD simulation time of OV HV BPL class mapping is 

almost equal to the simulation time of the Empirical CASD OV MV and UN MV BPL 

class mapping since the larger part of the simulation time is consumed during the SHM 

phases and steps of the definition procedure rather than the deterministic hybrid model. 

As the Gaussian CASD is examined, its simulation time of OV HV BPL class mapping is 

significantly low and remains the lowest among the simulation times of Table 1 of [2] 

when the default operation settings are assumed. This indicates that the Gaussian CASD 

remains a reliable CASD for the preparation of the OV HV BPL class maps since it 

succeeds in providing the best capacity estimation results at the best simulation time.  

 But the main concern of the preparation of Fig. 6 is to explain the impact of the 

number of spacings on the simulation time of class mapping. Briefly presented in [2],  

the class mapping complexity is quadratic and this fact is verified in Fig. 6 either for 

Empirical CASD or the Gaussian CASD; e.g., the expected simulation time for  

20 segments is almost four times greater than the expected simulation time for  

10 segments. Small differences are due to the simulation time required for the operation 

of the other SHM phases, steps of the definition procedure rather and the deterministic 

hybrid model. Regardless of the number of spacings, Gaussian CASD presents 

significantly lower simulation times in comparison with the one of the Empirical CASD. 

Hence, there is no trade-off relation between the simulation time and the capacity 

estimation performance in OV HV BPL topologies hence Gaussian CASD can be treated 

as the most reliable CASD among the examined CASDs in iSHM and mSHM for the  

OV HV BPL networks.  

 

 

4. Conclusions 
 

 In this paper, the numerical results concerning the application of SHM  

(i.e, both iSHM and mSHM) to OV HV BPL topologies have first been presented. 

Initially, the CASD parameters of iSHM and mSHM have been computed for the 

indicative OV HV BPL topologies of the main subclasses. Then, with respect to the 

percentage change and the average absolute percentage change, Gaussian CASD of 

iSHM and Empirical CASD of mSHM have been reported. Gaussian CASD can be 

considered as the middle solution between the Weibull CASD and Wald CASD that are 

anyway considered as the most successful iSHM CASD for the OV MV and UN MV 

BPL topologies, respectively, and this is due to the fact that the transmission 

characteristics of OV HV BPL topologies can be treated as the mix of transmission 

characteristics of OV MV and UN MV BPL topologies. Moreover, on the basis of the 

Gaussian CASD and the Empirical CASD, the definition procedure, which has already 

been reported for distribution BPL topologies, has first applied to transmission BPL 
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topologies. The iSHM and mSHM class maps of OV HV BPL topologies have first been 

presented while the differences between distribution and transmission BPL topologies 

have been highlighted. In this paper, the impact of considering the maximum, the 

average and the minimum values of BPL topology subclasses instead of only the average 

value has been highlighted and explained. Furthermore, the trade-off between the 

simulation time and the capacity estimation performance has been checked if it is valid 

in OV HV BPL topologies. Already been identified in UN MV BPL topologies,  

the aforementioned trade-off is not valid in OV HV BPL topologies where Gaussian 

CASD can be considered the most reliable CASD; say, Gaussian CASD achieves better 

capacity performance metrics and simulation time than the respective ones of Empirical 

CASD. Finally, the impact of the number of spacings on the simulation time has been 

demonstrated validating the quadratic time complexity, which has theoretically explained 

in [2]. After the application of SHM to transmission BPL networks,  

new virtual transmission BPL topologies and topology subclasses can be defined that can 

help towards various smart grid simulation scenarios that involve power line 

communications technology. 
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In this paper, measured data of solar radiation was applied to develop 
forty-three (43) empirical models for estimation of monthly average 
diffuse solar radiation using clearness index, sunshine duration and a 
combination of them as predictors. The data covered a period of two 
years from May 2015 to April 2017 and was measured at Mehran 
University of Engineering and Technology, Hyderabad, Pakistan. 
Through a comprehensive statistical performance analysis, 43 
dimensional models developed were tested for constructing the most 
accurate regression model to predict the monthly mean daily diffuse 
solar radiation in Hyderabad, Pakistan. On the whole, the model 42 – a 
hybrid of sunshine duration and clearness index predictors of diffuse 
fraction outperformed the remaining models proposed in this study. The 
best model (model 42) was then compared with 5 models and 5 
measured data of diffuse solar radiation available in the literature and the 
NASA database by applying statistical indicators such as MBE, MPE, 
RMSE, RRMSE, R2 and GPI. Through the analysis, the hybrid of 
sunshine duration and clearness index predictors of diffuse fraction 
model (model 42) was selected as the most appropriate model. The 
study concluded that the proposed hybrid model can serve as a baseline 
for the design of photovoltaic systems and estimate the monthly mean 
daily diffuse solar radiation on the horizontal surface for Hyderabad, 
Pakistan and other locations with similar local climate conditions.  

 
Keywords: Diffuse solar radiation; Empirical models; Classification; Functional forms; Hyderabad; 

Pakistan 

 

 
1. Introduction  
  

 Since the beginning of the 19th century, the exploitation of conventional fuels is 

increasingly moving towards the development of industrialization and modern life style. 

It has resulted in various health hazards, environmental pollution, disruption of 

ecosystems such as crop and animal diversity, increased global warming and many more 

factors which drive the earth towards a dark future. Thus, the world needs a smart energy 

source that is unlimited in reserve and can be applied without major contributions to 

atmospheric pollution and greenhouse effect. 

 As reported by the literature [1], the earth has been already presenting numerous 

signs of global climate change as follows. NASA Goddard Institute for space studies 
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reported that the average temperature has climbed 0.8 degrees Celsius across the globe 

since 1880 and much of this in recent decades. The UN Intergovernmental Panel on 

Climate Change (IPCC) recorded that the last two decades of the 20th century have been 

the hottest in 400 years and possibly the warmest for several millennia [2]. The 

multinational Arctic Climate Impact Assessment reported that the Arctic is sensitive to 

atmospheric pollution and greenhouse effect. According to a report compiled between 

2000 and 2004, the average temperatures in Alaska, Western Canada, and Eastern Russia 

have twice the global average. According to the IPCC 2007 report, based on the work of 

about 2,500 scientists in more than 130 countries, humans have caused all or most of the 

current planetary warming often called anthropogenic climate change. Industrialization, 

deforestation, and pollution have greatly increased atmospheric concentration of water 

vapor, carbon dioxide, methane, nitrous oxide, and all greenhouse gases that help trap 

heat near the Earth's surface. In fact, some experts worry that the natural cycles in Earth's 

orbits can alter the planet's exposure to sunlight, which may explain the current trend. 

