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Polyacene(PAS)/carbon and acetylene black(AB)/carbon coated lithium 
cobalt phosphate composites were synthesized via the solid state 
reaction method using co-precipitated Co3(PO4)2·8H2O and Li3PO4 
mixture as its precursor. X-ray powder diffraction (XRD) was performed 
to investigate the structure and phase of all the samples. The 
transmission electron microscopy (TEM) shows that the double carbon 
layers coated on the surface of LiCoPO4 successfully. The LiCoPO4/C, 
LiCoPO4/PAS and LiCoPO4/AB delivered a capacity of T 120.92, 121.07 

and 138.06 mAhg-1 at 0.1C, respectively. The double carbon coated 
LiCoPO4 electrode delivered an initial discharge capacity of 147.12, 

143.51 mAhg-1 after AB/glucose, PAS/glucose coating, which 
maintained at 59.5% and 61.7% after 15 cycles at the 0.1C rate, 
respectively.  

 
Keywords:  Double carbon coated LiCoPO4 nano composite; High-performance cathode; Lithium ion 

battery 

 

 
Introduction  
  

As renewable energy usage increases and price falls, energy storage becomes 

more and more important. The development of lithium-ion battery technology has opened 

the door to opportunities for the future of energy storage. For decades, scientists have 

been actively searching for new electrode materials and electrolytes that can produce a 

new generation of lithium-ion batteries which can provide greater energy storage, longer 

life, lower cost, and greater safety.  

Olivine type LiMPO4 (M = Fe, Mn, Co, Ni) cathode materials is one of the most 

promising positive electrode materials for next-generation lithium-ion batteries (LIBs) 

owing to the strong P-O covalent bond and the resulting stability [1]. Among LiMPO4 

materials, LiFePO4 is widely applicated in the field of electric and hybrid electric vehicles 

(HEVs) [2, 3], because of its low cost, environmental benignity, excellent thermal 

stability and outstanding cyclability [4]. However, the energy density of LiFePO4 (586 

WhKg-1) limits its further development due to the low discharge potential (3.4 V vs. 

Li+/Li). LiCoPO4 presents the Li+ extraction/insertion behaviour at potentials around 4.8 

V (vs. Li+/Li), which is highly beneficial to its energy density (801 WhKg-1). But its poor 

electronic conductivity (~10-9 Scm-1) [5] and ion conductivity (8.8 10-8
 Scm-1

 at 27℃) 

[6] make it difficult to exhibit Li+ insertion/extraction. On the other hand, there is no 

suitable 5 V electrolyte matching with its high operating voltage, which is the essential 
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reason for the fast capacity fading. Both causes lead to poor electrochemical performance 

and short service life of the pristine LiCoPO4. In order to optimize the performance of 

LiCoPO4, particle size reduction [7, 8], carbon coating [9-12] and cation doping on the 

Co site [13, 14] have been adopted to improve the initial discharge capacity and rate 

capability. The addition of conductive compounds or polymers can shrink the transport 

path length of Li ion, increase the electronic conductivity and modify the surface of pure 

LiCoPO4 [15]. Moreover, a uniform and compact carbon network layer which can prevent 

direct contact between the active mass and HF in the electrolyte is critical for the cathode 

material. 

In this paper, a novel double carbon layers coated LiCoPO4 is designed, where 

carbon is the first layer to make the conductive carbon adhere tightly on the surface of 

LiCoPO4, the polyacene (PAS) or acetylene black (AB) is the second layer coating on the 

inner carbon layer to enhance the electronic conductivity of LiCoPO4. In addition, the 

outer carbon layer can prevent the spalling of the first carbon layer and avoid partial 

irreversible structure changes during its charging and discharging process, thus extending 

the cycle life.  

 
 
Experimental 
 

LiCoPO4 samples were prepared by the solid-state sintering method, in which the 

precursors (Li3PO4 and Co3(PO4)2·8H2O) were prepared via a co-precipitation route using 

a micro reactor followed by stirring at 60 ℃ for 1 h. The processing procedure of the 

precursor (Li3PO4 and Co3(PO4)2) and bare LiCoPO4 (LCP) were described in our 

previous paper [16]. 

  For single carbon coated samples, the precursor LC-1 (nLi:nCo = 2:1 in the 

reactant) was mixed with 3 wt% acetylene black, 5 wt% phenol–formaldehyde resins or 

10 wt% glucose using a planetary milling machine. The obtained mixture was calcined at 

650 ℃ for 10h in an Ar/H2 (5%) atmosphere to generate materials LCP/C, labelled as 

LCP/AB, LCP/PAS and LCP/C, respectively. 

  In order to get the double carbon coated LiCoPO4 composites, the dried precursor 

was ball-milled with 10 wt% glucose for 5 h in ethanol. Then the samples were dried to 

evaporate ethanol and heated at 350 ℃ for 5 h to synthesize the glucose coated 

composites. The obtained composite was ball-milled with 1 wt% acetylene black for 5 h. 

Then the above mixture was calcined at 650 ℃ for 10 h in Ar/H2 (5%) to generate 

LCP/C@AB. In the similar procedure, the LCP/C@PAS composites are obtained by 

substituting acetylene black with 3 wt% phenol–formaldehyde resin. 

  The crystal structure of synthesized materials was evaluated by powder X-ray 

diffraction (XRD, Model X’TRA, Thermo Electron, USA). The morphology and 

microstructure features were studied by using a field emission scanning electron 

microscope (FESEM, JSM-6700F, JEOL, Japan) and a transmission electron microscope 

(TEM, JEM-1010, JEOL, Japan). 

  For electrochemical performance testing, the cathode was prepared by coating a 

slurry of 7 active material, carbon black and PVDF with 75:15:10 wt% on aluminium 

foil, using N-methylpyrrolidone (NMP) as solvent, followed by vacuum-dried at 120℃ 

for 12h. The cathode electrode was characterized with CR2032 coin cells assembled in an 

argon-filled glove box. An electrochemical 2032 coin cell consisted of an active material 

as the cathode, lithium foil as the counter electrode, 1 M LiPF6 in a 1:1 (by vol) mixture 
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of dimethyl carbonate (DMC) and ethylene carbonate (EC) as the electrolyte, and celgard 

2400 as the separator. The galvanostatic cycling profiles of the cells were recorded at 

different current densities between 3.0 V-5.0 V under room temperature. The 

electrochemical impedance spectroscopy of these cells was also tested with an 

electrochemical workstation (CHI650D, Shanghai Chenhua Instrument Co., Ltd., China) 

in the frequency ranging from 0.1 Hz to 1 M Hz. 

 

 
Results and Discussion 
 

 Fig.1 shows the XRD patterns of the LCP samples synthesized by using LC-1 as 

the precursor. Like LCP-1 in the previous study, the characteristic peaks of carbon and 

Li3PO4 were not detected in LCP/C, LCP/C@PAS and LCP/C@AB composite, all peaks 

were consistent with LiCoPO4 [JCPDS#32-0552]. The refined lattice parameters and 

crystallite sizes for the as-obtained products are summarized in Table 1. The estimated 

crystallite size of LCP-1 is much larger than those of carbon coated samples, indicating 

that the carbon can prevent the growth of LiCoPO4 particles efficiently. In addition, the 

parameters of LCP/C@PAS and LCP/C@AB are smaller than those of LCP/C, 

demonstrating that the growth of LiCoPO4 crystallite is highly inhibited by residual 

carbon particles degraded from double carbon sources. 
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Fig. 1. XRD patterns of LiCoPO4 composite samples 
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Table 1. The refined lattice parameters and crystallite sizes of LCP, LCP/C, 

LCP/G@PAS and LCP/G@AB 

Sample name A(Å) b(Å) c(Å) V(Å) Crystal size(nm) 

LCP-1 5.9235 10.2132 4.7003 284.35 50.8796 

LCP/C 10.2132 5.9235 4.7003 284.3582 49.8796 

LCP/PAS 5.9235 10.2027 4.6992 283.99 48.8717 

LCP/AB 10.2015 5.9131 4.6991 283.4614 47.9743 

LCP/C@PAS 5.9274 10.1856 4.6220 279.05 41.3464 

LCP/C@AB 5.9124 10.2026 4.6873 282.75 40.9086 

 

 

Fig. 2. SEM and TEM images of LCP/G, LCP/PAS and LCP/AB 
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The SEM and TEM images in Fig. 2 show the size, morphologies and carbon 

layer distribution of LCP/AB, LCP/C and LCP/PAS. The diameter scattering of LCP/G 

and LCP/PAS particles with slight agglomeration was uniform, in the range of 100-150 

nm. The carbon pyrolyzed from organic glucose and phenol formaldehyde resin were 

different. For LCP/C, the carbon layer was coated on the LiCoPO4 particles more tightly. 

The conductive polymer PAS layer had an increased thickness and presented a loose 

layer. Larger particles around 150 μm in size were formed in LCP/AB, and the floc-like 

pyrolytic products of acetylene black were dispersed among LCP particles, which may 

promote electronic conduction. 
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Fig. 3. Charge and discharge curves (a) and cycle performances of single carbon coated 
LiCoPO4 composites at 0.1C (b) 
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Fig. 3 presents the electrical performance of single carbon coated LiCoPO4 

composites at 0.1C rate. Fig. 3a shows that the LiCoPO4/C, LiCoPO4/PAS, LiCoPO4/AB 

owned a reversible capacity of 120.92, 121.07 and 138.06 mAh g-1, respectively. 

Although LCP/AB presents the highest initial capacity, its capacity fading was very 

pronounced with a progressive decrease to 21.9 mAhg-1
 in the 30th cycle. A better 

performance was achieved by glucose and phenol–formaldehyde resins pyrolytic 

carbonization. The LCP/G and LCP/PAS composites showed a similar capacity and 

capacity retention, which were 120.9 mAhg-1, 3.7% and 121.1 mAhg-1, 33.2%, 

respectively. The capacity curve of sample LCP/C dropped more sharply in the first 10 

cycles. The carbon layer produced from pyrolysis of organic glucose and phenol–

formaldehyde resins was more homogeneous and coated on the entire particle surface. 

The carbon decomposed by organic carbon, especially organic polymers was dispersed at 

the atomic level in the reaction system, which realized the uniform coating on the 

synthesized products and formed an interconnected conductive carbon film enhancing the 

structural stability, resulting in better cyclic performance. 

Fig. 4 presents the TEM images of double carbon coated LiCoPO4 samples. It is 

worth noting that the particle size of double carbon coated LiCoPO4 was about 150 nm, 

which is smaller than those of LCP/C (200 nm on average). In the TEM photographs, it is 

found that the LiCoPO4 particles were wrapped by two carbon layers. And the TEM 

images also exhibited the thickness and the boundary of the carbon layer on the surface 

of LiCoPO4. The distribution of the carbon layer was related to the carbon source 

additives. In the case of LCP/C@PAS, the TEM images exhibited visually the LiCoPO4 

with hierarchical conductive architecture which consisted of 1.59 nm inner residual 

carbon layer and 1 nm outer polyacene polymer layer. But the outer polyacene layer 

distributeed unevenly. The sample LCP/C@AB presented a ~2 nm thick inner residual 

carbon layer and a 2.41 nm thick acetylene black outer layer. Although the carbon layer 

of LCP/C@AB was thicker than LCP/C@PAS, the outer layer was well-distributed. 
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Fig. 4. TEM images of LCP/C@AB (a, b, c) and LCP/C@PAS (d,e,f) 

 
  The first charge and discharge curves of LCP/C@AB and LCP/C@PAS at 0.1C 

rate in the voltage of 3.0-5.0 V at room temperature are shown in Fig. 5. The second 

discharge capacity of LCP/C@PAS and LCP/C@AB were 134.79 and 138.78 mAhg-1, 

respectively, which were higher than previous samples except LCP-3. All the charge 

curves displayed two obvious charge plateaus (one at about 4.8 V and the other at about 

4.9 V) in the aspect of discharge profiles, and the quite different discharge behavior 

(shape of curve and evolution of voltage plateau) should be noted. A discharge plateau at 

~4.8 V was obvious for LCP/C@PAS, while the LCP/C@AB showed a discharge plateau 

at 4.6 V. The discharge voltage of the active material fell sharply to the cut-off voltage 

(3.0 V), indicating a greater polarization. The LCP/C@AB exhibited a reversible specific 

capacity of 147.12 mAhg-1 which was down to 59.5% and 11.9% after 15 cycles and 50 

cycles, respectively. The LCP/C@PAS exhibited a reversible specific capacity of 

143.51mAhg-1 which was down to 61.7% after 15 cycles and remained up to 21.6% after 

50 cycles. Compared with the samples of LCP/G, LCP/AB, LCP/PAS and LCP/G@AB, 

LCP/G@PAS showed a much better cyclability, which are mainly attributed to the 

synergistic effect of double carbon. On the one hand, the double carbon can more 

uniformly and finely refine the crystal particles, thereby shortening the length of the 

lithium ion transmission path, increasing the conductivity and modifying the surface of 

LiCoPO4. On the other hand, the outer carbon layer can make the inner carbon layer more 

closely contact the active material, prevent the active material from directly contacting 

HF in the electrolyte, and prevent the inner layer from spalling during the charge and 

discharge process. 

(b) 
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Fig. 5. Charge and discharge curves of double carbon coated LiCoPO4 composite (a); Cycle 
performances of double carbon coated LiCoPO4 composite at 0.1C (b) 
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Fig. 6. Nyquist plots of the cells using LiCoPO4 samples synthetized with different carbon 
sources. 

 

Fig.6 presents the EIS impedance curves of the LCP and LCP/AB and double 

carbon coated samples LiCoPO4/G@PAS and LiCoPO4/G@AB at fully charged state 

after one cycle. The total impedance of the sample was mainly induced by the charge-

transfer impedance between the electrolyte and the electrode interface, which could be 

assigned by the diameter of the semicircle in the curve. The diameter of the semicircle of 

the double carbon coated LiCoPO4 was significantly smaller than that of pure LCP and 

single carbon coated LCP, and the impedance of the sample LCP/G@AB is the smallest. 

The small charge-transfer impedance of LCP/G@AB is attributed to the finer particles 

and the more stable architecture of double conducting layers, which benefits to its 

electrochemistry property distinctly, in accordance with its larger capacity. 

 

 
CONCLUSIONS 
 

 In summary, the pyrolytic carbon coated LiCoPO4 composites were synthesized 

by a micro-reactor assisted co-precipitation and then through a single/double carbon 

source coating route. LiCoPO4/AB presented the largest initial discharge capacity of 

138.06 mAhg-1 among all single carbon coated LiCoPO4 samples which could ascribe to 

the floc-like acetylene distributed in the LCP particles, thereby ameliorating the 

conductivity. And the discharge capacity and cyclability were further improved by 

glucose/AB and glucose/PAS coating, with initial capacities of 147.12 and 143.51 

mAhg-1, respectively. The longer cycle life of the LiCoPO4/G@PAS sample can be 

ascribed to the finer particles and the more stable architecture of double conducting 

layers. The facile routine reported herein may be extended to prolong the cycle life of 

other electrode materials.  
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Solar thermal systems (STS) are efficient and environmentally safe 
devices to meet the rapid increasing energy demand now a days. But it 
is very important to optimize their performance under required operating 
condition for efficient usage. Hence intelligent system-based techniques 
like artificial neural network (ANN) play an important role for system 
performance prediction in accurate and speedy way. In present paper, it 
is attempted to scrutinize the approach of ANN as an intelligent system 
based method to optimize the performance prediction of different solar 
thermal systems accurately. Here, 25 research works related to various 
solar thermal systems have been reviewed and summarized to 
understand the impact of different ANN models and learning algorithms 
on performance prediction of STS. Using ANN, a brief stepwise summary 
of research work on various STS like solar air heaters, solar stills, solar 
cookers, solar dryers and solar hybrid systems, their predictions (results) 
and architectures (network and learning algorithms) in the literature till 
now, are also discussed here. This paper will genuinely help the future 
researchers to overview the work concisely related to solar thermal 
system performance prediction using various types of ANN models and 
learning algorithm and compare it with other global methods of machine 
learning.  

 

Keywords: Solar energy; Solar thermal systems; Artificial Neural Network; Learning algorithm 
 
 

1. Introduction  
 

Energy is a primary feed in for almost all activities and economic development. 

Therefore, there is an ultimate dependency between the energy availability and the 

growth of a nation. Since energy is imperative to execute the operation of production, 

transport, agriculture and household services, the process of economic growth requires 

higher proportion of energy consumption, which forces us to focus on ensuring its 

continuous supply to meet our ever-rising demands [1-4]. 

The two main sources of energy are termed as conventional and non-conventional 

sources. Besides conventional energy sources like coal, petroleum and natural gas, some 

non-conventional energy sources also known as renewable energy sources are solar 

energy, wind energy, tidal energy and bioenergy. 

Within these renewable energy sources available on earth, solar energy is the 

most plentiful and clean source of energy. The sun produces a huge amount of energy 

which is accumulated through a system and further converted into heat and electricity. 
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As energy demand is increasing rapidly for industrial as well as domestic use, it is 

now becoming crucially important to develop solar thermal systems as an efficient 

solution for this huge energy demand procurement. It can be achieved well only by 

maximizing the performance of solar thermal systems under specific operating conditions. 