Earth has indeed experienced warming and cooling cycles roughly every hundred 

thousand years due to these orbital shifts, but such changes have occurred over the span 

of several centuries. Nowadays change has taken place over the past 100 years or less. 

It is therefore imperative for human beings to set a different course in its need for 

energy. For example, those involve less intrusive sources such as renewable energy 

sources, which do not harm the planet but still are inexhaustible. 

In order to correct these anomalies, researchers, scientists, governmental and non-

governmental organizations are striving tirelessly on renewable energy, which should be 

commercially viable, pollutant free, easy to access, and must be widespread in nature [3]. 

As a result of its minimal or zero impact on the environment and ecosystem which 

eventually poses no health hazards to man and animals, renewable energies such as solar 

energy, wind energy, hydro power, tidal energy and biofuels are more suitable compared 

to fossil fuel sources of energy, as these are generated from natural processes such as 

sunlight, wind, rain and numerous forms of biomass [4]. These smart energy sources are 

not only renewable but also have the ability to sustain ecology and the environment, as 

they are eco-friendly and do not contribute to global warming and production of 

greenhouse gases [3].   

 Solar energy among other renewable energy types has remained the most viable 

source, which has the capacity to sustain and maintain all activities and processes, 

support life of animals, heat the atmosphere and lands, generate wind, drive the water 

cycle, warm the ocean, generate fossil fuels, and support life of plants [3].   

 Solar energy is not only primarily derived from solar radiation reaching the earth's 

surface, but it remains important in many industrial and application areas, such as 

exciting electrons in a photovoltaic cell, solar heating, solar architecture, molten salt 

power plants and supplying energy to natural processes [3]. It also plays a major role in 

de-carbonizing the global economy and improving costs of greenhouse gas emitter [5]. 

Much more, solar radiation level is equally used to determine the type of photovoltaic 

technology (such as network-connected systems (on-grid), network-connected home 

systems, network-connected solar power plants, off-grid, hybrid systems and independent 

systems for economic purposes), concentrated solar power technology (like dish stirring, 

parabolic trough, linear Fresnel or central tower), and photovoltaic thermal (PVT, such as 

air-based PVT, water-based PVT, bifluid based PVT, PVT nanofluid based, PVT based 

phase change materials, PVT refrigerant based, PVT heat pipe based and PVT with heat 

pump) that should be installed at a particular site. It could also serve as a baseline for 
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estimating and understanding the diurnal fluctuations in multiple solar radiation 

parameters such as direct normal irradiance, diffuse horizontal irradiation, ground 

reflected solar radiation, evaporation and reference evapotranspiration. 

 In fact, despite the influence of the government, scientists, researchers and 

investors have explored solar energy as a type of renewable energy using the above-

mentioned various technologies, but fundamentally, the potential of solar energy has not 

been fully utilized [3]. For example, the energy emitted by the sun is so high that when 

only 0.1% of solar energy reaching the ground is converted into electricity with only 10% 

efficiency, the power output will be 17,300 GW, which is 7 of the global average 

instantaneous power consumption in 2012 [6-8]. 

 These are significant and potential solar radiation reaching the Earth's surface in 

the form of solar energy, measurement of solar radiation and its components such as 

diffuse solar radiation and direct normal irradiance is limited, because there are very few 

standard weather stations can measure. Routinely, the data for these parameters is not 

available in the site of interest. However, other meteorological and atmospheric variables 

such as ambient temperature, cloud cover, rainfall regimes, and relative humidity are 

often measured routinely in most weather stations across the globe, as a result of its direct 

application in agricultural sciences and meteorology. 

 Due to the cost implication, maintenance, expertise needed for ground and 

satellite-derived technique of measuring solar radiation data (especially in rural and 

developing countries), prediction of solar radiation over a particular location using 

mathematical models has been initiated by solar energy researchers. Mathematical 

modeling serves as an alternative technique of generating data of solar radiation and its 

components without instrumentation network that would otherwise be needed. 

Some researchers have stressed that accurate determination of diffuse solar 

radiation is important in design and performance analysis of solar energy projects, such 

as for designing and sizing photovoltaic sources as the future alternative energy [9-11]. 

For instant, Khorasanizadeh et al. [12] revealed that the impact of diffuse solar radiation 

to the annual solar energy is nearly 20% in Tabass, Iran. 

 It has been observed that in different locations across the globe, ground 

measurement of diffuse solar radiation is either scare or absent, whereas ground 

measurement of global solar radiation and weather parameters such as sunlight hours and 

precipitation are often available as a result of their traditional use in building and 

construction industries, agriculture, and meteorology. By applying mathematical 

correlations, diffuse solar radiation can be obtained as far as global solar radiation and 

other popularly measured meteorological parameters are available. For this reason, solar 

energy researchers across the globe have developed numerous empirical models in most 

metropolitan cities, because most meteorological and weather stations are often situated 

in these locations. From the mid-19th century, solar energy researchers have developed 

various empirical models for estimating diffuse solar radiation employing popularly 

measured variables. These variables include minimum and maximum temperature, hours 

of solar radiation and relative humidity [13-18]. Several researchers have equally 

developed regression models for estimating the monthly mean daily diffuse solar 

radiation employing the clearness index [4, 6, 9,13, 19-31] or applying sunshine hour 

fraction [28, 30, 32-36] or with combination. of them [18, 37-41]. Despotovic et al. [42] 

observed that the empirical models using both clearness index and sunshine duration 

offer better estimation of diffuse solar radiation in the main five climate zones according 

to Koppen-Geiger climate classification 
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In spite of the vast number of studies on empirical models for estimating solar 

radiation across the globe, there is no recorded study in Hyderabad, Pakistan. The main 

objective of this study was to estimate forty-three models employed for estimating diffuse 

solar radiation using sunshine duration, clearness index and both of the predictors, obtain 

the best performing model using statistical indicators (such as mean bias error (MBE), 

mean percentage error (MPE), root mean square error (RRMSE), coefficient of 

determination (R2) and global performance indicator (GPI)), and compare the selected 

best models with five models developed from the literature and five ground measured 

diffuse solar radiation in the literature together with satellite data obtained from NASA 

database for estimating diffuse solar radiation in Hyderabad, Pakistan. 