The experimental and mathematical study along with computational techniques, 

require a long time to come with precise results for a physical problem. On the other hand, 

the use of ANN technique as a performance prediction tool saves time and also provides 

key information patterns in a multi-dimensional information domain [5-35]. 

Compared to other computational techniques, ANN is simpler and more capable 

of solving complex non-linear relationship between the variables and extracted data [5]. 

The technique of Artificial Neural Network is used to model, optimize and predict 

a system's performance. Thanks to its faster processing speed and high accuracy, it has 

become more popular in the last two decades. Many researchers have used ANN 

technique in the domain of atmospheric sciences [6], chemical process control [7], energy 

systems [8, 9], modeling and control of combustion processes [10], photovoltaic 

applications [11], thermal science and engineering [12], sizing photovoltaic systems [13], 

refrigeration and heat pumps systems [14], nuclear engineering [15], controlling wind–

PV power systems [16], solar radiations prediction [17], heat exchangers [18],wind 

energy systems [19], solar systems designing [20], hybrid energy systems [21], solid 

desiccant systems [22], solar collector systems [23] and various thermal systems [24-35]. 

In the previous years, ANN had been used by numerous researchers in the domain 

of energy utilization and conversion systems for performance predictions, designing heat 

pumps and PV systems, air conditioning, wind and PV power systems, hybrid energy 

systems and many other thermal systems [24-35]. 

ANN is a powerful data-driven, self-adaptive, flexible computational tool having 

capability of handling large amount of data sets. Additionally, this technique is found 

very suitable for implicitly detecting complex non-linear relationship between dependent 

and independent variables with high accuracy. 

This inclusive review paper covers following points: 

1. A concise discussion on ANN, its types, its field and methodology of implementation, 

usage in different solar thermal applications.  

2. Different standard statistical performance evaluation criteria used in the evaluation of 

ANN performance are also discussed here. 

3. The application of ANN in various solar thermal systems like solar collectors, solar 

air and water heaters, photovoltaic/thermal (PV/T) systems, solar dryers, solar stills 

and solar cookers are summarized here. 

4. Conclusion and suggestions for future research are also outlined here. 

 

1.1. Solar Thermal Systems    
Solar systems are used to harness solar energy for generation of thermal or 

electrical energy that can be used in industrial and residential regions. Solar energy is 

used for heating of fluids also. A schematic chart of type of solar thermal systems is 

described in Figure 1. Chart clearly elaborates the classification of solar thermal systems 

according to their structure, construction material, and purpose of usage. Its application 

includes heating/cooling, desalination other than drying of fruits, meat, vegetables, egg 

incubation and other industrial purposes [1-3]. 
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Figure 1. Solar thermal systems and their applications 
 

 

2. Artificial Neural Network (ANN) 

Artificial neural networks are data processing systems identical to data processing 

software in the human brain. Figure 2 clearly shows that neurons are basic elements, and 

dendrites, cell body or soma and synapses are other components, within biological 

networks. Dendrites receives input signals or information, cell body works as a processor, 

synaptic works as a reference, and axon transmits output signals to other neurons and 

performs non-linear operations [5, 23]. ANN system consists of many processing 

components, known as neurons. 

 
Figure 2. Basic structure of biological neurons 

 

ANN functions work like the human brain in two ways: learning and storing 

information that is called weights in interconnected connections. The neuron collects 

multiple inputs in combination with attachment weights from other neurons and performs 

a nonlinear activation process and generates a single output data that can go to the other 
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neurons. Such input data is analyzed by the neurons and transferred to the next network 

layer. 

In the solar thermal systems, following ANN models are used majorly: 

1. Multi-layer feed forward neural network (MLFFNN) 

2. Radial basis function (RBF) 

3. General Regression Neural Network (GRNN) 

 

2.1 Multi-layer Feed Forward Neural Network (MLFFNN) 
The basic structure of multi-layer feed forward neural network (MLFFNN) is 

shown in Figure 3. The MLFFNN model basically contains three layers: one input layer, 

one or more hidden layers, and one output layer. Every neuron receives information from 

other neurons and moves over the hidden layers to the output layer. Interconnected nodes 

of storage termed as neurons, merge to render an ANN. Every neuron's output is the 

product of weighted inputs. The sum of weighted inputs formed by neurons is given as [5, 

72, 73]: 

1

n

i j i j

i

X w a b
=

 
= + 
 


 
(1) 

where, n is the number of input data (i = 0, 1, 2, 3………n) and wij are the 

interconnecting weights of the input data ai, respectively, and bj is the bias for the neuron. 

The information is stored in the form of set of connection weights and biases. A transfer 

function F through which the sum of weighted inputs with bias is processed and the 

output is given by Equation (2): 

1

( )
n

j i j i j

i

F X u F w a b
=

 
= = + 

 
  (2) 

Hidden and output layers generally have a linear or non-linear activation/transfer 

function. There are many types of learning algorithms available to derive the input-output 

relationships. The most commonly used algorithm is the learning algorithms for feed 

forward back propagation [57-59]. The widely used nonlinear activation function is 

sigmoid function whose output lies between 0 and 1, and the sigmoid transfer function is 

given by: 
1

( )
1 X

F X
e−

=
+

 (3) 

When values are resulted negative at input or output layer, then the tansig transfer 

function is used; which is expressed as: 

( )
X X

X X

e e
F X

e e

−

−

−
=

+
 (4) 

The model is trained in hidden layer, momentum variable, and transfer function 

with selected number of neurons. MLFFNN is the most common form of neural model to 

predict the efficiency of the solar thermal system. 
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Figure 3. Basic structure of MLFFNN structure 
 

2.2 Radial Basis Function (RBF) 
There are also three layers in the RBF model: input layer, hidden layer and output 

layer. RBF model's primary structure is shown in Figure 4. This is identical to the 

MLFFNN model's three layers. RBF and MLFFNN, both models are feed forward neural 

network. In the RBF model, the signals are collected at the input layer and passed 

through the hidden layer of the second layer, which generates the output data [48, 49]. 

The hidden layer of RBF model is Radial basis activation function. The hidden 

layer’s transfer function is normally a Gaussian function, which is expressed as [60, 62]: 
2

2
( ) exp

2

i j

j

j

x c
a x



 −
 = −
 
 

 
(5) 

where, σj is the width of the jth neuron, and xi and cj are the input and the center of RBF 

unit respectively. In Equation (6), aj is the notation for the output of the jth RBF unit.  

1

( ) ( )
n

k jk j k

j

y x w a x b
=

= +  (6) 

where, bk is the bias, yk is the kth output unit for the input vector x, wjk is the weight 

connection between the kth output unit and the jth hidden layer unit.  

 

 
Figure 4. Basic design of RBF structure 
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2.3 General Regression Neural Network (GRNN) 
Specht (1991) used the GRNN technique for the first time [71]. GRNN is a 

variant of the kernel regression network-based RBF architecture. In order to simulate the 

effects such as back propagation algorithms, this method does not need an iterative 

approach. It has its own capacity to approximate any arbitrary equation between vectors 

of input and output. [48, 49]. Generalized regression neural network (GRNN) technique 

is a probabilistic model between an independent (Input) and dependent (Output) variables. 

Figure 5 shows the basic structure of GRNN.  

The structure shows that the GRNN model consist of four layers: 

 Input layer  

        The first layer is termed as input layer which is fully connected to the second layer. 

The number of input neurons at this layer depends on the total number of selected 

observation variables. This layer gathers information and the pattern layer is given. 

Pattern layer 

        Pattern layer is used to perform clustering on the training process. Usually the 

number of pattern layer neurons is equal to the number of data sets of training pairs. 

Summation layer 

        Summation layer contains two neurons, namely D Summation and S Summation 

neuron. These two neurons in the summation layer derive the underlying relation [71]: 

( ) ( )
2

1

exp
2

i

T
n

i i

i

X X X X
D Y

=

 − −
 = −
 
 

  (7) 

( ) ( )
2

1

exp
2

T
n

i i

i

X X X X
S

=

 − −
 = −
 
 

  (8) 

Output layer 

        The fourth layer, i.e. the output layer, accomplishes normalization of output set by 

dividing the summation results in the summation layer. This results in the predicted value 

y to input vector x as below [48]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Basic structure of GRNN structure 
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3. Assessment Criteria for Model Performance 

 
The neural model performance assessment is approved on the basis of the 

selection of minimum values of the errors of SSE, MSE, RMSE, MAE, MRE and COV. 

The least values of these errors indicate the most accurate value of ANN predicted 

results. In addition to this, the best fit of ANN predicted data with actual available data 

in terms of coefficient of determination (R2) and correlation coefficient (R) are also 

considered as the selection criteria of model performance [71]. If the values of R2 or R 

are proximate to unity, the predicted results are confirmed to be more accurate. 

Sum of square error 
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Mean square error 
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Root mean square error 
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4. ANN Simulation Technique 

 

Figure 6. Basic steps flow chart of ANN simulation technique [71] 

 

The basic steps of ANN simulation technique are shown in flow chart Figure 6. 

These important steps are followed in ANN prediction [5, 65]. 

1. In ANN technique, variables are selected at first. 

2. Then data sets are collected by means of analytical and experimental procedure. 

3. Data is pre-processed and set into input and output data sets. 

4. Input data is divided into training, testing and validation sets. 

5. Model is developed by training with standardized input data using different learning 

algorithms with different number of hidden layers neurons. 

6. Based on statistical error analysis, model performance is checked. 

7. Now ANN model is ready for prediction. 

8. Finally, predicted data is extracted from the optimal model and correlated with actual 

data obtained through experiments. 

 

 

5. Application of ANN Technique for Performance Prediction of Solar 

Thermal Systems 

 
In the field of thermal engineering systems, the use of ANN methodology has 

been very widespread in the last two decades. Several researchers used ANN to model 

and forecast the thermal performance of solar thermal systems. Present paper explores the 

use of the ANN method to measure the thermal efficiency of different types of solar 

heating systems. 
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Figure 7. Literature review of different solar thermal systems (STS) 

 

Figure 7 shows the classification of solar thermal systems used in the present 

work. Numerous research works have been carried out for performance prediction of 

these thermal systems with and without artificial computational techniques. 

The important research works related to use of ANN modeling in the field of 

thermal energy systems are given below.  

 

5.1 Performance prediction of solar water/ air heating systems using ANN  
Kalogirou et al. [36] trained an artificial neural network (ANN) with minimum 

sets of input data for prediction of solar domestic water heating (SDWH) system’s usable 

energy extraction and stored water temperature rise. He used 18-8-2 (3 hidden layers with 

18 neurons) neural model of MLPNN network. For prediction of its performance, BP 

learning algorithm was used. The statistical R2 value for training data set was obtained as 

0.972 and 0.975 for two performance parameters. 

Farkas et al. [37] used ANN model to predict the performance analysis of flat 

plate solar collector. The ANN model was constructed with three input parameters of 

solar intensity, ambient temperature and inlet air temperature, and in output layer single 

parameter with outlet temperature of air. In the hidden layer, 7 neurons with two layers 

were taken. Basically, ANN model was structured with FFBP network. For training of the 

model, LM learning algorithm was used. The tansig and purlin transfer functions were 

used in hidden and output layer, respectively. The generated data from Hottel-Vhillier 

(H-V) model and heat network model with measured data for 17 days were used in 

training process of the model. Finally, they predicted satisfactory results of output 

temperature of three different types of solar collector. They found that overall average 

deviation in outlet temperature of solar collector was 0.9°C.  

Kalogirou [39] developed six ANN models to predict typical performance 

collector equation coefficients in both wind and no wind conditions, incidence angle 

multiplier coefficients in both longitudinal and transverse directions, collector time 

constant, collector heat capacity and collector temperature stagnation. Due to the different 

nature of the input and output needed in each case, different MLP networks of 3 and 4 

layers of neural model were used. This work had helped design engineers, probably with 

a combination of different materials, to obtain the quality parameters of 'new' collector 

models without having to perform experiments. 
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Sozen et al. [40] used MLP network of 7-20-20-1 neural model to predict the 

thermal performance of solar flat plate collector (Figure 8). Author used logistic sigmoid 

transfer function and Ankara's summer session meteorological information (from July to 

September) as training data. The network input layer used surface temperature of 

collector, time, location, solar radiation, angle of decline, angle of tilt and angle of 

azimuth. The maximum and minimum deviations were found 2.5584 and 0.0019 at 

27.2°C and 71.2°C surface temperatures, respectively. 

 

Figure 8. Experimental set up of solar water heater [40] 

Xie et al. [42] also estimated the performance of solar collectors under the 

meteorological conditions of Beijing using ANN with BP learning algorithm and logistic 

sigmoid transfer function. For this, authors prepared an experimental setup as shown in 

Figure 9.  In the input layer ambient temperature of collector, solar intensity, declination, 

tilt and azimuth angle were used along with efficiency and heating capacity for output. 

Results achieved that ANN of 5-10-10-2 system is the most suitable algorithm with peak 

correlation coefficient (R2) as 0.9999, (RMSE) as 0.0075 and low variance coefficient 

(COV) as 0.3384. Results indicated that the ANN predicted precisely matched 

experimental value for output.       
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Figure 9. Experimental set up of the solar collector under the meteorological conditions of Beijing 

[42] 

Varol et al. [43] experimentally measured the performance of the solar collector 

system using sodium carbonate decahydrate (Na2CO3.10H2O) as a substrate for phase 

change material (PCM) and comparison of collector efficiency was done with 

conventional systems without PCM (Figure 10). Authors found that use of PCM increases 

collector efficiency; thus, large amounts of solar energy can be stored while the daytime 

and used after sunset for water heating. Also performed numerous predictions by using 

three different soft computing techniques as Artificial Neural Networks (ANN), 

Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Support Vector 

Machines (SVM)and found that SVM technique give the best results than that of ANFIS 

and ANN. 

 

Figure 10. Experimental set up of the solar collector system using sodium carbonate decahydrate 

as PCM [43] 

Fischer et al. [45] reviewed that although the state-of-the-art approach for 

collector modelling and testing didn’t fit for some designs (e.g., “Sydney” tubes using 

heat pipes and “water-in-glass” collectors) which are difficult to model with the similar 

precision than conventional flat plate collectors. Hence authors carried out comparative 

performance measurements of flat plate and an evacuated “Sydney” tubular collector 

using NARX (Nonlinear Auto-Regressive model with exogenous inputs) architecture of 

ANN model. Researchers obtained results showed better agreement for the artificial 



 

Peer-Reviewed Review Article   Trends in Renewable Energy, 6 

Tr Ren Energy, 2020, Vol.6, No.1, 12-36. doi: 10.17737/tre.2020.6.1.00110 23 

 

neural network (5-5-1 & 5-4-1 neural model) approach between measured and calculated 

collector output compared to state-of - the-art modelling.  
Kalogirou et al. [47] structured neural  model with 7–24-2 neurons for prediction 

of thermal performance of thermo-siphon solar water heating system. For this work, they 

collected 54 data sets, in which 46 were used for training and rest of 8 used for testing. 

With the use of learning algorithm ANN model was trained and predicted results with 

maximum deviations 1 MJ and 2.2 °C for two output parameters. 

Esen et al. [50] had adopted ANN and WNN based methods for efficient 

modeling of SAH system. Efficiency of collector and air temperature were used as output 

parameters in those models. The proposed WNN method for 0.03 kg/s air mass flow rate 

was used to achieve efficiency/air temperature leaving values of 0.0094/0.0034 for 

RMSE, 0.9992/0.9994 for R2 and 2.7955/2.4100 for COV values. For the air mass flow 

rate of 0.05 kg/s in the flow pipe, the collector efficiency/air temperature values are 

0.0126/0.0058, 0.9992/0.9989 and 2.8047/3.9574. Authors found that WNN is reliable 

option for of SAH system efficiency prediction with satisfactory accuracy than that of the 

methods reported before. 

Caner et al. [52] experimentally examined two types-zigzagged and flat absorber 

surface type of solar air collectors (Figure 11) with 40 sample data sets each for 5 days. 

Authors calculated thermal performance by using data obtained from experimental setup 

and designed ANN model for calculation of solar air collector thermal performances for 

comparison with predicted values. Researchers proposed that LM based MLP network of 

8-20-1 neural model gave the best prediction results with 0.9967 errors by stepwise 

regression analysis. 

 

 
\ 

 
Figure 11. Zig-zaged and flat solar air collector [52] 

Benli [54] applied ANN technique with 8-3-1 ANN system with LM learning 

algorithm to assess the SAH thermal efficiency of 2 different types (trapeze and 

corrugated shaped absorber plate). He had a maximum R2 value of 99.71% for LM-3, a 
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minimum RMSE value of 4.18% for LM-3 for Type-I SAC and a maximum R2value of 

99.85% for LM-3 and a minimum RMSE value of 2.62% for LM-3 for Type-II SAC. 

Hamdan et al. [55] developed a 5-20-5 neural ANN model of an unglazed flat-

plate solar collector with air passing behind the absorbing plate to study the heat transfer. 

A NARX model estimated the mean indoor temperature at each solar collector surface 

and the heat given to the air flow. The results obtained were tested against the 

mathematical calculation used by the optimization technique to find the above values. 