 
 
2. Materials and Methods 
 

2.1 Study Area 
 Hyderabad lying along the Indus River is the second largest city of Sindh 

province and the 8th largest city in Pakistan (Fig. 1). It  has a relatively mountainous 

climate which is slightly more pleasant than other parts of Central Sindh throughout the 

year. Summer and winter are the two main seasons, while spring and autumn are very 

short. The period from mid-April to late June is the hottest time of the year with 

temperatures as high as 48.5 °C. Winters are usually warm, around 25 °C during the day 

time and often below 10 °C at night, and are the best time to visit the city. The highest 

ever recorded temperature in Hyderabad was 48.5 °C in 1991, while the lowest was 1 °C 

in 2012 [43, 44].  

 
Fig. 1. Map of Pakistan showing the study site. Hyderabad at the southern part of the figure [43]. 

 

 

2.2 Acquisition of Data 
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  Under the present study, the measured global solar radiation and its components 

(diffuse and direct solar radiation) together with other meteorological parameters were 

measured by the Energy Sector Management Assistance Program of The World Bank 

Group at Mehran University of Engineering and Technology (M-UET), Hyderabad, 

Pakistan [45]. The measurements were performed for a period of two years (May, 2015 - 

April, 2017) so as to determine regional solar radiation and other meteorological 

variables. However, the monthly mean daily sunshine hours (for sunshine fraction in 

Equation 4) were based on the 30-year period (1981-1990) using the same geographical 

information as M-UET were obtained from the International Water Management Institute 

(IWWI) website [46]. The characteristics and specification of solar and other 

meteorological parameter instrument used are provided in Table 1. The obtained raw data 

(10 minutes summarization interval values) were post-processed in order to obtain daily 

values of global, diffuse and direct solar radiation data and other meteorological 

parameters such as air temperature, relative humidity, wind speed and wind direction. 

The data obtained was further averaged for a month so as to calculate the monthly mean 

values. The measured monthly mean daily values thus obtained and sunshine hours are 

shown in Table 2. 

 
Table 1. Characteristics of the used solar and meteorological instruments [45]. 
Sensor manufacturer Height orientation Sensor type Model Serial number 

CSPS 2m RSI Twin-RSI CSPS.ms.14.001-

0015 

Kipp & Zonen 2m Pyranometer CMP10 140572 

Campbell Scientific 2m Temperature and 

Humidity 

CS215 E12267 

Setra 2m Barometric pressure Setra 278 6015966 

NRG 10m Anemometer NRG40C 1795-00229369 

NRG 10m Wind direction NRG200  

 
Table 2. Monthly and yearly averages of measured meteorological data for Hyderabad, Pakistan  

Month/Mean  H Hb Hd RH T WS WD AP S 

January 14.33 14.75 6.18 60.58 17.59 3.35 153.62 1009.97 8.88 

February 18.96 20.78 6.32 36.58 21.56 3.34 168.53 1008.45 9.27 

March 22.02 19.48 8.36 40.93 26.92 4.02 185.86 1003.96 9.48 

April 24.84 19.00 10.29 39.56 31.33 5.28 202.47 999.12 9.91 

May 26.07 19.14 10.84 50.85 33.42 7.00 211.71 995.46 10.51 

June 24.78 15.90 11.97 54.57 33.67 6.29 197.65 992.00 9.45 

July 22.22 10.72 13.28 65.46 31.75 7.71 213.75 991.05 7.43 

August 21.98 13.39 11.26 67.25 30.56 6.52 204.56 993.60 7.67 

September 22.49 20.28 8.11 61.58 30.28 5.87 200.81 997.89 9.35 

October 19.24 19.91 6.40 54.38 29.46 4.11 184.60 1002.79 9.89 

November 16.03 18.11 5.76 42.13 24.40 3.09 166.63 1007.28 9.37 

December 14.71 18.71 5.02 47.63 20.24 2.84 166.74 1009.29 8.90 
Monthly Mean 20.64 17.51 8.65 51.79 27.60 4.95 188.08 1000.89 9.18 
Annual Mean 7503.759 6359.958 3153.287 18590.04 10125.66 1792.051 68239.03 366458.5 - 

Where monthly values and mean of global (H), diffuse (Hd) and direct (Hb) solar radiation are in MJm-2day-1 between May, 2015 – 

April 2017, annual mean of global (H), diffuse (Hd) and direct (Hb) solar radiation are in MJm-2year-1 in 2016 only, RH represents 

relative humidity in (%), T stands for air temperature in (oC), WS designates wind speed in (m/s), WD represents wind direction in (0 

– 360), AP stands for Ambient air pressure in (hPa) and S represents monthly mean sunshine hours downloaded from IWMI website 

[46] in hrs.  

 

 

2.3 Basic Parameters 
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 The fundamental requirements such as maximum possible sunshine hours (So) and 

extraterrestrial solar radiation on the horizontal surface (Ho) are significant for the 

prediction of diffuse solar radiation expressed as mathematically as given by Yaniktepe 

and Gene [47]: 
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
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Where the mean sunrise hour angle ( )s  can be evaluated as: 

  tantancos 1 −= −

s         (2) 

The solar declination ( )  is given by Yaniktepe and as Genc [47] as: 
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where ISC is the solar constant,   is the latitude and n the number of days of the year 

starting from first January. 

The maximum possible sunshine duration is calculated as: 

  tantancos
15

2 1 −= −

oS         (4) 

where other symbols retain their usual meaning. 

 

2.4 Statistical Modeling 
 Estimation of diffuse component of global solar radiation involves modeling the 

monthly mean diffuse fraction or diffuse coefficient as a function of monthly mean 

sunshine fraction, clearness index and combination of sunshine fraction and clearness 

index. This could be attributed to the fact that lower fluctuations are often observed in 

monthly mean values of solar radiation from one month to another as component to daily 

values of solar radiation [22]. Hence, better estimation capacity is observed in monthly 

mean models [22]. 

 Peers and researchers have stressed that validating training dataset using the same 

dataset of training might lead to partially validated results [21, 48], thus, an independent 

validation dataset which involves that validating patterns have not been previously 

applied for training dataset is often employed. However, as a result of the short-term 

measure employed in this study (2 years), the present study employed dataset during 

May, 2015 - April, 2016 to develop the models for the station while validation dataset 

during May, 2016 - April, 2017 was used to test the models. This measure was employed 

to prevent the models from over fitting and to determine the estimation capacity of the 

developed models. 

 In diffuse solar radiation estimation, an empirical model uses diffuse fraction 

(Hd/H) or diffuse coefficient (Hd/Ho) with other easily measurable parameters. Moreover, 

since the first primitive work of Liu and Jordan [49] that estimated the mean diffuse solar 

radiation, numerous solar energy researchers have proposed several models in order to 

elaborate the Liu and Jordan model's functional form. The relationships representing the 

diffuse radiation are classified into three main classes: (1) sunshine duration-based 

models, (2) clearness index-based models, and (3) sunshine and clearness index-based 

models [50]. Owing to these classifications, the diffuse fraction (Hd/H), and diffuse 

coefficient (Hd/Ho) correlations were used in estimating the diffuse solar radiation in 

Hyderabad, Pakistan. 
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2.4.1 Clearness Index-Based Models 

According to Nwokolo and Ogbulieze [50], models of the monthly mean diffuse 

fraction (Hd/H) and the diffuse coefficient (Hd/Ho) is a function of the clearness index; 

such that 
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The proposed models under this class is shown in Table 3a. 

 
2.4.2 Sunshine Duration-Based Models 

 Numerous models have been widely applied sunshine fraction (S/So) in 

associating the ratio of diffuse solar radiation (Hd) to often expressed as diffuse fraction 

(Hd/H), and the monthly average diffuse coefficient (Hd/Ho) to sunshine fraction or 

combination of both. Varying degrees of polynomial functions such as linear and 

quadratic, logarithmic and exponential models are applied for this study. Where S is the 

monthly mean daily hours of sunshine; such that 
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The developed models under this class is shown in Table 3b. 

 

2.4.3 Sunshine Duration and Clearness Index-Based Models 

Under this class, the monthly mean diffuse fraction (Hd/H) and the diffuse 

coefficient (Hd/Ho) are function of the clearness index and sunshine fraction; such that 
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The developed models under this class is shown in Table 3c. 

 

2.5 Comparison of Models 
 In order to check the capacity and accuracy of the estimated data from the 

measured data in this study, numerous statistical indicators are applied [22-24, 42]. These 

metrics include mean bias error (MBE), mean percentage error (MPE), root mean square 

error (RMSE), relative root mean square error (RRMSE) and coefficient of determination 

(R2) as presented in equation (8 - 12). 
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Table 3a. Monthly mean diffuse solar radiation models under clearness index-based models 

S/N Parameters Type Regression relations Model 
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Table 3b. Monthly mean diffuse solar radiation models under sunshine duration-based models 

S/N Parameters Type Regression relations Model 

 

15 
oS

S
 

 

Linear 







−=

oS

S

H

dH
733.0973.0  

 

15 

 

16 
oS

S
 

 

Quadratic 
2

860.0952.1394.1 















+−=

oS

S

oS

S

H

dH
 

 

16 

 

17 
oS

S
 

 

Polynomial 
3

390.0328.1246.1 















+−=

oS

S

oS

S

H

dH
 

 

17 

 

18 
oS

S
 

 

Polynomial 
4

263.0122.1172.1 















+−=

oS

S

oS

S

H

dH
 

 

18 

 

19 
oS

S
 

 

Linear 







−=

oS

S

oH

dH
317.0500.0  

 

19 

 

20 
oS

S
 

 

Quadratic 
2

461.0336.0274.0 















−+=

oS

S

oS

S

oH

dH
 

 

20 

 

21 
oS

S
 

 

Polynomial 
3

217.0015.0348.0 















−+=

oS

S

oS

S

oH

dH
 

 

21 

 

22 
oS

S
 

 

Polynomial 
4

152.0092.0385.0 















−−=

oS

S

oS

S

oH

dH
 

 

22 

 

23 
oS

S
In  

 

Logarithmic 







−=

oS

S
In

oH

dH
219.0197.0  

 

23 

 

24 
oS

S
exp  

 

Exponential 







−=

oS

S

oH

dH
exp156.0594.0  

 

24 

 

25 
oS

S
exp  

 

Exponential 
2

exp140.0exp010.0493.0 















−−=

oS

S

oS

S

oH

dH
 

 

25 

 

26 oS

S

oS

SIn exp,  
Exponential 

and 

logarithmic 
















−+=

oS

S

oS

S
In

oH

dH
exp275.0170.0897.0  

 

26 

 

27 
oS

S
In  

 

logarithmic  







−=

oS

S
In

H

dH
514.0270.0  

 

27 

 

28 
oS

S
In  

 

logarithmic  
2

257.0270.0 







−=

oS

S
In

H

dH
 

 

28 

 

29 
oS

S
exp  

 

Exponential 







−=

oS

S

H

dH
exp357.0184.1  

 

29 



 

Peer-Reviewed Article   Trends in Renewable Energy, 5 

 

 

Tr Ren Energy, 2019, Vol.5, No.3, 307-332. doi: 10.17737/tre.2019.5.3.00107 316 

 

 

30 
oS

S
exp  

 

Exponential 
2

exp519.0exp971.0500.1 















+−=

oS

S

oS

S

H

dH
 

 

30 

 

31 oS

S

oS

SIn exp,  
Exponential 

and 

logarithmic 
















−+−=

oS

S
In

oS

S

H

dH
727.0exp150.0114.0  

 

31 

 
Table 3c. Monthly mean diffuse solar radiation models under sunshine duration and clearness index-based models 

S/N Parameters Regression relations Model 
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where n in this section represents the total number of available data point (12), 
est
dH  = 

estimated diffuse solar radiation, 
mea
dH  = measured diffuse solar radiation, and 

avemea

dH  = 

average of measured diffuse solar radiation. 

 In order to check and select the best model out of the 43 recommended models 

used in this study, a global performance indicator (GPI) was applied. Applying the GPI 

newly introduced by Bailek et al. [37] and Despotovic et al. [51] on the 43 models 

developed in this study undoubtedly revealed the best model. The established best model 

was then used to compare the five measured data and five diffuse solar radiation models 

reported in the literature from different locations across the globe as presented in Tables 4 

- 5. This was established in order to check if the accuracy and application of the best 

model is limited to the site from which the model was developed. This technique was 

applied because peers and researchers from the time immemorial reported that diffuse 

solar radiation is dependent on local climate and geographical location [22-24, 42, 50]. 