Author found that the NARX model can be used for estimation of mean inside 

temperature at each surface of the flat-plate collector with coefficient of determination of 

0.99997. 

Kalogirou [67] used ANN method to predict the expected daily energy output for 

typical operating conditions, as well as the temperature level of large solar systems. For 

about 1 year (226 days) experimental measurements had been taken to estimate the ANN 

ability. Author found that 3-5-5-5-2 neural model of MLPNN network type with BP 

learning algorithm effectively predicts everyday system energy output (Q) and Tsmax 

(Maximum water temperature in the storage tank at the end of the day). The statistical R2-

value obtained for the training and validation data sets was better than 0.95 and 0.96 for 

the two performance parameters, respectively. 

Ghirtlahre and Prasad [56] have done prediction of thermal performance of 

unidirectional porous bed solar air heater. A process diagram of unidirectional flow SAH 

is shown in Figure 12. Authors used neural model to predict the performance of SAH 

using 4-5-3 neutral structure. They used in learning process four different types of 

transfer functions such as LM, CGP, SCG, and OSS. Authors concluded that trained LM 

training function are optimal transfer function for accurate prediction. 

 

Figure 12. Unidirectional flow solar air heater [56] 

Ghirtlahre and Prasad [62] have done exergetic performance prediction of SAH 

with different types of neural models as MLP, GRNN and RBF models of ANN technique. 

For that aim, they collected 210 data sets from experiments. They found that RBF model 

with 6-6-2 NN with LM training function is the best prediction model on basis of ANN 

analysis. 

Ghirtlahre and Prasad [61] used two different types of ANN learning algorithms 

such as LM and SCG to estimate performance of roughened SAH. They found that the 

model 6-6-1 and 6-7-1 with LM and SCG learning algorithm respectively was optimal for 

prediction. They also concluded that the LM based ANN model was best model.  
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Ghritlahre and Prasad [65] developed feed forward neural network model to 

predict the energy and exergy efficiency of transverse wire rib roughened solar air heater. 

To achieve this aim, they collected 50 sets of experimental data and calculated values of 

energy and exergy efficiencies. They structured NN model with 6 input parameters and 2 

output parameters. 4 to 7 numbers of neurons were used with LM and SCG learning 

algorithms for obtaining best model. It was found that the 6-6-2 neural model 

successfully predicted the data using LM learning algorithm.  

Cetiner et al. [66] constructed an experimental setup of solar water heater (Figure 

13), which consists of a cylindrical concentrator, an absorber, a heat exchanger, a pump, 

water storage and a control unit. Authors used MLP network of 4-7-3 neural model with 

LM learning algorithm to forecast system performance. Author executed a plot between 

easily measurable traits such as environmental conditions, input and output water 

temperatures, solar radiation and flow rate of hot water and obtained 40% system 

efficiency at power supplied of 18 kW maximum at noon and 6 kW minimum in the 

afternoon. 

 

 

Figure 13. Experimental set up of solar hot water generator [66] 
 

5.2  ANN Model for Performance Prediction of Solar Hybrid System (SHS) 
Facao et al. [38] did the prediction of performance of two hybrid types solar air 

collectors (plate and tube heat pipe type) using ANN. Authors constructed MLPNN 

model of 8-9-1, 9-3-1, 9-6-1 neural model and 9-84-1 neural model of RBFNN to 

calculate the solar efficiency and useful heat gained. MLP configuration with 6 hidden 

neurons found to be an excellent alternative to calculate useful heat and thermal 

efficiency for both designs. The networks were trained using results from mathematical 

models generated by Monte Carlo simulation. Between the two neural models, MLPs 

performed slightly better than RBFs.  
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Kamthania and Tiwari [53] had used ANN very uniquely for performance 

evaluation (thermal energy, electrical energy, and overall exergy) of a semi-transparent 

hybrid photovoltaic thermal double pass air collector (Figure 14). That ANN model used 

200 sets of data of ambient air temperature, global solar radiation, diffuse radiation and 

number of cloudless days as input parameters from 4 weather conditions (Srinagar, 

jodhpur, Mumbai and  Bangalore) for training and the 5th weather station (New Delhi) 

data has been used for testing purpose. Author finally found that MLPNN model of LM 

algorithm with 15 neurons in the hidden layer is the most suitable algorithm with RMSE 

ranges from 0.10–2.23% for various output parameters.  

 

Figure 14. Hybrid PV/T double pass SAH [53] 

Ammar et al. [46] proposed a PV/T (hybrid system) controlled algorithm based 

on ANN to detect the optimal power operating point (OPOP). The OPOP computes the 

optimum mass flow rate of PV/T for an acknowledged radiation and ambient temperature. 

Finally, the researchers constructed a FFNN network of 2-5-1 neural model for its 

estimation of OPOP of different mass flow rates at solar radiation (300-950 w/m2) and 

corresponding ambient temperatures (5-35 °C). Model performance estimated by 

calculating the Normal Mean Bias Error (NMBE) was found to be -13.05% 

5.3  ANN Model for Performance Prediction of Solar Dryers (SD) 
Cakmak and Yildiz [51] developed a novel type of dryer (Figure 15) particularly 

included an expanded surface SAC, a solar air collector with PCM and drying room with 

swirl element and estimated the drying rate using nonlinear regression analysis at 3 

different air velocities. Finally, authors estimated drying rate using FFNN and compared 

performance of this model with those nonlinear and linear regression models by RMSE, 

ME, and the correlation coefficient statistics. Based on error analysis results, authors 

achieved that 3-10-1 neural model of LM technique and hyperbolic tangent sigmoid 

activation function was the most suitable FNN configuration for transient drying rate 

prediction. 
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Figure 15. Complete Experimental set up of solar dryer [51] 

Tripathy and Kumar [41] investigated application of ANN for prediction of 

temperature variation of food product (potato cylinders and slices) with experimental data 

of 9 typical days of different months in a year. Researchers prepared various MLP 

network models of SCG (scaled conjugate gradient), CGP (Polak-Ribiere conjugate 

gradient), BFGS quasi-newton and LM training algorithms with logsig, tansig, poslin and 

satlin transfer functions for comparative analysis of performance. An experimental setup 

of solar dryer is shown in Figure 16. Researchers also proposed an analytical heat 

diffusion model and a statistical model and concluded that 4 neurons (2-4-1) network of 

LOGSIG transfer function and TRAINRP back propagation algorithm were the best 

model with minimum error for potato slices and cylinder both. 

 

 
Figure 16. Experimental setup of solar dryer [41] 

 

Nazghelichi et al. [44] did the energy and exergy prediction of carrot cubes in a 

fluidized air dryer by ANN. He conducted experiments with different air temperatures, 

bed width and square cubed dimensions and compiled total 518 data and determine 

energy and exergy of carrot cubes in fluidized bed dryer. By using these data, 4-30-4 
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ANN model was constructed and it successfully predicted energy and exergy with 

minimum error. 

5.4 ANN Model for Performance Prediction of Solar Cookers (SC)  

Kurt et al. [68] successfully predicted thermal performance of the experimentally 

investigated box type solar cooker including parameters such as enclosure air (Ta), 

absorber plate temp (Tp), and pot water temperatures (Tw) by using the ANN for the very 

first time. Cross section of that solar cooker is presented below in Figure 17. Authors 

used 126 experimental data sets, i.e. 96 for training/learning and 30 for validation of 

network performance. Researchers concluded that 5-10-3 neural model of FFNN of BP 

algorithm showed the best prediction results with the correlation coefficients ranging 

between 0.9950–0.9987 and MREs ranging 3.925–7.040 %. 

 

Figure 17. Cross section of solar cooker [68] 

 

5.5 ANN Model for Performance Prediction of Solar Stills (SS) 
Mashaly et al. [69] determined the modelling feasibility instantaneous thermal 

efficiency (ἠith) of a solar still by using weather and operational data with MLP neural 

network and multiple linear regressions (MLR). Authors used nine variables as input 

parameters: Julian day, ambient temperature, relative humidity, wind speed, solar 

radiation, temperature of feed and brine water, total dissolved solids of feed water and 

brine water for both models. Performance evaluation revealed that COD for MLP model 

was 11.23% higher than for the MLR model. The average value of RMSE for the MLP 

model (2.74%) was lower compared to the MLR model. 

Hidouri et al. [70] had determined performance of single slop hybrid solar still 

integrated with heat pump (SSDHP) by experimental study and compared with suitable 

ANN model. Authors evaluated the effect of an air compressor on productivity of SSDHP 

and predicted ANN models for different combination of most influential parameters (the 

solar radiation, glass cover temperature, basin temperature, water temperature and 

temperature of the evaporator). Authors concluded that SSDHP with air was recorded 

33.33% higher yield as compared to the SSDHP without air. For training, validation, test 

and all, value of R was found equal to 0.99454, 0.99121, 0.99974 and 0.99374, 

respectively, in ANN’s proposed model which shows very good agreement with the 

experimental result. 
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Table 1. Summary report of literature survey on application of ANN technique 
used in solar thermal systems 

S. 
No. 

Authors Year System Used Neural 

Model 

Network 

Type 
Learning 

Algorithm 
Work carried out/ 

Result 

1. Kalogirou 

et al. [36] 
1999 Solar domestic 

water heater 
8-18-2 MLPNN BP Found statistical R2 

value approx. 0.97 

2.  Kalogirou 

et al. [47] 
1999 Solar water 

heater 
7-24-2 MLPNN BP Found maximum 

deviations of 1 MJ 

and 2.2oC. 
3. Cetiner et 

al. [66] 
2005 Solar water 

heater 
4-7-3 MLPNN LM Obtained 40% 

system efficiency at 

power supplied of 

18kW max. and 

6kW min. at noon 
4. Farkas et 

al. [37] 
2003 Flat plate solar 

collector 
3-7-1 MLPNN TRAINLM Found 3-7-1 MLP 

network for optimal 

performance 

analysis. 

5. Facao et al. 

[38] 
2004 Hybrid solar 

collector  / 

heat pipe 

system 

ANN: 
8-9-1, 
9-3-1, 
RBF: 
9-84-1 

MLPNN 
RBFNN 

BP, 
RBF 

Found MLP better 

than RBF 

6. Kalogirou 

[39] 
2006 Flat plate solar 

collector 
Six models MLPNN BP Found ANN fast 

and precise than 

conventional 

methods 

7. Sozen et al. 

[40] 
2008 Flat plate solar 

collector 
7-20-20-1 MLPNN BP Collected 

experimental data 

from July to 

September for 

constructing ANN 

model with 7-20-

20-1 neurons 
8. Esen et al. 

[50] 
2009 Double flow 

SAH 
6-4-2, 

6-5-2 

ANN, 
WNN 

ANN: LM, 

SCG, 
CGP 

WNN: LM 

WNN model found 

best compared to 

ANN model 
 

9. Kurt et al. 

[68] 
2007 Solar cooker 5-10-3 FFNN BP R2 ranging 0.9950–

0.9987 and MREs 

ranging 3.925–

7.040% 
10. Tripathy 

and Kumar 

[41] 

2009 Solar air dryer 2-4-1 MLPNN SCG, 

CGP,LM, 
RP,BFG 

Found 2-4-1 

TRAINRP model as 

most appropriate 
11. Xie et al. 

[42] 
2009 Solar collector 5-10-10-2 MLPNN BP Results found as 

R2=0.999, 

RMSE=0.0075, 
COV=0.3384 
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12. Varol et al. 

[43] 
2010 Solar collector  

(phase change 

material) 

5-7-1 MLPNN LM SVM > ANFIS, 

ANN 

13. Caner et al. 

[52] 
2011 zigzag and flat 

absorber 

surface SAH 

8-20-1 MLPNN LM Found 8-20-1 best 

neuron model of 

LM learning 

algorithms 
14. Nazgheli-

Chi 
et al. [44] 

2011 Fluidized bed 

solar dryer 
4-30-4 MLPNN LM Found 4-30-4 ANN 

model prediction 

with min error 
15. Kamthania 

et al. [53] 
2012  hybrid PV/T 

double pass air 

collector 

4-15-4 MLPNN LM Taken input 

parameters from 4 

weather conditions 

for training and 5th 

weather station data 

used for testing. 
16. Fischer et 

al. [45] 
2012  Flat plate and 

Sydney 

tubular solar 

collector 

5-5-1, 

5-4-1 

NARX LM Used conventional 

flat plate and an 

evacuated “Sydney” 

tubular collector.  
17. Benli [54] 2013 Corrugated 

and trapeze 

shaped 

collector SAH 

8-3-1 MLPNN LM Used 8-3-1 ANN 

model with LM 

training algorithm 

18. Ammar et 

al. [46] 
2013 Hybrid PV/T 

SAH 
2-5-1 FFNN LM Found NMBE to be 

-13.05% for OPOP 

estimation 
19. Hamdan et 

al. [55] 
2014 Flat plate solar 

air collector 

(unglazed) 

5-20-5 NARX Rprop Concluded with a 

NARX model with 

R2 values as 

0.99997 
20. Kalogirou 

et al. [67] 
2014 Solar air 

collector 
3-5-5-5-2 MLPNN BP Found R2 values for 

training & 

validation = 0.95 & 

0.96 
21. Ghritlahre 

and Prasad 

[56] 

2017 Porous bed 

solar air heater 
4-5-3 MLPNN LM, CGP, 

SCG, and 

OSS 

Found 4-5-3 LM 

model as optimal 

transfer function 

with min. error 
22. Ghritlahre 

and Prasad 

[60] 

2018 Porous bed 

solar air heater  
(unidirectional 

flow) 

6-6-2 MNP, 

GRNN, 

RBF 

LM Observed RBF 

model is best wrt 

MLP and GRNN 

for exergy 

prediction R2 as 

0.9999 
23. Ghritlahre 

and Prasad 

[61] 

2018 Transverse 

wire rib 

roughened 

SAH  

6-6-1 

6-7-1 

MLPNN LM, 
SCG 

Found 6-6-1 LM 

based ANN model 

as optimal wrt 6-7-1 

SCG model 

24. Mashaly et 

al. [69] 
2016 Hybrid Solar 

Still 
9-12-1 MLP 

MLR 

LM RMSE for MLP 

model (2.74%) was 

lower compared to 

the MLR model 
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25. Cakmak 

and Yildiz 

[51] 

2011 Solar Dryer 3-10-1 FFNN LM Predicted drying 

rate using optimal 

model with 3-10-1 

 

 

6. Suggestions for Future Research 

 

It is reviewed above that many researchers have done performance prediction of 

different types of solar thermal systems successfully by applying ANN. Although 

researchers had approached almost every type of solar thermal systems for 

implementation of ANN and suggested to utilize it as more efficient, simple and speedy 

tool than conventional computational methods for designing and performance prediction; 

there are still many aspects untouched. Some potential points that can be carried forward 

for further research are pointed below: 

(i) Researchers had used different input parameters for performance prediction of 

solar thermal systems, but the relevant input parameters are not classified yet.  

(ii) Comparative analysis of ANN modeling with conventional approach like SVM, 

RSM, GA and MLR has not been done. 

(iii) Hybrid technology like GA with ANN has not been used effectively. 

(iv) Very limited number of training algorithms has been used for ANN modeling. 

(v) The numbers of neurons in hidden layer can be estimated by various formulas to 

predict the best results which are given by various researchers [63, 64]. 

(vi) By the use of SA approach ANN model may be optimized. 

(vii) Neural models can be optimized by ANT colony algorithm. 

 

 

7. CONCLUSION 

 

In this paper, a comprehensive review has been carried out for performance 

prediction of different solar thermal systems using ANN technique. This review covers 

performance prediction of various solar thermal systems like solar air heater, solar cooker, 

solar dryer, solar stills, solar water heater and solar hybrid systems through different 

ANN modeling (MLP, RBF, GRNN, NARX and WNN) and different learning algorithms 

(LM, SCG, CGP, OSS) successfully presented by previous researchers. It is outlined by 

most of the researchers that ANN is potentially superior for modeling of these devices 

due to its high accuracy, simplicity and short computing time with respect to other 

modeling techniques.  

       This paper will genuinely help the future researchers to overview the work concisely 

related to solar thermal system performance prediction using various types of ANN 

models and learning algorithm and compare it with other global methods of machine 

learning.  
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The conventional Total-Cross-Tied (TCT) Solar photovoltaic (SPV) array 
configuration has the highest power output as compared to other 
configurations or topologies in most cases of partial shading. But the 
performance of TCT configuration is affected under shading conditions, 
resulting in multiple peaks occurring in the output PV characteristics. To 
improve the performance of TCT array configuration under different 
shading scenarios, it is only necessary to reposition or rearrange the PV 
modules in the TCT Solar PV array based on the arrangement of puzzle 
numbers, without altering the electrical contacts of the TCT array 
configuration. The main objective of this study is to investigate the 
performance of rearrangement of modules in SPV array based new TCT 
array configurations with shade dispersion technique and compare the 
global maximum peak power (GMPP) of SPV array, mismatch losses, 
Fill-Factor, efficiency and number of required electrical connections or 
ties between array modules with proposed optimal arrangement of 
modules under shading (non-uniform irradiance) conditions. For this 
study, one uniform irradiance case and total 14 partial shading patterns 
were considered. MATLAB/Simulink software was used for modeling and 
simulation of 6×6 size different rearrangement based TCT array and 
proposed optimal SPV array configurations.  

 
Keywords:  Photovoltaic cells and modules; Array output power; Interconnections; Mismatch power 

losses; Fill-factor; Efficiency; Partial shading 

 

 

1. Introduction  
  

The freely available irradiance in the atmosphere is directly converted into 

electricity through the photovoltaic (PV) effect with the help of solar photovoltaic (SPV) 

cells in a PV module. The freely available solar energy is used for different applications 

in our daily life. The first solar photovoltaic cell was developed in 1954 with a very low 

efficiency of 5% which has now reached up to 25%. The efficiency of PV modules 

gradually reduced to a lower value of less than 10%, because of partial shading effect in 

an array [1-4]. The performance of a SPV array under shading conditions can be 

improved by means of reconfiguration methods. The main conventional PV array 

configurations are parallel, series, series-parallel(S-P), Honeycomb (HC), bridge linked 

(BL) and total cross-tied (TCT) type [5-6] of connections. Among all conventional type, 

the TCT has the highest power output and minimum mismatch losses under various 

shading scenarios as presented in the literature [6-8]. The main I-V characteristic 
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parameters are Voc, Vm, Isc, Im and Pm. The factors including manufacturer tolerance, 

uneven surface soiling, light-induced power degradation, discoloration and cracking are 

responsible for the I-V mismatch (differences of I-V parameters of PV modules in the 

SPV array) in modules, which causes mismatch losses in the SPV array and typically 4% 

to 7% energy loss. The performance of the TCT configuration is improved under shading 

conditions by repositioning or rearrangement of the modules based on puzzle patterns in 

an array configuration. In the TCT configuration based on number puzzles, the 

arrangement of modules mainly includes Sudoku, Arrow Sudoku, Ken-Ken, Skyscrapers, 

Non-symmetric, Chaotic-Based-Map, Odd-Even, Futoshiki, Latin square, Magic square, 

current based arrangement (Im based TCT) and voltage based arrangement (Vm based 

TCT) photovoltaic configurations [8-10]. Based on the shading pattern, the optimal 

location of each module in the TCT SPV array is determined with the help of puzzle 

number analysis without modifying the electrical interconnections among the modules. In 

this article, the various rearrangement methods used for enhancing the maximum power 

of the SPV array under shaded conditions presented in the literature are analyzed, and the 

parameters such as global maximum power (PGMPP), mismatch losses (mmlosses), fill-

factor (FF) and efficiency are compared. This paper proposes an optimal interconnection 

for a 6×6 size TCT array configuration under 14 different possible shading scenarios. 

Compared to S-P and rearrangement-based TCT SPV array connections, the proposed 

optimal interconnection technique minimizes the requirement of number of electrical 

interconnections or ties among modules and also reduces mismatched power losses. The 

optimal method proposed creates an alternative path for current distribution between 

modules under unshaded and partially shaded conditions with minimum number of 

interconnections or ties. The performance of the TCT array topology is improved by 

rearrangement of modules to the optimal location, but wiring losses increase due to 

repositioning of every module in an entire array configuration. The proposed method 

minimizes the installation cost, requirement of wires, wiring installation time and 

complexity of interconnections among modules as compared to rearrangement modules 

based TCT configurations of the SPV system. The output array power of the optimal 

method is nearly same as rearranged based TCT configuration by considering wiring 

losses of repositioning modules in an array.  

 
 
2. System Design 

 

2.1 Mathematical Modelling of Solar PV Cell and Array 
The solar PV cell converts solar PV energy into electrical energy. Figure 1 shows the 

equivalent circuit of a single diode PV cell and symbol of PV cell. 

 
Figure 1. Modeling of solar PV cell: (a) symbol (b) equivalent circuit of a PV cell 
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The mathematical representation of the solar photovoltaic cell is given by in 

Equation1 [11]. 

 

𝐈 = 𝐈𝐋 − 𝐈𝐑𝐒 [𝐞𝐱𝐩 {
𝐪(𝐕 + 𝐈𝐑𝐒)

𝐕𝐓𝐡 𝐚
} − 𝟏] −

(𝐕 + 𝐈𝐑𝐒)

𝐑𝐏

    … … … … (1) 

 

Where V and I are the solar PV cell voltage and current respectively. IL is the photo 

generated current of the PV module and represented as 

𝑰𝑳 =
𝑮

𝑮𝟎

[𝑰𝑳𝑺𝑻𝑪 + 𝑲𝒊𝒔𝒄(𝑻𝒄 − 𝑻𝑺𝑻𝑪)]               … … … … (2)  

Kisc is the module short-circuit co-efficient. ILSTC is the module light generated current at 

standard test conditions (STC). G is the incident irradiation and G0 is standard irradiation. 

Tc and TSTC are the actual and STC temperatures in Kelvin. 

The PV array consists of NP and NS number of PV modules that are connected in 

parallel and series, respectively, is shown in Figure 2. 

 

 
Figure 2. Solar PV array with number of modules 

 

The PV array current is mathematically represented in Equation 3[12]. 

 

𝐈𝐀 = 𝐈𝐩𝐡𝐍𝐏 − 𝐈𝐑𝐒𝐍𝐏 [𝐞𝐱𝐩 (
𝒒 (𝐕𝐀 + 𝐑𝐒 (

𝐍𝐒

𝐍𝐏
) 𝐈𝐀)

𝐕𝐓𝐡 𝒂
) − 𝟏] − [

𝐕𝐀 + 𝐑𝐒 (
𝐍𝐒

𝐍𝐏
) 𝐈𝐀

𝐑𝐏 (
𝐍𝐒

𝐍𝐏
)

] … … (𝟑) 

                        

where IA: array current; VA: array voltage [V]; Iph and IRS are solar cell photo current[A] 

and diode reverse saturation current [A], respectively; RS and RP are series and parallel 

resistances[Ω], respectively; A: Diode ideality factor (value 1 to 5); VTh: cell thermal 

voltage [V] as VTh=kTC/q; TC: solar cell absolute operating temperature  [K]; q: electron 

charge [1.602×10-19 coulombs]; k: Boltzmann’s constant [91.38065e-23 J/K]. 

The simple 6×6 size PV plant with series-parallel (SP) connection is shown in 

Figure 3. Each string consists of 6 (M) series connection modules and connects 6 number 

of strings (N) in parallel to form a SP configuration. 
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Figure 3. Simple 6 x 6 size series-parallel connection type PV Plant 

 

Solar PV array configuration is formed by number of modules connected in 

parallel and series [12-13]. Vm and Im are the un-shaded SPV module voltage and current, 

respectively. If the n number of modules are connected in series, the current through 

series modules is the same, but the voltage across the array is the sum of individual 

module voltages. In series connection, the total power is calculated by Equation 4, 

 
𝐼array = 𝐼string = 𝐼m1 = 𝐼m2 = ⋯ = 𝐼mn = 𝐼m

𝑉array = 𝑉m1 + 𝑉m2 + 𝑉m3 + ⋯ + 𝑉mn = 𝑛𝑉m

𝑃𝑎𝑟𝑟𝑎𝑦 = 𝑛𝑉𝑚𝐼𝑚

  }                                                   ---- (4) 

 

When the SPV modules are connected in parallel, the voltage across each module 

is the same, but the total current of array is the sum of currents of each module. In 

parallel connection, the total power is calculated by Equation 5, 

 
𝑉array = 𝑉m1 = 𝑉m2 = ⋯ = 𝑉mn = 𝑉m

𝐼array = 𝐼m1 + 𝐼m2 + ⋯ + 𝐼mn = 𝑛𝐼m

𝑃array = 𝑛𝑉m𝐼m

}                                                     ---- (5) 

 

The current and voltage of the SPV array for ith row and jth column (i × j = n) in 

array configuration are given by Equation 6. 

 
𝐼array = 𝑗𝐼m

𝑉array = 𝑖𝑉m 

𝑃array = (i x j) 𝑉m𝐼m = 𝑛 𝑉m𝐼m

}                                                     ---- (6) 

 

The power will be reduced, when all modules in the SPV array configuration are 

uniformly shaded with shading factor Sf. The array power is given by Equation 7, 

 𝑃array = 𝑆f x 𝑛 x 𝑉mx 𝐼m                                                    ---- (7)   
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2.2 Specifications of Solar PV Module 

  In this paper, in order to model and simulate different rearranged based SPV array 

configurations, the Vikram Solar ELDORA 270 PV module available in MATLAB/ 

Simulink is considered. The PV module specifications under STC (1000 W/m2 and 25℃) 

are tabulated in Table 1. 

 

Table 1. Specifications of Vikram Solar ELDORA 270 module 

  

 

2.3 Solar Photovoltaic Array Configurations 

The main conventional configurations or topologies based on type of connections 

of PV modules in SPV array are classified as:  

 a. Series (S) connection type configuration 

 b. Parallel (P) connection type configuration 

 c. Series-Parallel (S-P) connection type configuration 

 d. Bridge-Linked (B-L) connection type configuration 

 e. Honey-Comb (H-C) connection type configuration 

 f. Total-Cross-Tied (TCT) connection type configuration 

In the series connection type, all modules are connected in series. In the parallel 

connection type, all modules are connected in parallel as shown in Figure 3. The S and P 

type of connections are not suitable for applications, because high currents exist in the 

parallel type and high voltages in the series type [14-15]. In the SP connection, series 

connected modules known as strings are connected in parallel. In the TCT type of 

connection, ties are connected among modules to get more power. The formation of 

different types of SPV array topologies from photovoltaic cell to array configurations is 

shown in Figure 4. 
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Figure 4. Formation of 4×4 size solar PV array topologies 
 

2.4 Rearrangement of SPV modules based Total Cross Tied (TCT) 
configurations: 

The modules in each row and column of TCT topologies are rearranged for 

enhancing the output power of the SPV array. Based on the rearrangement of modules, 

the TCT topologies are classified into, 

i. Su-Do-Ku based TCT configuration 

ii. Arrow Su-Do-Ku based TCT configuration 

iii. Ken Ken- TCT configuration 

iv. Skyscrapers- TCT configuration 

v. Non-Symmetric TCT configuration 

vi. Chaotic Baker Map (CBM)-TCT configuration 

vii. Odd-Even TCT configuration 

viii. Futoshiki – TCT configuration 

ix. Latin Square-TCT configuration 

x. Magic square-TCT configuration 

xi. Current based (Im based) TCT configuration 

xii. Voltage based (Vm based) TCT configuration 

The above module re-arrangements in a 6×6 SPV array are based on the puzzle 

pattern arrangement. In this method, the electrical contacts of modules in the SPV array 

configuration are un-changed and repositioning the existing modules to new place 

according to puzzle-based numbers [6-10]. The performance of TCT configuration under 

this rearranged method is improved compared to conventional TCT configuration. 

 

Proposed Optimal Configuration 

The proposed optimal interconnection topology for the TCT array is developed 

from the connection switch (CS= 0 or 1) method as explained in Section 3.1. In this 

proposed method, the electrical connections between modules in SPV array 
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configurations are minimized. These interconnections are based on the shading pattern in 

the array configuration. 

 

 

3. Proposed Optimal TCT Array Configuration 
 
3.1 Methodology 

In the proposed optimal interconnections among modules, the entire PV array 

system (any PV plant has a capacity of few KW to MW) is sub-divided into a small 2×2 

size SPV sub arrays. The simulation results of a 2×2 sub array with tie connection switch 

(TCS=0/1) analysis [11], i.e., if tie connection (tie) or interconnection is present means 

TCS=1 or absent means TCS=0, among the PV modules under seven possible shading 

cases for irradiances 500 W/m2 and 700 W/m2 are tabulated in Table 2. Figure 5 shows 

the PV modules S1, S2, S3 and S4 of 2×2 sub array with possible shading cases [11]. 

In Case I, all modules receive a constant solar irradiance of 1000 W/m2 and the 

maximum power generated with tie connection and without tie connection is 6676 W. So, 

a tie connection is required. In Case II, the irradiance of module S1 is 500 W/m2 and S2, 

S3, S4 modules receive an irradiance of 1000 W/m2. Under this case the array power 

without tie connection is less than that with tie connection, so a tie is required among 

modules. In Cases III, IV and V, two modules are shaded as shown in Figure-5. If the two 

modules are shaded in horizontal (S1, S2) or vertical (S1, S3) positions in four positions, 

the array output power is the same, so tie is not required. If the diagonally connected 

modules are shaded, a tie between the SPV modules is required for the maximum array 

power. In Case VI: modules S1, S2 and S3 are shaded and module S4 is un-shaded. The 

output power of 2×2 array with tie connection is higher than that without tie connection, 

so a tie is required. In Case VII: all four modules are shaded and the power of SPV array 

with and without tie is the same, so a tie connection is not required among the modules. 

 

 
Figure 5. Possible shaded cases for 2×2 PV array 

In Cases I, III, V and VII, the array power is equal in with and without the tie 

connection, so the tie is not required. But in Cases II, IV, VI, the global maximum power 

of the SPV array with a tie connection is higher than that without a tie connection. In this 

condition, a tie connection is required among modules for maximizing power. According 

to the above cases, it can be concluded that the power output of the SPV array depends on 

the location of number of shaded modules in an array configuration. In most cases, the 

requirement of a tie among SPV modules in the proposed optimal method is less and the 

number of electrical connections among the modules is minimized. From Table 2, it is 

concluded that the tie among the modules in an array is required for one shaded module, 
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two diagonally shaded modules or three shaded modules cases, while the interconnection 

or tie is not necessary among modules for other cases. 

 

Table 2. Maximum powers for different irradiance levels 

 
 

3.2 Modeling of Optimal Interconnection Configuration for Shading Case 9 and 

Case 14 

In this section, the modeling of 6×6 size solar PV array configurations by the 

proposed optimal interconnection method are presented.  

 
Figure 6. 6×6 size solar S-P PV array with interconnections among modules 

 

In the proposed method, the entire 6×6 size PV array is sub-divided into a small 

number of 2×2 arrays, and the number of electrical connections, i.e., interconnections 

required for connection of modules in an array configuration, is developed with the 

concept of proposed tie connection switch (TCS) method as described in Figure 6 in 

Section 3.1. TCS=1 means a tie connection present and TCS=0 means a tie connection 

absent between SPV array modules. The a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, 

v, w, x and y are the proposed interconnections/ties among the modules in the 6×6 size 

PV array system. The number of inter-connections required in the SP configuration is 0, 

while the number of interconnects required in the TCT array configuration is a maximum 
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of 25. In the proposed optimal topology, it depends on the number of shaded modules in 

the SPV array configuration. If the shaded modules in a 2×2 sub array are one, diagonally 

shaded two modules or three shaded modules, the tie/ interconnection required. In other 

cases, i.e., two shaded modules either horizontally shaded or vertically shaded, all four 

modules shaded or all four modules unshaded conditions, the tie is not required. This 

method reduces the wiring losses and wiring cost at the time of installation. The array 

output power of the proposed optimal topology is higher than that of the SP configuration 

and less than that of the TCT topology. By considering the wiring losses of rearranged 

based TCT configurations, the power output of proposed optimal configuration method is 

almost equal to that of the TCT configuration. The different partial shading cases (1 to 

14) and uniform case-U are shown in Figure 7. The number of interconnections in SP, re-

arranged based TCT and optimal TCT configurations for cases 9 and 14 are tabulated in 

Table 3 and for all cases 1 to 14 are tabulated in Table 4. 

 

Table 3. Optimal interconnection results for cases 9 and 14 

 

 

Table 4. Optimal interconnection results for different cases 

  
 

3.3 Partial Shaded Photovoltaic Array 
The irradiance received by an SPV array is less than 1000 W/m2, i.e., non-

uniform irradiance due to the shading effect. The main reason for shading is due to 

changes in tilt angles of modules, shading nearby buildings, clouds, bird litters, falling 

tree leaves on modules, and dust formed on modules because of pollution. In this work, 

for the performance analysis of 6×6 size re-arrangement based TCT SPV array 

configurations and proposed optimal TCT configurations, total fourteen partial shading 
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scenarios and one uniform case-U are considered, and the results including global 

maximum peak array power, shading losses, fill-factor, efficiency and number of ties 

required among modules in SPV array configurations are compared. Figure 7 shows the 

different irradiance values for partial shaded photovoltaic array for cases 1 to 14. 

 

     
Figure 7. Proposed partial shading cases for 6×6 SPV TCT array configurations 

 
 
4. Modeling and Simulation of Re-arrangement of Solar PV Modules Based 
TCT Configurations 
 

4.1 Rearrangement of Modules in 6×6 TCT Solar PV Array 
As shown in Figure 8, the photovoltaic modules are arranged in row and column 

wise for a 6×6 size conventional TCT array configuration. The number 11 indicates 1st 

row and 1st column, 12 indicates 1st row and 2nd column and similarly for 66 means 6th 

row and 6th column. In SP,TCT and optimal TCT type of configurations the modules 

doesn’t change their positions in an SPV array, whereas in remaining rearranged based 

TCT array configurations the position of modules is rearranged based on the puzzle 

number pattern. In this rearrangement module-based configurations, the modules in every 

column or row are changed to other columns or rows in the entire 6×6 size array 

depending on the type of puzzle used. As shown in Figure 9, the rearrangement of 

modules is based on the puzzle number patterns, including Sudoku, Arrow Sudoku, Ken-
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Ken type, skyscrapers type, Non-symmetric, CBM, Odd-Even, Futoshiki, Latin Square, 

Magic Square, Im based (current based arrangement) and Vm based (voltage based 

arrangement) method [15-16]. For the Im based method, let’s consider a 6×6 TCT array 

with 36 modules which are rearranged by Im values of SPV module as shown in Figure 

9. In the proposed rearrangement method, only modules are rearranged in different rows 

or columns without altering the electrical connections of SPV array configurations. So, 

the shade will be dispersed to a new row or column in the array. It improves the 

performance of photovoltaic array configurations, compared to other conventional 

configurations. In this rearrangement-based configuration, the performance will be 

improved but it requires more wires for repositioning of modules to a new row or column 

in an array. It leads to wiring losses and increases the installation cost of the solar plant. 