Also, GPI was applied in this section for selecting the best performing model out of 43 

models and for comparing with the literature because of the following: (1) The GPI 

combines the advantages of the statistical indicators presented in equation (8 - 12) in 

order to reveal the best performing model, and (2) with the application of GPI, a single 

value which consists of short- and long-term statistical performances together with the 

linearity of the models will be clearly observed and selected. However, Bailek et al. [37] 

stressed that the GPI is a relative unbounded value and a higher value of the GPI implies 

a better statistical performance and modeling quality. According to Despotovic et al. [51] 

and Jamil and Akhtar [22], the values of all selected statistical indicators need to be 

scaled down so that the scaled values lie between 0 and 1. These scaled values are 

subtracted from the median value of the corresponding scaled statistical indicators. 

Finally, the values obtained are summed applying appropriate weight factors. 

 This indicator (GPI) is defined mathematically as: 

( )ijyiy
i

jGPI −
=

=
5

1
          (13) 

Where j equal -1 for the indicator R2 only, whereas for other indicators (MBE, MPE, 

RMSE and RRMSE) is equal to 1. iy  is the median of scaled values of the indicators j, 

ijy is the scaled value of indicator j for model i. The higher the values of GPI indicator, 

the better the accuracy of model.   
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Table 4. Monthly mean diffuse solar radiation models obtained from literature 
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Parameters Class Regression relations Reference 
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Table 5. Measured monthly mean diffuse solar radiation obtained from the literature and the NASA 

website [62] 

Lat. Lon. Ele. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

   Kerman, Iran between 1990-2005 Safaripour and Mehrabian [53] 
30.3 

N 
NA NA 5.23 6.14 8.06 8.60 8.16 7.46 7.41 6.88 5.86 4.92 3.98 4.44 

   Aligarh Muslim University, Aligarh, India between 2013-2016 Jamil and Akhtar [22] 
27.9 

N 

78.1 

E 

NA 6.19 7.07 7.92 8.21 8.64 9.06 8.68 8.53 6.32 8.02 6.78 5.87 

   University of Tarapaca site of Arica-Parinacota, Chile between 2012-2014 Cornejo et al. [54] 
18.5 

S 

70.3 

W 

9 m 8.32 6.44 9.54 7.81 5.33 5.29 6.05 6.73 8.03 8.60 7.45 8.06 

   Las Rejas, Chile 2013-2014 Cornejo et al. [54] 
18.3 

S 

69.5 

W 

4391m 8.32 7.06 8.35 3.60 3.38 3.35 7.67 3.13 3.13 5.33 5.04 8.93 

   NASA, Hyderabad, Pakistan between 1983-2005 [55] 
65.4 

N 

68.3 

E 

60m 4.25 5.15 6.12 6.84 7.42 7.70 8.28 7.67 6.48 5.62 4.64 4.03 

Where Lat. represents latitude positive north/south in degrees, Lon. stands for longitude positive east/west in degrees, Ele. denotes 

elevation in meters and monthly mean diffuse solar radiation obtained from literature and NASA (same geographical information as 

study site) are all in MJm-2day-1 

 

 
3. Results and Discussion 
 

 In this section, the results of the measured data in the study site were compared 

with the following: (1) the developed 43 models in this study, (2) five measured data 

obtained from the literature together with the observed satellite data obtained from the 

NASA database, and (3) five models obtained from the literature and best performing 

model (model 42) as presented in Figs. 2 - 5, and their corresponding estimation 

statistical indicators are presented in Tables 6 – 7.  

  

3.1 Analysis of Monthly and Yearly Solar Radiation Ground Observation 
 The results of the monthly and annual averages of the study site and the 

corresponding aggregate mean values for the duration of measurement (2 years) are 
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presented. It can be seen vividly that the mean monthly and yearly solar radiation and 

meteorological values for the two years of measurement are presented in Table 2. 

  The summer season is from March-August whereas the winter season starts in 

October and ends in January for Hyderabad, Pakistan. The winter months are 

characterized by overcast, heavy rainfall clouds, heavy frogs, high relative humidity, low 

temperature, low wind speed and direction, and the highest ambient air pressure as shown 

in Table 2. This gives rise to minimum values of 14.33 MJm-2day-1 and 14.75 MJm-2day-1  

reported for global and direct solar radiation in the month of January, respectively, 

whereas the minimum diffuse solar radiation of 5.02 MJm-2day-1 was recorded in the 

month of December as shown in Table 2. 

 However, summer months are characterized by clear sky, high temperature and 

wind speed with low relative humidity and ambient air pressure. This culminates into 

high values of global solar radiation and its component. The maximum value for global 

solar radiation (24.84 MJm-2day-1) occurred in the month of April, direct normal 

irradiance (20.78 MJm-2day-1) occurred in the month of February, and diffuse solar 

radiation (13.28 MJm-2day-1) occurred in the month of July. These results are comparable 

to the report of Jamil and Akhtar [22-24] in the humid-subtropical climatic region of 

India. 

 The yearly averages of direct normal irradiance, global solar radiation and diffuse 

solar radiation calculated for the period of measurement May 2015-April 2016 are 

6430.141 MJm-2year-1, and 7593.977 MJm-2year-1, respectively. For the interval of May 

2015-April 2017, the calculated values of global solar radiation, direct normal irradiance 

and diffuse solar radiation are 7503.759 MJm-2year-1, and 3153.287 MJm-2year-1, 

respectively. While for only year 2016 (January-December), the calculated values of 

global solar radiation, direct normal irradiance and diffuse solar radiation are 7500.64 

MJm-2year-1, 6350.196 MJm-2year-1, and 3139.756 MJm-2year-1, respectively. It could be 

observed that the yearly global solar radiation is higher than the yearly direct normal 

irradiance with about 15.2% between May 2015-April 2016, and 18.3% in year 2016 

(January-December) as shown in Table 2. This implies that the site is more favorable for 

the installation of photovoltaic technology or flat solar collectors as the magnitude of 

direct normal irradiance is below the threshold of 7200 MJm-2year-1 in the months of 

January, June, July, August, November and December as presented in Table 2. It is 

therefore imperative to note that concentrated solar power should not be considered as a 

favorable technology in this station. 