The rearrangement of modules based on Sudoku puzzle for TCT configuration is shown 

in Figure 8. In a similar way, remaining SPV TCT array configurations are rearranged 

based on puzzle patterns shown in Figure 9. 

In the Series-Parallel configuration, series connection of modules (strings) are 

connected in parallel shown in Figure 4(c). The TCT array topology is formed from 

interconnecting the rows of the junction of SP scheme through ties. In the optimal TCT 

configuration type, ties are connected between modules, depending on the number of 

shaded modules and their locations in an array configuration. In Sudoku, Arrow Sudoku, 

Ken-Ken, Non-symmetric and Latin square type, modules in 1st column are unchanged, 

while the positions of 2nd, 3rd, 4th, 5th and 6th column modules are changed and based on 

the puzzle pattern. In skyscraper, CBM, Odd-Even and Futoshiki type of TCT array 

configurations, all modules in each row and column are changed to the new optimal 

location in an array according to puzzle arrangement shown in Figure 9. 

 

 
Figure 8. Proposed Su-Do-Ku puzzle based re-arranged TCT SPV array configuration 
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Figure 9. Rearrangement of modules in TCT SPV array Configurations based on puzzle patterns 

 

 

4.2 Shade Dispersion Analysis of Su-Do-Ku Puzzle Based TCT SPV Array 
Configuration 

Figure 10 shows the shade dispersion analysis for the Sudoku puzzle based TCT 

configuration. As shown in Figure 10(a), a 6×6 size TCT PV array consists of 6 rows and 

6 columns of modules. In this method, the PV modules are repositioned in each row and 

column based on puzzle patterns without altering electrical connections. These electrical 

interconnections are the same as that of the TCT array topology. The module 

arrangement in Sudoku pattern is shown in Figure 10(b). The modules in the 1st column 

remain unchanged and modules in remaining five columns are changed their positions as 

shown in Figure 10(c). For the 5th row of the TCT array configuration that is completely 

shaded, the modules are repositioned to new optimal location in a same column by 

rearrangement of modules based on Sudoku puzzle. In the Sudoku arrangement, the 

modules are re-arranged to a new position, compare to previous positions as shown in 

Figure 10(a). In this arrangement, the position of the shaded modules is changed, and the 

shade will be dispersed to a new position, as shown in Figure 10(d) of shade dispersion 

with Sudoku-TCT configuration. By this shade dispersion technique, the shading on the 

TCT array configuration is dispersed without altering the electrical connections by 

simply repositioning of existing modules in an array, and it improves the output power of 

array as compared to the conventional TCT configuration. 
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Figure 10. Su-Do-Ku based TCT configuration with shade dispersion technique 

 

4.3. Performance of Rearrangement Modules Based TCT SPV Array 
Configuration 

This section describes the comprehensive study on SP, TCT, optimal TCT and 

puzzle-based rearrangement of TCT array configurations [8-10] under one uniform case-

U and 14 number of shading scenarios (Cases 1-14). The proposed optimal 

interconnection technique is applicable for PV systems of any size, improves the array 

power, and requires a minimum number of ties and low shading losses, compared to SP 

and TCT configurations. This optimal method doesn't require any switches or sensors, so 

it is simple to implement [9-13].  

The interconnections or ties among modules are a, b, c, d, e, f, g, h, i, j, k, l, m, n, 

o, p, q, r, s, t, u, v, w, x and y, as shown in Figure 6. For SP configurations, no tie 

connections are required, and in puzzle based rearranged TCT configurations, a total 25 

ties are required among modules. In the case of the proposed optimal configuration, only 

a smaller number of ties is required, which depends on the shading pattern. In this 

proposed optimal method, the mismatch losses given in Equation 8 are reduced compared 

to the series-parallel configuration, and the number of interconnections or ties are 

minimized compared to the TCT array configuration. It also reduces the installation time, 

cost, cable losses, and wiring required for installation of PV system. 

 

Mismatch power loss  𝑷𝒎𝒎𝒍𝒐𝒔𝒔 (𝑾) =  𝑷𝒎𝒖 − 𝑷𝒎𝒑𝒔𝒄                       … … … … (𝟖)                

% Power loss  =  
𝑷𝒎𝒖−𝑷𝒎𝒑𝒔𝒄

𝑷𝒎𝒖
x 𝟏𝟎𝟎                                                          … … … … (𝟗)                                               

Fill-Factor (FF)  =
𝑽𝒎𝒑𝒑 ∗ 𝑰𝒎𝒑𝒑

𝑽𝒐𝒄 ∗ 𝑰𝒔𝒄
                                                                  … … … … (𝟏𝟎)                                         

Efficiency, η = 
𝑽𝒎𝒑 ∗ 𝑰𝒎𝒑

𝑷𝒊𝒏
x𝟏𝟎𝟎                                                                 … … … … (𝟏𝟏)                                                            

Where Pin = Number of SPV modules × Area of Module, and Area of module= 1952×982 

mm (given in Table 1: specifications of solar ELDORA 270W PV module). Pmu is the 

global maximum power (GMPP) of the SPV array at uniform irradiation of 1000 W/m2 

and Pmpsc is the array power at different shading cases. Vmp is the maximum voltage and 

Imp is the current at maximum power point. Voc and Isc are open circuit voltage and short 

circuit currents of the SPV module, respectively [11-15]. 

 

Wiring Losses for Solar PV Array Configurations 

The repositioning of modules to the optimal location within an array increases the 

distance of wiring requirement for electrical connections of modules in each column in an 

array configuration. So, the wire resistance is increased, which causes a wiring loss and 
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increases the voltage drop. The additional length of wires required for each module 

depends on the physical location of the previous and next modules in the same column. 

Compared to the optimal interconnections of the TCT configuration under different 

partial shading conditions, it increases the wiring losses in a rearrangement based TCT 

array configuration. If the connections or ties among modules in an array are less, the 

wiring requirement for the PV system installation can be reduced. But in the TCT array 

configuration, the number of ties or interconnections among modules are more, so the 

wiring requirement is more. In the TCT type of configuration system, the cost of the 

installation increases and wiring losses are more due to the additional length of wires 

used for interconnection among modules in array configuration. 

 
 
5. Results and Discussion 
 

The output PV (Power-Voltage) characteristics of SP, proposed rearranged based 

TCT and proposed optimal topology under 14 different shading and one un-shaded are 

shown in Figures 11 to 25. The global maximum powers of the array of SP, rearranged 

based TCT and proposed optimal interconnection topology are shown in Figure 26. In the 

uniform irradiance case-U, the global maximum peak power of SP, rearranged TCT and 

proposed optimal configurations or topology are the same i.e., 9620 W and the maximum 

power will be changed in different shading scenarios. The array global maximum power 

and mismatch or shading losses, fill-factor, efficiency of TCT array configurations under 

14 different partial shading cases (Cases 1 to 14) are tabulated in Table 5. 

 

Table 5. Array power, fill-Factor and efficiency of different configurations
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From the simulation results, it can be concluded that, 

➢ In partial shading case-1: Sudoku, Arrow Sudoku, skyscrapers, non-symmetrical, 

Futoshiki, LS and MS type of TCT array configurations have the maximum 

global peak power of 8834 W.   

➢ In partial shading case-2: SP, TCT, proposed optimal TCT, Sudoku, Arrow 

Sudoku, Ken-Ken, skyscrapers, Non-symmetrical, futoshiki, LS, Im based and 

Vm based TCT configurations have the maximum power of 8834 W. 
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➢ In partial shading case-3: Magic Square (MS) TCT array configuration has the 

maximum power of 7460 W. 

➢ In partial shading case-4: TCT, proposed optimal TCT, Odd-Even, MS, Vm based 

TCT configurations have the maximum power of 8834 W.  

➢ In partial shading case-5: Arrow Sudoku, Ken-Ken, Non-symmetric, Im based 

TCT configurations have the maximum power of 8916 W.  

➢ In partial shading case-6: Sudoku, skyscraper, CBM, Futoshiki, LS type 

configurations have the maximum power of 8049 W.  

➢ In partial shading case-7: Sudoku, Arrow Sudoku, skyscraper, Non-symmetric, 

Futoshiki, LS and MS type of SPV array configurations have the maximum power 

of 7618 W. 

➢ In shading case-8: Arrow Sudoku, Ken-Ken, Non-symmetric, Im based TCT 

configurations have the maximum power of 6480 W.  

➢ In partial shading case-9: Sudoku type TCT SPV array configuration has the 

maximum power of 7422 W. 

➢ In partial shading case-10: Sudoku type TCT has the maximum power of 6815 W.  

➢ In partial shading case-11: all rearrangement-based puzzle TCT configurations 

have the maximum global power of 5704 W.  

➢ In partial shading case-12: TCT, optimal TCT, Odd-Even, MS, Im based and Vm 

based TCT configurations have the maximum power of 8049 W.  

➢ In partial shading case-13: all rearrangement-based puzzle TCT configurations 

have the maximum global power of 9352 W.  

➢ In partial shading case-14: Sudoku, Arrow Sudoku, Ken-Ken, Non-symmetric, 

MS, Im based TCT configurations have the maximum global power of 6716 W. 

➢ Under partial shading conditions, rearrangement-based Total- Cross-Tied (TCT) 

array configurations show improved results compared to the conventional array 

topologies. 

➢ In the proposed method of optimal configuration, the requirement of ties or 

interconnections for electrical connections of modules in an array configuration 

are changed based on the shading pattern in the array. 

➢ Considering wiring losses in TCT and rearranged based TCT array topologies, the 

proposed optimal TCT array configuration has the better results compared to 

other rearranged based TCT array topologies. From the simulation results 

tabulated in Table 5, it can be concluded that the proposed optimal TCT array 

configuration, Sudoku, Arrow Sudoku, MS type of puzzle based TCT 

configurations have the highest global maximum peak power.  

 

 

5.1 Simulation Results:  
Power-Voltage Characteristics of SPV TCT Array Configurations 

The performance characteristics (Power-Voltage) for different 6x6 size TCT SPV 

array configurations or topologies are shown in Figures 11 to 25. The global maximum 

peak powers of PV configurations under various shading cases are represented in Figure 

26. The global maximum peak powers (GMPP) of each topology are tabulated in Table 5.    
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a. Series(S)-Parallel (P) Configuration: 

 
Figure 11. Output characteristics of 6 x 6 array S-P configuration 

 

b. Total (T)-Cross(C)-Tied (T) configuration: 

 
Figure 12. Output characteristics of 6 x 6 size TCT SPV array configuration  

 

c. Proposed optimal array configuration: 

 
Figure 13. Output characteristics for proposed optimal configuration 
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  d. Su-Do-Ku based T-C-T configuration: 

 
Figure 14. 6 x 6 array Sudoku-TCT configuration characteristics  

 

e. Arrow Su-Do-Ku based TCT configuration: 

  
Figure 15. 6×6 array Arrow Sudoku TCT configuration characteristics 

 

f. Ken-Ken based TCT configuration: 

 
Figure 16. P-V characteristics for Modified Ken Ken-TCT configuration  
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g. Skyscrapers-TCT configuration: 

 
Figure 17. P-V characteristics for Skyscrapers TCT configuration  
 

h. Non-Symmetric TCT configuration: 

 
Figure 18. P-V characteristics for Non- Symmetric TCT Re-configuration  

 

i. Chaotic Baker Map (CBM) TCT configuration: 

 
Figure 19. P-V characteristics for CBM TCT Re-configuration 
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j. ODD-EVEN based TCT configuration: 

 
Figure 20. P-V characteristics for Odd Even TCT configuration  

 

k. Futoshiki-TCT configuration: 

 
Figure 21. P-V characteristics for Futoshiki TCT configuration  
 

l. Latin Square (LS) based TCT configuration: 

 
Figure 22. P-V characteristics for LS based TCT configuration 
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m. Magic Square (MS) TCT topology: 

 
Figure 23. P-V characteristics for MS TCT configuration  

 

n. Im based TCT configuration: 

 
Figure 24. P-V characteristics for Im based TCT configuration  

 

o. Vm based TCT configuration: 

 
Figure 25. P-V characteristics for Vm based TCT configuration  
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Figure 26.  Global maximum powers of different TCT SPV array configurations  

 

 

CONCLUSIONS 
 

 The proposed optimal array configuration method can be applied to an array of 

any size by simply dividing the PV system into a number of 2×2 sub arrays. The 

performance of rearranged array TCT configurations based on puzzle patterns including 

Sudoku, Arrow Sudoku, Ken-Ken, CBM, Odd-Even, Futoshiki, LS, MS, Im based and 

Vm based array TCT configurations are compared with the proposed optimal TCT 

configuration under fourteen different partial shading cases and one uniform un-shaded 

case-U. In the rearrangement method, the positioning of modules is changed, but 

electrical connections are unchanged. The wiring losses and requirement of wires for the 

rearrangement of modules are more due to repositioning of photovoltaic modules without 

altering electrical connections. Compared to rearranged based TCT array configurations, 

the proposed optimal method slightly reduces the mismatch losses, improves the array 

global maximum power and the fill factor, and minimizes the number of interconnections 

among modules, time required for wiring at the time of installation of PV system, 

installation cost of photovoltaic system and complexity of modules interconnection in an 

array. The rearranged based configurations have greater array power in all proposed 

partial shading conditions, but due to the extra wire length required for module 

interconnections in the array configuration, there is more wiring loss.  
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Due to the significant volatility of Broadband over Power Lines (BPL) 
networks regarding their circuital and topological characteristics,  
channel statistical modeling recently gains special attention from the BPL 
communications engineers. Among the recently presented channel 
attenuation statistical models, initial statistical hybrid model (iSHM) and 
modified statistical hybrid model (mSHM) have been theoretically defined 
and applied to overhead medium voltage (OV MV), underground medium 
voltage (UN MV) and overhead high voltage (OV HV) BPL networks so 
far. Apart from the iSHM and mSHM definition and application, the theory 
of the definition procedure of new virtual distribution and transmission 
BPL topologies, which describes the phases towards defining statistically 
equivalent BPL topologies and topology subclasses to the real indicative 
ones, has been demonstrated as well as the class maps,  
which are 2D capacity contour plots with respect to the channel 
attenuation statistical distributions (CASDs) parameters of iSHM and 
mSHM. 
In this pair of papers, iSHM, mSHM, the definition procedure of  
new virtual BPL topologies and the class mapping are first applied to 
overhead low voltage (OV LV) BPL networks. Based on the class maps 
and the BPL topology database of Topology Identification Methodology 
(TIM), the required theory for illustrating the footprint of the real OV LV 
BPL topologies is first presented on class maps in this paper. On the 
basis of the class maps and the BPL topology database of Fault and 
Instability Identification Methodology (FIIM), the required theory for 
illustrating the footprint of the OV LV BPL topologies with branch line 
faults is first identified on class maps in this paper. On the basis of the 
class maps and the BPL topology database of hook style energy theft 
detection method (HS-DET method), the required theory for illustrating 
the footprint of the OV LV BPL topologies with a hook style energy theft 
is first demonstrated on class maps in this paper. 
 

Keywords: Smart Grid; Broadband over Power Lines (BPL) networks; Power Line Communications 

(PLC); Distribution and Transmission Power Grids; Capacity; Statistics; Modeling 
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Nomenclature 
 

AAAC All Aluminum Alloy Conductor 

AWGN Additive White Gaussian Noise 

BPL Broadband over Power Lines 

BPMN Business Process Model and Notation 

CASD Channel Attenuation Statistical 

Distribution 

CDF cumulative density function  

CS2 module Coupling Scheme version 2 module 

DHM deterministic hybrid model 

EMI ElectroMagnetic Interference 

FIIM  Fault and Instability Identification 

Methodology 

FL noise model Flat noise model 

HS-DET method hook style energy theft detection method 

HV High Voltage 

ICT Information and Communication 

Technology 

IPSD limits injected power spectral density limits 

IP  Internet Protocol 

iSHM initial Statistical Hybrid Model 

LOS Line-of-Sight 

LV Low Voltage 

L1PMA L1 Piecewise Monotonic Approximation 

MLE Maximum Likelihood Estimator 

mSHM modified Statistical Hybrid Model 

MTL multiconductor transmission line  

MtM MultiWire-to-MultiWire 

MV Medium Voltage 

OV Overhead 

PES Percent Error Sum  

PSD Power spectral density 

SG Smart Grid 

SHM Statistical Hybrid Model 

TIM  Topology Identification Methodology 

TL Transmission Line 

TM2 method Transmission Matrix version 2 method 

UN Underground 

WtG Wire-to-Ground 

WtW Wire-to-Wire 
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1. Introduction 
 

During the recent years, the traditional power grid, which represents an 

omnipresent widely branched hierarchical network structure and has been designed to 

facilitate the one-way power delivery from producers to consumers with relatively few 

one-way communications modalities is transformed into the smart grid, which is based on 

the traditional power grid infrastructure and may support two types of flows;  

say, a two-way power and a two-way information flow [1]-[3]. As the two-way 

information flow is concerned in this paper, the smart grid can be treated as an advanced 

IP-based communications network where a plethora of broadband applications can be 

supported that can facilitate either power utilities (e.g., real-time monitor, meter and 

control of the power grid equipment and wired infrastructure) or customers  

(e.g., real-time monitor and control of their power flows). To implement the two-way 

information flow across the smart grid, BPL technology attracts great attention from the 

stakeholders among the available communications technology proposals since it exploits 

the already installed wired power grid infrastructure [4]-[6]. However, transmission and 

distribution power grids have intentionally been designed to deliver power and for that 

reason power grids are a hostile medium for communications signals, such as BPL ones, 

through their infrastructure and equipment [7]-[11].  

 High and frequency-selective channel attenuation is considered as one of the 

critical inherent deficiencies of the BPL signal propagation and transmission across the 

power grid, thus requiring an accurate BPL channel model to be developed.  

So far, two main categories of BPL channel models are available: the deterministic and 

statistical BPL channel models. Here, it should be noted that statistical BPL channel 

models are based on the deterministic BPL channel models to a large degree.  

Hence, as the deterministic BPL channel attenuation modeling is first concerned, the 

relevant deterministic BPL channel models typically follow either a bottom-up approach 

or a top-down approach or hybrid approaches that synthesize the aforementioned  

bottom-up and top-down ones [7], [8], [12]-[23]. Among the available deterministic BPL 

channel models of the literature, DHM is selected for the analysis of this paper due to its 

exhaustive validation in various MTL configurations of transmission and distribution 

BPL networks [7], [8], [12], [24]-[30]. DHM consists of two interconnected modules, 

say: (i) the bottom-up approach module that is based on the formality of the MTL theory 

and its interaction with various similarity transformations; and (ii) the top-down approach 

module (TM2 method) that is based on the handling of the multidimensional transmission 

matrices of the cascaded BPL topologies of the examined BPL networks and topologies, 

the coupling scheme module, which determines the way that the BPL signal is 

injected/extracted onto/from power lines, and the capacity module that computes the 

highest information rate without errors that can be achieved in the examined BPL 

networks. Among the broadband performance metrics that are available as output from 

the DHM, channel attenuation and capacity are of interest during the application of the 

statistical BPL channel model of this pair of papers. Apart from the aforementioned 

deterministic framework, that is anyway required for the analysis of this pair of papers, 

the attention of BPL communications engineers and scientists regarding the BPL channel 

attenuation modeling has also been focused on statistical BPL channel models.  

So far, a great number of statistical BPL channel models, which are based on the results 
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of deterministic BPL channel models, has been proposed in a variety of BPL technology 

application fields [31]-[42]. SHM, which has been proposed in [35]-[37], is based on 

DHM and is hereafter applied. In fact, iSHM and mSHM, which are the two versions of 

the SHM, are both based on DHM while their simulation results may be considered as the 

statistically processed DHM numerical results through a set of appropriate CASDs; say, 

iSHM applies Gaussian, Lognormal, Wald, Weibull and Gumbel CASDs while mSHM 

applies Empirical CASD. By combining the channel attenuation results of DHM and 

CASDs through a six-phase flowchart procedure, iSHM and mSHM may give as output 

capacity ranges for given MTL configuration, IPSD limit, noise PSD level, coupling 

scheme and BPL topology subclass where a BPL topology subclass is uniquely 

characterized by its respective real indicative BPL topology and consists of statistically 

equivalent BPL topologies to the indicative one in terms of the MLE parameters of the 

applied CASDs (CASD MLEs). The capacity simulation results of iSHM and mSHM are 

based on real indicative BPL topologies whose topological results are well defined in 

terms of the topology length, the interconnections between branches / main lines, branch 

lengths, branch distances and branch terminations. Depending on the average value of 

their capacity range, BPL topology subclasses can be further classified into five BPL 

topology classes; say, LOS, rural, suburban, urban A and urban B BPL topology classes 

regardless of the type of power grid. In accordance with [36], [37], [45], it should be here 

noted that the capacity estimation success and the total simulation time of CASDs for 

given SHM version have been benchmarked for different transmission and distribution 

BPL networks revealing the strong dependence of the capacity estimation success on the 

applied CASD and SHM version. In fact, the definition procedure of virtual indicative 

BPL topologies, which has been analyzed in [43]-[45] and is hereafter simply denoted as 

definition procedure, enriches BPL topology classes with BPL topology subclasses 

whose respective virtual indicative BPL topologies are not defined in terms of the 

topology length, the interconnections between branches and main lines, branch lengths, 

branch distances and branch terminations but are only statistically defined in terms of the 

applied SHM version and its corresponding successful CASD MLEs.  

The definition procedure is a three-group eleven-step flowchart procedure that defines the 

MLE parameter ranges for given CASD and SHM version while its output is the class 

map, which is a 2D contour plot, that illustrates the borders between the BPL topology 

classes and corresponds each CASD MLE parameter pair to its BPL topology subclass 

average capacity for given power grid type, SHM version, CASD, coupling scheme, 

IPSD limits and noise levels. The simulation results of the definition procedure are 

presented for distribution and transmission BPL networks in [44] and [45], respectively, 

when the most successful CASDs for given SHM version are adopted. 

 In this set of papers, iSHM, mSHM, the definition procedure and the class maps 

are first applied to OV LV BPL networks. By exploiting the already acquired application 

experience of SHM to OV MV, UN MV and OV HV BPL networks [36], [37], [45],  

new results are provided for OV LV BPL topologies thus: (i) revealing the most 

successful CASD among the aforementioned ones for iSHM and mSHM; and  

(ii) benchmarking the performance of iSHM and mSHM. 

 But the main contribution of this set of papers is the proposal of the footprint 

areas on the class maps, hereafter simply denoted as footprints, that allows the impact 

investigation of critical events that may occur during the operation of OV LV power 
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grids. To determine a footprint in the class maps, the OV LV BPL topology databases of 

three smart grid broadband applications that are supported by the BPL technology  

(e.g., TIM [46], FIIM [46] and HS-DET method [47]) are here retrieved and applied. 

First, since the class maps are 2D contour plots that are curved with respect to CASD 

MLEs for given CASD, the average capacity results of all the possible BPL topology 

subclasses are grouped among the five BPL topology classes and are demonstrated on 

class maps into five BPL topology class areas. By exploiting the BPL topology database 

of TIM that contains all the possible real OV LV BPL topologies, respective OV LV BPL 

subclasses are defined and their average capacities are computed with respect to the most 

successful CASDs of iSHM and mSHM. Then, the footprint of the real OV LV BPL 

topologies is going to be first illustrated on the class maps thus separating the real OV LV 

BPL topology footprint from the virtual one. Second, a critical issue concerning the 

supply security and the fine operation of the OV LV power grid is the immediate 

response and repair to faults that may occur across the OV LV power grid infrastructure. 

In this paper, by exploiting the BPL topology database of FIIM, the impact of a single 

branch line fault across an OV LV BPL topology is first assessed through the footprint of 

the OV LV BPL topologies with branch line faults on class maps for given indicative OV 

LV BPL topology. Third, energy theft defines a multi-billion problem for power utility 

companies either in traditional power systems or in the emerging smart grid. In this 

paper, by exploiting the BPL topology database of HS-DET method, the impact of the 

hook style energy theft across an OV LV BPL topology is first assessed through the 

footprint of the OV LV BPL topologies with a single hook for energy theft on class maps 

for given indicative OV LV BPL topology. In this paper, the theory that is required for 

the introduction of the footprint concept for real OV LV BPL topologies, OV LV BPL 

topologies with branch line faults and OV LV BPL topologies with hook-style energy 

thefts is detailed. 

The rest of this paper is organized as follows: In Section II, the OV LV MTL 

configuration is presented as well as the real indicative OV LV BPL topologies of this 

pair of papers. Section III summarizes the basics of DHM, iSHM, mSHM, the definition 

procedure and the class maps as well as the required settings for their default operation 

during the study of OV LV BPL topologies. Section IV briefly presents TIM, FIIM and 

HS-DET method as well as the required settings for the update of the respective 

databases. Also, the theory concerning the iSHM and mSHM class maps footprints of 

real OV LV BPL topologies, of OV LV BPL topologies with branch line faults and of 

OV LV BPL topologies with hook-style energy thefts is carefully presented.  

Section V concludes this paper. 

 

 

2. OV LV MTL Configuration and Indicative OV LV BPL Topologies 
 

 Due to the physical properties of OV LV TLs and the involved power grid 

equipment, the BPL signal propagation and transmission across the OV LV power grid 

considerably differs from the one of well-known communications media such as twisted-

pair, coaxial or fiber-optic cables. This Section presents the applied OV LV MTL 

configuration and indicative OV LV BPL topologies that mainly affect the BPL signal 

propagation and transmission, respectively. 
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2.1 OV LV MTL Configuration 

 In Fig. 1(a), the typical OV LV MTL configuration that is examined in this paper 

is illustrated. The examined OV LV MTL configuration consists of four parallel non-

insulated conductors (i.e., ), which are spaced each other by a vertical distance 

ΔOVLV in the range from 0.3m to 0.5m. The upper conductor of radius rOVLV,n is the 

neutral one, while the lower three conductors of radius rOVLV,p stand for the three phases.  

 

 

 
Fig. 1.  (a) OV LV MTL configuration [12]. Typical OV LV BPL topology with N branches [35]. 

 

 

 Note that the lowest phase conductor is hung at height hOVLV in the range from 6 

m to 10 m above the ground. As the dimension, the material and the structure of 

conductors are concerned, the three-phase four-conductor OV LV MTL configuration 

consists of 3×54.6 mm2+1×34.4 mm2 AAACs [12], [48]. The ground is considered as the 

reference conductor with conductivity σg and relative permittivity εrg that are equal to 5 

mS/m and 13, respectively [7], [12], [15], [23], while the impact of imperfect lossy 

ground on BPL signal propagation over OV power lines has been analyzed in [49]-[51]. 

 

 

2.2 Real Indicative OV LV BPL Topologies 

 To study OV LV BPL networks, each network is assumed to be divided into 

cascaded OV LV BPL topologies. A typical OV LV BPL topology is illustrated in  

Fig. 1(b). Each OV LV BPL topology is bounded by the transmitting and receiving ends 
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where BPL devices, such as BPL signal injector, BPL signal extractor and BPL signal 

repeater, are installed depending on the relative location of the topology across the 

network. Across the BPL signal transmission path, N branches with their respective 

terminations may be encountered. The arbitrary k branch has length equal to Lbk, 

k=1,…,N and is located at distance  from the transmitting end. In accordance 

with TM2 method of DHM [12], [24], each OV LV BPL topology is treated as a 

concatenation of N+1 network modules; say, each of the first N network modules 

comprises the k branch and the TL of length Lk, which is the distance between the 

examined branch and its previous one, while the last network module only comprises the 

TL of length LN+1, which is the distance between the last branch and the receiving end. 

 In accordance with [12], [47], [52]-[54], five OV LV BPL topology classes (i.e., 

LOS, rural, suburban, urban A and urban B) with their respective representative BPL 

topologies can be defined so that a thorough study of all OV LV BPL topologies may be 

fulfilled during DHM application. In Table 1, the representative OV LV BPL topologies 

of the respective five OV LV BPL topology classes (real indicative OV LV BPL 

topologies) are reported in the case of DHM as well as their topological characteristics. 

Similarly, when SHM is applied the representative OV LV BPL topologies of Table 1 act 

as the representative ones for the respective main subclasses of the OV LV BPL topology 

classes. The selection of the main subclass for given OV LV BPL topology class remains 

critical during the preparation of class maps since its capacity influences the capacity 

boundaries among the topology classes. 

 

 

3. The Basics of DHM, SHM, Definition Procedure and Class Maps 
  

Class maps, which are the main graphical metric in order to access the case 

studies of this pair of papers, are the output of the definition procedures of iSHM and 

mSHM, which are anyway the two versions of SHM. Apart from the required statistical 

processing, SHM is based on DHM results that are the channel attenuation and the 

capacity. In this Section, a brief synopsis of DHM, SHM, definition procedure and class 

maps is provided as well as their interoperability. 
 

3.1 DHM 

In this paper, DHM can be treated as the module concatenation of the bottom-up, 

the top-down, the coupling scheme and the capacity computation modules.  

On the basis of its first two interconnected modules, say, the bottom-up and the 

top-down approach module, several useful intermediate metrics, among them is the line 

channel transfer function matrix, may be calculated by DHM for given OV LV MTL 

configuration and OV LV BPL topology. Since  phase conductors that are greater 

than 2 are encountered in OV LV MTL configurations, the standard TL analysis is 

extended by DHM to the MTL analysis. Extensively been analyzed in [7], [8], [12], [25], 

[26], [27], [52], [55]-[58], bottom-up module of DHM computes the  modes that are 

supported and propagate across the OV LV MTL configurations in the frequency range 

of interest. By receiving the results of the bottom-up module and applying TM2 method 

of the top-down module, the  line channel transfer function matrix  that 

relates line quantities with modal ones is given by 
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                    (1) 

where  is the  modal channel transfer function matrix that 

mainly depends on the examined OV LV MTL configuration and OV LV BPL topology 

and  is a  matrix that depends on the frequency, the physical 

properties of the TLs and the geometry of the OV LV MTL configuration. 

 As the line channel transfer function matrix is computed by the top-down module 

of DHM, the coupling scheme module can implement different coupling schemes that 

define the practical way that the signals are injected into and extracted from the TLs of 

the OV LV BPL networks. With reference to [29], [59], CS2 module, which is the most  

 
Table 1 

Representative OV LV BPL Topologies (Real indicative OV LV BPL Topologies) for DHM and SHM 

OV LV BPL 

Topology Class 

OV LV BPL 

Topology Name 

(and OV LV BPL 

Topology Subclass 

Name) 

Number 

of 

Branches 

(N) 

Length of Main Lines Length of Branches 

Typical urban 

topology class 

Urban case A 

 (main subclass) 

3 L1=500m, L2=200m, L3=100m, 

L4=200m 

Lb1=8m, Lb2=13m, Lb3=10m 

Aggravated urban 

topology class 

Urban case B 

(main subclass) 

5 L1=200m, L2=50m, L3=100m, 

L4=200m, L5=300m, L6=150m 

Lb1=12m, Lb2=5m, Lb3=28m, 

Lb4=41m, Lb5=17m 

Suburban 

topology class 

Suburban case  

(main subclass) 

2 L1=500m, L2=400m, L3=100m   Lb1=50m, Lb2=10m 

Rural topology 

class 

Rural case  

(main subclass) 

1 L1=600m, L2=400m Lb1=300m 

LOS topology 

class 

LOS case  

(main subclass) 

0 L1=1000m - 

 

 

recently upgraded coupling scheme module for BPL networks, is adopted in this paper. 

CS2 module can describe the BPL signal coupling procedure using two interfaces, 

namely: (i) BPL signal injection; and (ii) BPL signal extraction interface while it can 

support three types of coupling schemes for the OV LV BPL networks, namely:  

(1) Coupling Scheme Type 1: WtG coupling scheme; (2) Coupling Scheme Type 2:  

WtW coupling scheme; and (3) Coupling Scheme Type 3: MtM coupling scheme.  

With reference to eq. (1), CS2 module computes the coupling scheme channel transfer 

function that relates output and input BPL signal through  

                (2) 

for given coupling scheme where  C  denotes the applied coupling scheme,  is the 

input coupling  column vector that deals with the BPL signal injection interface 

and  is the ouput coupling  line vector that deals with the BPL signal 

extraction interface. Different coupling schemes involve different conductors of the 

examined OV LV MTL configuration and entail corresponding power restrictions and 

thus corresponding in
C  and out

C  as explained in [59], [29].  

As the coupling scheme channel transfer function is well defined by eq.(2) for 

given coupling scheme, the last module of DHM is the capacity one that computes the 

maximum achievable transmission rate that can be reliably transmitted for given OV LV 

BPL topology and remains the crucial measure for the class maps. Apart from the 
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coupling scheme channel transfer function of eq. (2), two other critical parameters (i.e., 

IPSD limits and noise PSD levels) should be defined so that the capacity of a given OV 

LV BPL topology can be determined, namely: 

• IPSD limits: Since BPL systems operate in a common frequency range with other 

already licensed communications services, by adopting suitable IPSD limits the 

unintentional EMI to the other already licensed communications services  

(e.g., aeronautical radionavigation, radio astronomy, mobile satellite and 

maritime mobile) can be significantly mitigated. Among the most noted 

proposals that define suitable EMI policies and thus respective IPSD limits are 

FCC Part 15, German Reg TP NB30 and the BBC / NATO Proposal.  