Avoiding the energy available for the development of solar power technologies in 

Hyderabad, Pakistan, various other factors and technical aspects reduce the actual use of 

solar energy captured [54, 56-62]. 

 In Hyderabad, the global solar radiation is significantly higher than the direct 

normal irradiance as a result of higher attenuation effect of aerosols and water vapor on 

direct irradiance than the diffuse solar radiation component [54, 62]. Hyderabad is 

situated by the coast and it is highly affected by a high load of sea salt, and water drops 

aerosols and water vapor loads as the station is located in the University setting where 

thousands of people and building structures are located. As a result, atmospheric particles 

are able to absorb light beams of a specific wavelength. These particles convert 

electromagnetic radiation into heat and eventually into diffused solar radiation 

components. So, the direct normal irradiance is obtained from the relation: 

d
HzH

b
H −= cos             (14) 
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where z is the zenith angle and other variables retain their usual meaning. 

From equation (14), it is obvious that as the diffuse solar radiation component 

increases, the direct normal irradiance decreases and finally the global solar radiation 

remains at the same level.  

 

3.2 Performance Evaluation 
 Developed models under the three classes of clearness index-based models, 

sunshine duration-based models and combination of the two predictors using either 

diffuse fraction or diffuse coefficient are now evaluated and results are shown in Fig. 2. 

In clearness index-based models' class, diffuse fraction and diffuse coefficient are 

developed with only one predictor of the clearness index. Fourteen models are developed, 

with the restriction of the order of two in each input predictor. This could be attributed to 

the fact that the higher order equations have increased complexity. The numerous models 

developed are presented in Table 3a. The statistical indicators such as MBE, MPE, 

RMSE, RRMSE and R2 have been evaluated for the developed models in the class. The 

results of the statistical indicators are presented in Table 6. MBE values lie in the range 

of -0.01057 to -0.00994 MJm-2day-1 with a minimum value observed for model 6 (-

0.01057 MJm-2day-1). As observed from Table 6, models 1-14 under this class recorded 

negative values. This implies that models underestimated the measured data. However, 

the overestimation in the values is significantly small because the magnitude of MBE for 

this class is observably close to zero. MPE values lie in the range -0.08687 to -0.04886 

MJm-2day-1 with the minimum value observed for model 13 (-0.08687 MJm-2day-1). 

RMSE values are observed to be small for all the developed models under this class with 

model 6 registering the minimum value of 0.177211 MJm-2day-1). In general, the RMSE 

range buried between 0.177211 to 0.194205 MJm-2day-1. Accordingly, the RRMSE value 

buried in the range 25.50065 to 28.04482 MJm-2day-1 with the minimum value 25.50065 

registered for model 6. The coefficient of determination (R2) has values in the range of 

0.931 - 0.937 representing good fit of measured data. The highest value of R2 was 

recorded for model 5 and model 13. 

Under the sunshine duration-based models, the diffuse fraction and diffusion 

coefficient models are developed with only one predictor of the sunshine duration 

parameter. Seventeen models are proposed, with the restriction of the order of two in 

each input predictor. This is because, the higher order equations demonstrate increased 

complexity. Hence, several models proposed under this class are presented in Table 3b. 

From the statistical indicators evaluated under this class, the results are presented in 

Table 4. MBE value lies in the range of -0.0043 to 0.003714 MJm-2day-1 with the 

minimum value of -0.0043 MJm-2day-1 registered for model 26. As observed models 15, 

17, 22, 25, 28, 29 and 30 recorded a positive value of MBE, indicating overestimation 

while the remaining models reported a negative value implying an underestimation. 

However, the overestimation and underestimation in the values is significantly small 

since the values of MBE for the proposed models reasonably close to zero. This trend is 

equally observed for the models developed in the humid-subtropical climate region of 

India [22]. MPE values lie in the range -0.07466 to 0.005151 MJm-2day-1 with the 

minimum value of -0.07466 MJm-2day-1 recorded for model 29. RMSE values recorded 

small values for all the developed models under this class with the minimum value of 

0.134126 MJm-2day-1 registered for model 25, from range of values 0.13416 to 0.158558 

MJm-2day-1. Accordingly, the RRMSE value buried in the range 19.01901 to 23.50345 

with the minimum value of 19.01901 reported for model 26. The coefficient of 
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determination (R2) has values in the range of 0.943 - 0.961 indicating good fit of the 

measured data. The highest value of R2 is reported for models 20-22 and model 25-26. 

 
Table 6. The statistical test indicators of all developed models for estimating the diffuse solar radiation at 