More analytically, the electric field strength limits proposed by the 

aforementioned proposals are presented in [10], [60], [61] while the respective 

IPSD limits are determined in [61] for OV BPL networks. 

• Noise PSD levels: OV BPL networks suffer from colored background and 

impulsive noise [7], [12], [25], [27], [52], [53], [55], [56]. However, FL noise 

model of [62] suggests that the assumption of AWGN PSD levels can remain a 

simple but accurate noise approximation during the capacity computations of OV 

LV BPL networks in the 3-30MHz frequency that is anyway the frequency range 

of interest of this paper. Hence, the AWGN PSD level of OV LV BPL networks 

that is adopted in this paper is assumed to be equal to –60 dBm/Hz. 

Since the coupling scheme channel transfer function, IPSD limits and  

noise PSD levels are well defined for given MTL configuration, OV LV BPL topology, 

applied coupling scheme, EMI policy and the noise environment, the capacity C is given 

by [52], [55], [56] 

                         (3) 

,                                            (4) 

                                          (5) 

where  is the flat-fading subchannel start frequency,  is the flat-fading subchannel 

frequency spacing,  is the number of subchannels in the examined 3-30 MHz frequency 

range,  is the 1×Q line vector that consists of the flat-fading subchannel start frequencies 

,  is the applied IPSD limits in dBm/Hz,  is the applied AWGN PSD levels in 

dBm/Hz and  is an operator that converts dBm/Hz into a linear power ratio (W/Hz).  

 

3.2 SHM 

 SHM, which consists of iSHM and mSHM that are its two versions, has been 

proposed in [35]-[37]. SHM exploits the deterministic results of DHM while SHM can be 

considered as a statistical BPL channel model with its recent application to various 

transmission and distribution BPL networks of interest [35]-[37]. The BPMN diagrams of 

iSHM and mSHM that describe their operation and the transformation of the DHM 

deterministic results to the SHM simulation results of this paper are demonstrated in  

Figs. 2(a) and 2(b), respectively. Either iSHM or mSHM consists of six Phases  

(Phase A-F) while each Phase is graphically constrained by a grey container and is 

characterized by its corresponding procedure and produced files shown in light blue 

color. The red elements of the BPMN diagrams are analyzed in Sec.3.3 since these are 

modifications required by the definition procedure. Significant similarities and 
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differences between iSHM and mSHM occur and they are analytically highlighted in this 

subsection.  

 

 

 

 
Fig. 2.  BPMN diagrams of SHM. (a) iSHM [35]. (b) mSHM [37]. 

 

 

 In accordance with [35] and with reference to Fig. 2(a), the operation of iSHM 

can be described through the concatenation of the Phases A-F. More specifically,  

Phase A of iSHM deals with the bottom-up, the top-down and the coupling scheme 

modules of DHM by taking as input the l real indicative OV LV BPL topology of  

Table 1, its corresponding OV LV MTL configuration and the applied coupling scheme 

while it gives as output the 1×Q coupling scheme channel transfer function line vector 

. As the coupling scheme channel transfer function line vector is well delivered, 

Phase B of iSHM computes the 1×Q channel attenuation difference line vector  

of the l real indicative OV LV BPL topology with respect to the LOS case for given 



 

Peer-Reviewed Article   Trends in Renewable Energy, 6 

 

 

 

Tr Ren Energy, 2020, Vol.6, No.1, 61-87. doi: 10.17737/tre.2020.6.1.00112 71 

 

 

coupling scheme through its Δ module. Then, Phase C of iSHM computes the MLEs of 

the supported iSHM CASDs (i.e., Gaussian, Lognormal, Wald, Weibull and Gumbel 

CASDs) by applying MLE computation module for given channel attenuation difference 

line vector. Note that the MLE estimation method of the five supported iSHM CASDs is 

presented in Appendix A of [35] as well as the respective CDFs. By deploying the 

random number generator module, Phase D of iSHM gives as output the 1×Q random 

number line vector  for given indicative OV LV BPL topology and coupling 

scheme where  denotes the applied CASD and p, p=1,…,P+1 is the member number 

in the OV LV BPL topology main subclass. Thus, each OV LV BPL main subclass 

finally comprises its real indicative OV LV BPL topology (p=1), which is one of the first 

four OV LV BPL topologies of Table 1, and P statistically equivalent virtual OV LV 

BPL topologies in terms of the CASD MLEs of the real indicative OV LV BPL topology. 

Phase E of iSHM performs the inverse procedure of Phase B through its Δ-1 module by 

computing 1×Q coupling scheme channel transfer function line vector  of each 

of the P members of each BPL topology main subclass for the examined coupling scheme 

and CASD. Finally, Phase F of iSHM computes  

the capacity range  of 

each OV LV BPL topology main subclass for given coupling scheme and CASD by 

applying capacity module of DHM where  

, p=1,…,P+1             (6) 

is the capacity line vector of the examined OV LV BPL topology main subclass,  

is the capacity of the p member of the examined OV LV BPL topology main subclass, 

,  and  computes the minimum, the average and the maximum 

value of an array, respectively. More details concerning the operation of iSHM are given 

in [35]. 

 In accordance with [37] and with reference to Fig. 2(b), the operation of mSHM 

can be described by revealing the similarities and the differences between mSHM Phases 

and the respective ones of iSHM. Phases A and B of mSHM remain the same with the 

respective Phases of iSHM. The main differences between mSHM and iSHM are 

concentrated in Phases C and D; since mSHM adopts the Empirical CASD instead of the 

five CASDs of iSHM, the Empirical channel attenuation statistical distribution module is 

deployed in Phase C for mSHM that receives as input the coupling scheme channel 

attenuation difference and it gives as output the Empirical CDF of the coupling scheme 

channel attenuation difference  for given OV LV BPL topology and coupling 

scheme. Then, the random number generator of mSHM Phase D gives as output the 

random number 1×Q line vector  for given coupling scheme and indicative 

distribution BPL topology after the inverse interpolation to achieve the Empirical CDF 

projection of the random values taken by Phase C. Similarly to iSHM, mSHM Phase E 

computes the 1×Q coupling scheme channel transfer function line vector  of 

each of the P members of each BPL topology main subclass for the examined coupling 

scheme while mSHM Phase F computes the capacity range  of each OV LV BPL 

topology main subclass for given coupling scheme in accordance with the iSHM capacity 

range  and eq. (6) when Empirical CASD is applied. 
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3.3 The Definition Procedure and Class Maps 

 In accordance with Sec. 3.2., when the topological and circuital characteristics of 

real OV LV BPL topologies are available, iSHM and mSHM may define the respective 

BPL topology subclasses and compute the corresponding capacity ranges. As already 

been identified in [43]-[45], the underrepresentation of the BPL topology classes during 

the BPL statistical channel modelling can be mitigated through the insertion of virtual 

indicative BPL topologies and their respective subclasses through the adoption of the 

definition procedure. In [43], the theoretical framework of the definition procedure has 

been detailed while in Figs. 3(a) and 3(b) the flowcharts of the definition procedure of 

iSHM and mSHM are demonstrated, respectively. Note that the definition procedure 

imposes the operation of virtual topology module with its corresponding file output  

(i.e., red elements of BPMN diagrams) in Figs. 2(a) and 2(b) for iSHM and mSHM, 

respectively. 

 In accordance with [43] and with reference to Fig. 3(a), iSHM definition 

procedure flowchart consists of eleven steps; nine of them (i.e., FL1.02-FL1.10) are 

categorized into three groups (i.e., Group 1.A-1.C) while the first and eleventh steps (i.e., 

FL1.01 and FL1.11) deal with the definition of main subclasses and the graphical 

preparation of class maps, respectively. Since the real indicative OV LV BPL topologies 

of main subclasses of Table 1 have already been delivered by the step FL1.01,  

Group 1.A computes the capacities of these topologies  and the 

capacity borders between the adjacent OV LV BPL topology classes 

 in accordance with eq.(1) of [43]. At the same time, Group 1.B, 

which consists of five steps (i.e., FL1.04-FL1.08), first computes each MLE pair 

(  and ) of the real indicative OV LV BPL 

topologies of the main subclasses per CASD at step FL1.04. Second, the step FL1.05 of 

Group 1.B defines the presentation resolution of the upcoming class maps by computing 

the length of horizontal spacings ,  and of vertical 

spacings ,  by taking into account the number of spacings 

for the horizontal axis  and vertical axis , respectively. Third, step FL1.06 

computes all  MLE pair combinations of the virtual indicative 

OV LV BPL topologies of virtual subclasses per CASD 

 by 

taking into consideration the horizontal spacings  and vertical ones 

 –see eqs. (4) and (5) of [43]. Fourth, step FL1.07 activates the random 

number generator of Phase D of Fig.2(a) that exploits the MLE pair combinations of the 

virtual indicative OV LV BPL topologies of virtual subclasses per CASD while P 

members for each virtual OV LV BPL topology subclass are generated and added. Fifth, 

by activating the operation of Phases E and F of iSHM of Fig. 2(a), FL1.08 computes the 

average capacity value average{ }, , 

 of each virtual OV LV BPL topology subclass. By deploying 

Group 1.C, step FL1.09 receives as input all the  MLE pair 

combinations of the virtual indicative OV LV BPL topologies of virtual subclasses per 

CASD 
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from the step FL1.06 of Group 1.B and provides the minimum and maximum values of 

horizontal and vertical axes of the 2D contour plot of the class map per CASD (i.e., 

CASD parameter mapping) while the step FL1.10 receives as input the CASD parameters 

from step FL1.09 and the average capacity values average{ }, 

,  of all possible virtual OV LV BPL 

topology subclasses from step FL1.08 of Group 1.B and provides the existing CASD 

parameter map enriched with the average capacities of all possible virtual OV LV BPL 

topology subclasses. Finally, by synthesizing its inputs into a 2D contour plot, step 

FL1.11 receives the CASD parameter map from Group1.C and the capacities of  

 

 

 
Fig. 3.  Definition procedure flowcharts [43]. (a) iSHM. (b) mSHM. 
 

 

the real indicative OV LV BPL topologies of main subclasses accompanied with the 

capacity borders between the adjacent OV LV BPL topology classes from Group1.A 

while step FL1.11 gives as output the class map that is the result of the definition 

procedure of iSHM. 

 Similarly to Sec.3.2, in accordance with [43] and with reference to Fig. 3(b),  

the operation of mSHM definition procedure can be described by simply highlighting the 

similarities and the differences between mSHM steps and groups and the respective ones 

of iSHM. Since the initialization of the definition procedure deals with the insertion of 

the real indicative OV LV BPL topologies of main subclasses of Table 1, step FL2.01 of 

mSHM and step FL1.01 remain the same. Also, Group 2.B of mSHM that consists of 

steps FL2.02 and FL2.03 deals with the capacities of the real indicative OV LV BPL 

topologies and the capacity borders between the adjacent OV LV BPL topology classes 

without any differences from the operation of Group 1.A of iSHM. The main differences 

between mSHM and iSHM definition procedures are concentrated in Group 2.B of 

mSHM and Group 1.B of iSHM; since mSHM adopts the Empirical CASD instead of the 

five CASDs of iSHM, step FL2.04 first computes the Empirical CDFs 

 of the real indicative OV LV BPL topologies of main 
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subclasses. Then, step FL2.05 computes the repetition horizontal step 

 and vertical step  with 

respect to eqs. (6) and (7) of [43] by taking into account the spacing of the horizontal 

shift  and vertical shift  of the Empirical CDFs of the real 

indicative OV LV BPL topologies of main subclasses where  and  are the 

number of spacings for the horizontal and vertical axis, respectively. Afterwards, step 

FL2.06 computes all  shift pair combinations of the virtual 

indicative OV LV BPL topologies of virtual subclasses 

 

by taking into consideration the repetition horizontal step  and vertical 

one  –see eqs. (8) and (9) of [43]–. In fact, the aforementioned repetition 

steps and shifts are used so that the Empirical CDF of the virtual OV LV BPL topologies 

of subclasses can be computed with respect to the Empirical CDFs of the real indicative 

OV LV BPL topologies of main subclasses. Similarly to the steps of Group 1.B of iSHM 

definition procedure, step FL2.07 exploits the random number generator of Phase D of 

Fig. 2(b), step FL2.08 enriches each virtual OV LV BPL topology subclass with P 

members and step FL2.09 computes the average capacity values average{ }, 

,  of all possible virtual OV LV BPL 

topology subclasses of step FL2.08. As the Group 2.C and the step FL2.11 of mSHM 

definition procedure are concerned, these remain the same with the respective Group 1.C 

and step FL1.11 of iSHM definition procedure with the only difference that the axes of 

mSHM class maps that anyway the primary result of the described procedure comprise 

horizontal and vertical shifts while in the case of iSHM, the axes of iSHM class maps 

comprise CASD MLEs. 

 

 

3.4 Default Operation Settings for DHM, iSHM, mSHM, Definition Procedures 
and Class Maps 

 Since DHM, iSHM, mSHM, definition procedures and class maps support an 

interconnected system, a set of default operation settings, which have already been 

reported in [35]-[37], are simply reported in this paper. 

 As the default operation settings for DHM are assumed, these are further divided 

into two categories; say, the topological and circuital operation setting categories. In the 

case of the default topological operation setting category, the real indicative OV LV BPL 

topologies that concern average long end-to-end connections of 1000m have already been 

presented in Table 1. In the case of the default circuital operation settings, these have 

explicitly been detailed in [7], [8], [12], [15]-[17], [23], [25]-[27], [48], [52], [53], [55], 

[56], [63]-[72]. The default circuital operation settings comprise four assumptions 

regarding the interpretation of the indicative OV LV BPL topologies from DHM, namely: 

(i) the branching and distribution cables are assumed identical; (ii) the interconnections 

between the distribution and branch conductors are fully activated; (iii) the transmitting 

and the receiving ends are assumed to be matched to the characteristic impedance of the 

supported modal channels; and (iv) the branch terminations are treated as open circuit 

terminations. 
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As the default operation settings for iSHM are assumed, these operation settings 

can be further divided into seven categories as already been outlined in [36], [44], 

namely: (i) BPL operation frequency range: The BPL operation frequency range that is 

considered in this paper is equal to 3-30 MHz while 270 subchannels of 0.1MHz 

frequency spacing (i.e, 0.1 MHz) are considered so that the assumption of the flat-

fading subchannels, which is a typical scenario during the capacity computations in BPL 

channels, is valid [25]-[27], [30], [52], [56]; (ii) Default coupling scheme system:  

Already been mentioned in Sec.3.1, CS2 module, which has been detailed in [29], [59], 

can be considered as the default DHM coupling scheme module. Among the available 

coupling schemes that are supported by CS2 module, only WtG1 coupling scheme is 

assumed to be the default one so that a direct comparison between the results of this 

paper and those of [36] and [37], can be performed; (iii) Computation of the coupling 

scheme channel attenuation differences: To prevent the appearance of infinite terms 

during the application of Lognormal, Wald and Weibull CASDs in iSHM, the coupling 

scheme channel attenuation differences are assumed to be equal to an arbitrarily low 

value, say 1×10-11, when zero or negative coupling scheme channel attenuation 

differences rarely occur; (iv) Members of each BPL topology subclass: 100 member OV 

LV BPL topologies (i.e., P=100) are going to be added in each BPL topology subclass 

per CASD in iSHM Phase D of Fig. 2(a); (v) IPSD limits: In accordance with Sec.3.1, 

FCC Part 15 is assumed to be the default EMI policy in this paper. In the frequency range 

3-30MHz of interest, -60 dBm/Hz are the FCC Part 15 IPSD limits suitable for the 

operation of OV LV BPL networks [25], [26], [73]; (vi) Noise PSD levels: Already been 

mentioned in Sec.3.1, FL noise model of [62], [74] is adopted for the capacity 

computations in the 3-30MHz frequency range [25], [26], [30], [52], [75];  

say -105 dBm/Hz is assumed to be the default AWGN PSD limit level  for OV LV 

BPL networks; and (vii) Best CASD with respect to its capacity estimation: This is one of 

the main objective of the companion paper of [76] to be determined for the OV LV BPL 

networks. Anyway, in accordance with [36], [37], it has been demonstrated for the iSHM 

that Weibull and Wald CASDs perform the best capacity estimations in OV MV and UN 

MV power grid types, respectively, regardless of the examined BPL topology subclass 

when the respective default operation settings concerning IPSD limits, noise PSD levels 

and applied coupling scheme are assumed. Seventh, in accordance with [36], [37],  

the performance of iSHM and the accuracy of its capacity results significantly depend on 

the selection of the CASD. Based on the findings of [36] and [45], it has been 

demonstrated for the iSHM that Weibull and Gaussian CASDs perform the best capacity 

estimations in OV MV and OV HV BPL networks, respectively, regardless of the 

examined BPL topology subclass when the aforementioned default operation settings are 

adopted. Anyway, one of the main interest of the companion paper of [76] is the 

identification of the best CASD for the OV LV BPL networks with respect to the best 

capacity estimations when the default operation settings are applied. 

As the default operation settings for mSHM are assumed, these operation settings 

remain the same with the iSHM ones when the only difference lies in the seventh 

category (i.e., best CASD with respect to its capacity estimation). In contrast with iSHM, 

only one CASD, say, the Empirical CASD, is adopted by mSHM by default. 