Hyderabad, Pakistan 

Models MBE MPE RMSE RRMSE R2 GPI Rank 

Clearness index-based models 

1 -0.00908 -0.07739 0.192954 27.82833 0.933 -2.2996 43 

2 -0.00886 -0.06974 0.178761 25.85036 0.932 -1.6650 19 

3 -0.00892 -0.06916 0.179255 25.89493 0.932 -1.7088 20 

4 -0.00820 -0.07808 0.179834 26.03971 0.932 -1.7190 21 

5 -0.00874 -0.08011 0.188957 27.33110 0.937 -2.1183 38 

6 -0.01057 -0.04886 0.177211 25.50065 0.931 -1.8717 29 

7 -0.00994 -0.05646 0.177650 25.61745 0.931 -1.5319 14 

8 -0.00746 -0.08654 0.178283 25.96952 0.932 -1.6400 17 

9 -0.00824 -0.08428 0.187491 27.18009 0.936 -2.0729 36 

10 -0.00932 -0.07219 0.190773 27.49131 0.934 -2.2654 41 

11 -0.00878 -0.08250 0.194205 28.04482 0.932 -2.2969 42 

12 -0.00878 -0.07119 0.179881 25.97848 0.932 -1.7402 23 

13 -0.00827 -0.08687 0.189859 27.51315 0.937 -2.1177 37 

14 -0.00767 -0.08411 0.178343 25.95240 0.932 -1.5986 14 

Sunshine duration-based models 

15 0.00139 -0.05115 0.155966 23.25241 0.946 -2.1489 39 

16 -0.00023 -0.04845 0.158277 23.40913 0.948 -1.9851 32 

17 -0.00081 -0.06078 0.158309 23.46320 0.948 -1.9760 31 

18 -0.00094 -0.03919 0.158589 23.38298 0.947 -1.9916 33 

19 -0.00179 -0.03799 0.136359 19.24055 0.958 -1.3733 10 

20 -0.00249 -0.01617 0.135120 19.06948 0.961 -1.8065 28 

21 -0.00082 -0.04779 0.134612 19.16734 0.961 -1.8027 27 

22 0.000452 -0.05150 0.134273 19.15748 0.961 -1.796 26 

23 -0.00193 -0.04544 0.139213 19.66207 0.955 -1483 12 

24 -0.00216 -0.02825 0.135648 19.13818 0.959 -1.3835 11 

25 0.00196 -0.07009 0.134126 19.22668 0.961 -1.7812 25 

26 -0.0043 0.005151 0.135586 19.01901 0.961 -1.7549 24 

27 -0.00121 -0.03128 0.157561 23.29592 0.948 -1.52144 13 

28 0.00079 -0.05283 0.15682 23.31739 0.948 -2.0489 35 

29 0.003714 -0.07466 0.155199 23.31988 0.943 -2.2366 40 

30 0.001417 -0.06818 0.158558 23.50345 0.947 -1.9659 30 

31 -0.00187 -0.02838 0.158044 23.30298 0.948 -2.0032 34 

Sunshine duration and clearness index-based models 

32 -0.00191 -0.04025 0.130386 17.70534 0.960 -1.2243 6 

33 -0.00279 -0.02738 0.130494 17.57645 0.960 -1.250 7 

34 -0.00188 -0.02298 0.110254 14.69178 0.967 -1.1409 4 

35 -0.00129 -0.02979 0.10975 14.67827 0.967 -1.1179 3 

36 -0.00186 -0.02261 0.109897 14.62919 0.967 -1.081 2 

37 -0.00137 -0.04969 0.133455 18.50554 0.957 -1.2583 8 

38 -0.00401 -0.01166 0.133968 18.05627 0.958 -1.2925 9 

39 -0.00326 -0.00551 0.110418 14.61601 0.967 -1.1671 5 

40 -0.00306 -0.02152 0.128539 17.31672 0.961 -1.7221 22 

41 -0.00130 -0.04248 0.127048 17.16679 0.961 -1.5506 15 

42 -0.00395 0.00349 0.109462 14.41593 0.967 -1.0208 1 

43 -0.00192 -0.04698 0.135857 18.71394 0.958 -1.6455 18 

 

Under sunshine duration and clearness index-based models, diffuse fraction and 

diffuse coefficient models are proposed with two predictors. Twelve models are 

developed, with the restriction of the order of three in each input predictor. This is as a 
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result of the fact that, the higher order equations have increased complexity. The 

numerous models developed are presented in Table 3c. From the statistical results, MBE, 

MPE and RMSE reported similar trends in signaling but varying magnitude as in 

clearness index-based models. Similar trend was reported for models developed in India 

[21] indicating that models employing clearness index and those combining clearness 

index and sunshine duration exhibit similar diurnal fluctuation. 

 
Table 7. Test the best models to the models and measured data obtained from the literature and the NASA 

database [55] 
Model/Site MBE MPE RMSE RRMSE R2 GPI Rank Reference 

Models from the literature 

Model 23 -0.00193 -0.04544 0.139213 19.66207 0.955 0.2208 1 Present 

study 

Model 44 -0.25264 2.799933 0.875162 116.391 0.953 -10.40736 6 Liu & 

Jordan 

[49] 

Model 45 -0.22267 2.474549 0.771353 102.8651 0.953 -9.488693 4 Page [25] 

Model 46 -0.13464 1.402934 0.466401 58.31886 0.951 -6.066975 3 Iqbal [13] 

Model 47 -0.22582 2.494301 0.782266 103.6861 0.954 -9.583763 5 Ibrahim 

[28] 

Model 48 0.063076 -1.03147 0.360443 56.31961 0.891 -0.416833 2 Maduekwu 

& Chendo 

[61] 

Measured data from the literature together with the data from the NASA database 
Model 23 

(best model) 
-0.00193 -0.04544 0.139213 19.66207 0.955 0.1338 1 Present 

study 

UTA, 

Chile 

-0.11018 0.445126 0.861782 114.3659 0.376 -3.93826 4 Cornejo et 

al. [54] 

Aligarh, 

India 

-0.08497 0.598581 0.459634 57.5258 0.711 -0.848897 2 Jamil & 

Akhtar 

[22] 

LR, Chile -0.25168 2.062406 1.182753 153.1898 0.202 -4.854534 5 Cornejo et 

al. [54] 

Kerman, 

Iran 

-0.18323 1.938777 0.63473 80.59346 0.624 -3.826472 3 Safaripour 

& 

Mehrabian 

[53] 

Hyderabad, 

Pakistan 

-0.20368 2.248962 0.705552 93.48759 0.939 -5.857619 6 NASA 

Data [55] 

 

Under this section, five (5) empirical models are often used by researchers in the 

literature, and four (4) measured data obtained equally from the literature and the NASA 

website were employed to check the applicability of the best models from the 45 

proposed models. The results of the statistical indicators evaluated under this section are 

presented in Table 7. MBE values lie in the range of 0.25264 to 0.063076 on the five 

models obtained from the literature while the range of MBE on measured data obtained 

from satellite data from NASA website is -0.25168 to -0.08497. From the resulting 

matrices, only models 48 [52] have a positive value of MBE which indicates 

overestimation while the remaining models and measured data have a negative value 

leading to an underestimation. However, the overestimation and underestimation of these 

values is significantly small since the values of MBE for each of the proposed models are 

reasonably close to zero. MPE values lie in the range -1.03147 to 2.799933 and 0.445126 

to 2.248962 with a minimum value of -1.03147 and 0.445126 for models from the 

literature (models 44-48) and measured data obtained from literature together with NASA 

data, respectively. Base on measured data obtained from the literature together with 
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NASA data, RMSE values are found to be minimum for model 48 and for Aligarh 

location India [22], respectively. Also, coefficient of determination (R2) recorded values 

in the range of 0.891 to 0.956 and 0.202 to 0.939 with maximum values of 0.956 reported 

for models 47 [28] and 0.939 for NASA data on models from the literature and measured 

data together with NASA data, respectively.  

 

 
Fig. 2a. Clearness Index-based models for estimating diffuse solar radiation in Hyderabad, 
Pakistan 

 

 
Fig. 2b. Sunshine duration-based models for estimating diffuse solar radiation in Hyderabad, 
Pakistan 
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Fig. 2c. Hybrid of sunshine duration and clearness index-based models for estimating diffuse 
solar radiation in Hyderabad, Pakistan 
 

 

 
Fig. 3. Comparison between measured data from study site (Hyderabad) and the best performing 
model (model 42) together with measured the data obtained from the literature and the NASA 
database  
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Fig. 4. Comparison between measured data from study site (Hyderabad) and the best performing 
model (model 42) together with models obtained from the literature 

 

 
Fig. 5. Meanly mean variations of Hyderabad’s best performing model after eliminating models 
from class 1 – 3 in MJm-2year-1 
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3.3 Global Performance Indicator and Ranking of Models 
 From the statistical indicators, it can be seen that different models from different 

classes come together with the models and measured data and satellite data obtained from 

the NASA database outperformed others. Thus, to avoid this variability and further 

improve the results of statistical analyses, global performance indicator (GPI) is applied. 

As presented in Table 6, the GPI values of the proposed 43 models in this study 

classified under sunshine duration-based models, clearness index-based models and 

combination of both models are in the range of -2.2996 to -1.0208. The maximum GPI (-

1.0208) and the minimum ranking of models were recorded for model 42 which is a 

hybrid of sunshine duration and clearness index predictors of variable dependent variable. 

It can be equally observed in Table 6 that hybrid of sunshine duration and clearness index 

predictors recorded as the best ranking model. This indicates that model 42 and hybrid of 

sunshine duration and clearness index predictors yielded the best performing model and 

class, respectively, in Hyderabad, Pakistan. Similar results were obtained in the literature 

[6, 20, 24, 41-42, 38-40]. 

In order to achieve the objective of the study, the best model (model 42) selected 

using GPI metric was applied to compare with five (5) models and five (5) measured data 

obtained from the literature and the NASA database. This is to check if the accuracy and 

applicability of the best model are limited from which the model was developed, as 

researchers and peers reported that diffuse solar radiation and other components of global 

solar radiation are dependent on local climate and regional geography. 

As presented in Table 7, the maximum GPI and the minimum scores of the five 

(5) models and five (5) measured data from the literature together with satellite data 

obtained from the NASA database are compared with the best performing model in 

Hyderabad, Pakistan station (i.e., model 42). After thorough analysis using statistical 

indicators, GPI and ranking of models (Table 7), the best model (model 42) can be 

employed for estimating diffuse solar radiation in Kerman, Iran and Algarh, India while 

UTA and LR stations located in Chile require local calibration of model 42 to actually fit 

the measured data. In general, model 42 is best suited to fitt data at stations Aligarh, India 

followed by Kerman, Iran while other stations such as UTA and LR located in Chile need 

local calibration to actually fit the measured values in Hyderabad. However, it can be 

observed that model 42 did not fit the calculated data from the NASA database despite 

the fact that the data employed for modeling 42 and that of NASA possess the same 

geographical information. This could be attributed to the fact that NASA data is 

estimated under 20% error from existing models in the literature and different locations 

compared to the study site. Also, comparing models 42 with 5 models in the literature 

revealed that model 42 actually predicted values obtained from Iqbal's model [13] and 

Maduekwu & Chendo's models [52] while other models such as Liu & Jordan [49], Page 

[25], and Ibrahim [28] required local calibration to actually fit the values of model 42. On 

the whole, Iqbal's model is best suited to fit the values of the best performing model in 

Hyderabad (model 42), followed by Maduekwu & Chendo's model. 

 

 
4. CONCLUSIONS 
 

 The knowledge of diffuse solar radiation is important for the design and 

development of solar system. In this study, forty-three models were analyzed, which 
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proposed correlations for the diffuse component of global solar radiation. The 

performance of these models was compared to measured diffuse solar radiation of 

Hyderabad station by applying various statistical indicators such as MBE, MPE, RMSE, 

RRMSE, R2 and GPI. The diffuse fraction and diffuse coefficient were employed as the 

dependent variable to correlate with the sunshine duration fraction, clearness index and a 

combination of them. From the results of the statistical indicators, GPI and ranking of the 

models, model 42 - a hybrid of sunshine duration and clearness index-based models 

employing diffuse fraction dependent variable outperformed the remaining models 

proposed in this study. Moreover, the performance of the best model (model 42) was 

calculated equally with respect to a set of five (5) models and five (5) measured data of 

diffuse solar radiation presented in the literature together with satellite data obtained from 

the NASA database. The developed best model (model 42) in this study recorded 

favorable accurate results in comparison to these existing models and measured data of 

diffuse solar radiation in the literature and the NASA database with the lowest statistical 

indicators. The models were then categorized into rankings in descending GPI values so 

as to ascertain the best performer. From the results, model 42 recorded the highest value 

of GPI and was ranked first. Hence, it is concluded that the hybrid of sunshine duration 

and clearness index-based models of diffuse fraction: 
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is selected as the most accurate generalized model for estimating solar radiation on the 

horizontal surface in Hyderabad of Pakistan, other locations such as Aligarh in India, 

Kerman in Iran, Iqbal's model and Maduekwu and Chendo's model, and in any location 

with similar climate conditions, in the absence of measured data. 

 This generalized model can be employed by solar energy engineers in terms of 

site selection and techno-economic performance quantification of solar energy 

applications such as photovoltaic technologies. 

 

 

Nomenclature       

                     

kt=H/Ho Monthly average clearness index (dimensionless) 

H Global solar radiation on the horizontal surface (MJm-2day-1) 

Ho Monthly extraterrestrial solar radiation on the horizontal surface (MJm-

2day-1) 

So Maximum sunshine duration (hrs) 

n Number of days of the year  

ISC Solar constant in W/m2 

Hd Monthly mean diffuse solar radiation (MJm-2day-1) 

Tave Mean monthly maximum temperature (oC) 

P monthly mean atmospheric pressure at the site (hPa) 

Po the standard atmospheric pressure at the sea level (1013  hPa) 

S Monthly mean sunshine hours (hrs) 

S/So sunshine fraction (dimensionless) 

Td Monthly average dew point temperature 

RH Monthly mean relative humidity (%) 
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Greek Letters 

 

  latitude (degrees) 

  solar declination angle (degrees) 

s  sunset hour angle (degrees) 
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