Finally, as the default operation settings of the definition procedures are 

concerned, these are further divided into two groups: (i) iSHM definition procedure 
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default operation settings: With respect to FL1.05 of Fig. 3(a), the number of spacings 

for the horizontal and vertical axis (i.e.,  and , respectively) is assumed to be 

equal to 10 in both cases. Note that the most suitable CASD with respect to its capacity 

estimation is going to be determined in [76] where the spacings for the horizontal and 

vertical axis are there applied; and (ii) mSHM definition procedure default operation 

settings: Since Empirical CASD is the only examined CASD, CDFs are of interest and 

not MLEs. With respect to FL2.05 of Fig. 3(b), the number of spacings for the horizontal 

and vertical axis (i.e.,  and , respectively) is assumed to be equal to 10 in both 

cases. Since CDF shifts are applied during the mSHM definition procedure, the 

maximum and minimum horizontal shift is assumed to be equal to 30 dB and -30 dB, 

respectively, while the maximum and minimum vertical shift is assumed to be equal to 1 

and 0, respectively. Since the last step of both definition procedures (i.e., FL1.11 or 

FL2.11) deals with the class mapping, the aforementioned iSHM and mSHM definition 

procedure default operation settings have significant impact on the appearance of the 

class maps. 

 

 

4. TIM, FIIM and HS-DET method – The Basics and their Class Maps 
Footprints 
 

 Class maps define the graphical basis where the footprints of the three smart grid 

broadband applications of interest (i.e., TIM, FIIM and HS-DET method) are going to be 

projected. In this Section, the three smart grid broadband applications are briefly outlined 

as well as the default operation settings that are required to be adopted. Note that 

numerical details concerning the default operation settings are also given in [76]. 

 

4.1 TIM 

 In accordance with [46], a BPL topology can be accurately identified with respect 

to its topological characteristics (i.e., number of branches, length of branches, length of 

main distribution lines and branch terminations) when TIM is applied. In fact, TIM can 

recognize the BPL topology even if significant measurement differences may occur by 

appropriately approximating the measured coupling scheme channel transfer function 

data of the BPL topology, which are contaminated by measurement differences.  

To approximate measured coupling scheme channel transfer function data, TIM exploits 

the application of L1PMA, which is a piecewise monotonic data approximation [77], 

[78], to its TIM BPL topology database where real BPL topologies with their respective 

theoretical and measured coupling scheme channel transfer functions stand.  

Depending on the required examined scenario, corresponding TIM BPL topology 

database specifications are concerned for the database preparation; say, the maximum 

number of branches N, the length spacing Ls for both branch distance and branch length 

and the maximum branch length Lb for the OV LV BPL topologies. 

In the companion paper, to illustrate the TIM footprint on the class maps of all 

possible real OV LV BPL topologies, the OV LV BPL topology database can be 

appropriately adjusted when the measurement differences are assumed to be equal to 

zero. For each real OV LV BPL topology of the TIM BPL topology database and with 

reference to its coupling scheme channel transfer function data, the following 
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corresponding records are inserted: (i) the MLEs of the supported CASDs as described in 

iSHM; (ii) the Empirical CDF as described in mSHM; and (iii) the capacity; when the 

default operation settings of Sec.3.4 are assumed.  

With reference to Sec.3.3, each OV LV BPL topology of the TIM BPL topology 

database can be represented on the iSHM class map for given CASD by appropriately 

exploiting its respective CASD MLEs. Therefore, the TIM footprint on the iSHM class 

map consists of all TIM database OV LV BPL topology points, which are expected to 

create a subarea οn the entire class map since class maps consist of all possible OV LV 

BPL topologies (i.e., virtual OV LV BPL topologies) in terms of the corresponding 

CASD MLEs. As the capacity of each OV LV BPL topology of the TIM BPL topology 

database is concerned, its capacity remains very close to the average capacity of the OV 

LV BPL topology subclass whose virtual indicative OV LV BPL topology is 

characterized by the same CASD MLEs with the ones of real OV LV BPL topology of 

the TIM database when the examined CASD performs successful capacity estimation in 

terms of the percentage change metric [36], [37].  

With reference to Sec.3.3, each OV LV BPL topology of the TIM BPL topology 

database cannot be directly represented on the mSHM class map for given real indicative 

OV LV BPL topology of the main subclasses but a capacity correlation should be first 

computed so that the best fit between the examined OV LV BPL topology of the TIM 

BPL topology database and one horizontally and vertically shifted version of the real 

indicative OV LV BPL topology (i.e., virtual indicative OV LV BPL topologies) may 

occur. Strictly theoretically, with reference to eq. (3), the aforementioned best fit is 

achieved through the minimization of the following Frobenius distance with regards to 

the subchannel capacities, namely: 

   (7) 

where  is the q-th element of the 1×Q coupling scheme channel transfer 

function line vector  of the examined OV LV BPL topology of the TIM BPL 

topology database and  is the q-th element of the 1×Q coupling 

scheme channel transfer function line vector  of the first virtual OV LV 

BPL topology of mSHM that corresponds to the  shift pair 

combination. The minimization of the Frobenius distance of eq.(7) implies that the 

capacity of the examined OV LV BPL topology of the TIM BPL topology database 

remains almost equal to the capacity of the shifted version of the real indicative OV LV 

BPL topology with  shift pair combination (say, best shifted version of 

the real indicative OV LV BPL topology). Practically, the best shifted version of the real 

indicative OV LV BPL topology can approximately be computed by comparing the 

capacity of the examined OV LV BPL topology of the TIM BPL topology database with 

all the capacities of the virtual OV LV BPL topologies and finding the corresponding 

 shift pair combination (i.e., practical approximation of Frobenius 

distance). Thus, the examined OV LV BPL topology of the TIM BPL topology database 

can be indirectly characterized by the  shift pair combination of the 

best shifted version of the real indicative OV LV BPL topology and, hence, can be 

represented on the mSHM class map at the respective coordinates of the horizontal and 

vertical shifts. Similarly to the TIM footprint on the iSHM class map, the TIM footprint 
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on the mSHM class map consists of all TIM database OV LV BPL topology points, 

creating a subarea οn the entire class map. Similarly to iSHM class maps, the capacity of 

the OV LV BPL topologies of the TIM BPL topology database remain very close to the 

average capacity of the OV LV BPL topology subclass whose virtual indicative OV LV 

BPL topology is characterized by an Empirical CDF that almost coincide with the one of 

real OV LV BPL topology of the TIM database when the Empirical CASD performs 

successful capacity estimation in terms of the percentage change metric [36], [37]. 

 

4.2 FIIM 

 In accordance with [46], FIIM achieves to identify any faults and instabilities that 

may occur in BPL topologies. FIIM repertory of faults and instabilities can be divided into 

two categories with two subcategories each, namely [79]: (i) Faults: This category describes 

all the interruptions that may occur across the lines of the power grid and can be further 

divided into two subcategories of line interruptions, say Fault in transmission line and Fault 

in branch line; and (ii) Instabilities: This category describes all the failures that can occur in 

the equipment across the power grid and can be further divided into two subcategories, say 

Instability in branch interconnections and Instability in branch terminations.  

Similarly to TIM, FIIM applies L1PMA to the measured coupling scheme transfer 

function data while FIIM supports its own FIIM BPL topology database where real BPL 

topologies that suffer from all the aforementioned faults and instabilities with their 

respective theoretical and measured coupling scheme channel transfer functions stand. In 

this paper, only the subcategory of one sole fault in one branch line is going to be 

examined. For given indicative OV LV BPL topology of Table 1, as the FIIM OV LV 

BPL topology database specifications are concerned for the database preparation, these 

remain the same with the TIM OV LV BPL topology database as described in Sec.4.1 

while the fault location at the existing branch of the indicative OV LV BPL topology 

ranges from 0.1m to the end of the corresponding branch with a step of 0.1m. Note that 

the faulty branch termination is assumed to be open-circuit.  

 Similarly to the examined TIM iSHM and mSHM footprints of Sec.4.1, OV LV 

BPL topologies of the FIIM BPL topology database with one sole fault in one branch line 

can be represented on the iSHM class map for given CASD and indicative OV LV BPL 

topology of Table 1 by appropriately exploiting their respective CASD MLEs (FIIM 

iSHM footprint). As the FIIM mSHM footprint is concerned, by applying the practical 

approximation of Frobenius distance, virtual OV LV BPL topologies, which are 

characterized by respective  shift pair combinations, that approximate 

the behavior of the corresponding examined OV LV BPL topologies of the FIIM BPL 

topology database with one sole fault in one branch line can be identified (corresponding 

best fits). Hence, OV LV BPL topologies of the FIIM BPL topology database with one 

sole fault in one branch line can be represented on the mSHM class map at the 

coordinates of the horizontal and vertical shifts of their corresponding best fits (FIIM 

mSHM footprint).  

 

4.3 HS-DET Method 

 In accordance with [47], HS-DET method achieves to identify any hook style 

energy theft in OV LV BPL networks either in theoretical or in real operation conditions; say 

with or without measurement differences, respectively. In [80], [81], the detection efficiency 

of HS-DET method has been exhaustively verified even in special operation cases of OV LV 
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BPL networks (e.g., high measurement differences, very long hooks, “smart” hooks, feint 

“smart” hooks and hook interconnection issues). In contrast with TIM and FIIM,  

HS-DET method does not apply piecewise monotonic data approximations but adopts the 

metric of PES between the results collected by in-situ measurements and the theoretical 

results derived from DHM that occur during the normal operation of channel attenuation 

determination –see eqs.(3)-(8) of [47]–. Since the measurement differences are neglected 

during the determination of the coupling scheme channel transfer functions in this paper, PES 

is computed between the theoretical coupling scheme transfer functions of the real OV LV 

BPL topology of the TIM BPL topology database and the corresponding OV LV BPL 

topology that suffers from the hook style energy theft. Note that one sole hook is assumed 

during the energy theft from the real OV LV BPL topology but a plethora of different 

variations of the real OV LV BPL topology can be examined in terms of the hook distance 

from the transmitting end and the hook length. Hence, for given real OV LV BPL topology of 

the TIM BPL topology database, HS-DET method BPL topology database consists of all the 

possible corresponding real OV LV BPL topology with hook that can be assumed when the 

length spacing for both hook distance and hook length is assumed as well as the 

maximum hook length Lb. In accordance with [47], except for the aforementioned 

assumptions concerning the HS-DET method BPL topology database specifications, the hook 

termination is assumed to be open circuit while the hook interconnection with the distribution 

lines is assumed to be complete (i.e., hook derivation points at the same distance from the 

transmitting end on all the three phases) and horizontal. Therefore, the hook can be treated by 

DHM as a branch. As already been verified in [80], [81], the previous assumptions are made 

in order to simplify the following analysis without losing its generality. 

 Similarly to the examined FIIM iSHM and mSHM footprints of Sec.4.2, OV LV 

BPL topologies of the HS-DET method BPL topology database with one sole hook can 

be represented on the iSHM class map for given CASD and real indicative OV LV BPL 

topology of Table 1, by appropriately exploiting their respective CASD MLEs  

(HS-DET method iSHM footprint). As the HS-DET method mSHM footprint is 

concerned, by applying the practical approximation of Frobenius distance, virtual OV LV 

BPL topologies, which are characterized by respective  shift pair 

combinations, that approximate the behavior of the corresponding examined OV LV BPL 

topologies of the HS-DET method BPL topology database with one sole hook can be 

identified (corresponding best fits). Hence, OV LV BPL topologies of the HS-DET 

method BPL topology database with one sole hook can be represented on the mSHM 

class map at the coordinates of the horizontal and vertical shifts of their corresponding 

best fits (HS-DET method mSHM footprint).  
 

 

5. Conclusions 
 

 In this paper, a review concerning the interoperability of DHM, iSHM, mSHM, 

the definition procedure and the class maps has been first presented for OV LV BPL 

networks as well as the required default settings for their fine combined operation. 

However, the main interest of this paper has focused on the theory presentation of the OV 

LV BPL topology footprints of TIM, FIIM and HS-DET method on the class maps rather 

than on the numerical evaluation that is demonstrated in [76]. With respect to specific 

settings concerning the applied OV LV BPL topology databases of TIM, FIIM and HS-
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DET method, the following footprint cases have been theoretically defined, namely: (i) 

iSHM and mSHM footprints of the real OV LV BPL topologies as described in TIM 

database; (ii) iSHM and mSHM footprints of OV LV BPL topologies of the FIIM BPL 

topology database with one sole fault in one branch line for given real indicative OV LV 

BPL topology; and (iii) iSHM and mSHM footprints of OV LV BPL topologies of the 

HS-DET method BPL topology database with one sole hook for given real indicative OV 

LV BPL topology. In [76], the numerical results concerning the first application of the 

combined operation of iSHM, mSHM, the definition procedure and the class maps on OV 

LV BPL topologies are demonstrated as well as the proposal of the aforementioned 

footprint cases. 
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In [1], the theoretical framework for the interoperability of DHM, iSHM, 
mSHM, the definition procedure and the class maps has been first 
presented for OV LV BPL networks. But the main interest of the first 
paper has focused on the theory of the OV LV BPL topology footprints of 
TIM, FIIM and HS-DET method on the class maps. 
In this paper, the numerical results concerning the application of iSHM, 
mSHM, the definition procedure and the class maps to OV LV BPL 
networks are first shown. Then, given the iSHM and mSHM class maps, 
the footprints of TIM, FIIM and HS-DET method databases for the OV LV 
BPL topologies are highlighted. Finally, a technique for the detection of 
branch line faults and hook style energy thefts that is based on iSHM and 
mSHM footprints is proposed. 
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AAAC All Aluminum Alloy Conductor 

AWGN Additive White Gaussian Noise 

BPL Broadband over Power Lines 

BPMN Business Process Model and Notation 

CASD Channel Attenuation Statistical 

Distribution 

CDF cumulative density function  

CS2 module Coupling Scheme version 2 module 

DHM deterministic hybrid model 

EMI ElectroMagnetic Interference 

FIIM  Fault and Instability Identification 

Methodology 

FL noise model Flat noise model 

HS-DET method hook style energy theft detection method 

HV High Voltage 

ICT Information and Communication 

Technology 
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IP  Internet Protocol 

iSHM initial Statistical Hybrid Model 

LOS Line-of-Sight 

LV Low Voltage 
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mSHM modified Statistical Hybrid Model 

MTL multiconductor transmission line  
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MV Medium Voltage 
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PES Percent Error Sum  

PSD Power spectral density 

SG Smart Grid 

SHM Statistical Hybrid Model 

TIM  Topology Identification Methodology 

TL Transmission Line 

TM2 method Transmission Matrix version 2 method 

UN Underground 
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1. Introduction 
 

In SG applications, ICT is their key aspect while among the available ICT 

solutions, BPL technology presents some natural advantages that render the related BPL 

networks as the most suitable implementation for SG applications [2].  

However, BPL networks operate across a hostile medium for communications since 

transmission and distribution power grid infrastructure and equipment have been 

designed to deliver power rather than information [1], [3]-[7].  

The interaction results of the deterministic framework, which is represented by 

the DHM [3], [4], [8]-[13], and the recently proposed statistical framework, which is 

characterized by the SHM operation [14]-[19], for the OV LV BPL networks are 

presented in this paper with respect to the class maps and the footprint area concept that 

have been first presented for OV LV BPL networks in [1]. In detail, the numerical results 

of the application of iSHM and mSHM are presented while the performance of different 

CASDs among the available ones of iSHM and mSHM is here assessed.  

Actually, the most successful CASD among the available ones of iSHM is going to be 

identified with respect to the metrics of percentage change and the average absolute 

percentage change as the most successful CASD of mSHM is the Empirical one.  

Then, the definition procedure is going to be applied in OV LV BPL networks enriching 

the corresponding topology classes with topology subclasses whose respective virtual 

indicative OV LV BPL topologies are statistically defined in terms of the applied SHM 

version and its corresponding successful CASD parameters (i.e., MLEs and CDF for 

iSHM and mSHM CASDs, respectively). On the basis of the most successful CASDs of 

iSHM and mSHM, the definition procedure gives as output the class maps of OV LV 

BPL networks that illustrate the borders between the BPL topology classes and also 

corresponds each CASD parameter pair to its BPL topology subclass average capacity for 

given power grid type, SHM version, CASD, coupling scheme, IPSD limits and noise 

levels [1]. By taking into account OV LV BPL topologies, the numerical results 

concerning the footprints on the class maps, which have been theoretically defined in [1] 

and may allow the impact investigation of critical events of the operation of OV LV 

power grids, are here presented, namely: (i) The footprint of the real OV LV BPL 

topologies is going to first be illustrated on the class maps thus separating the real OV LV 

BPL topologies from the virtual ones of class maps by exploiting the TIM database [20]; 

(ii) for given real indicative OV LV BPL topology, the footprint of all the corresponding 

OV LV BPL topologies with a sole branch line fault is going to be shown on class maps 

by exploiting the FIIM database [20]; and (iii) for given real indicative OV LV BPL 

topology, the footprint of all the corresponding OV LV BPL topologies with a single 

hook for energy theft are going to be demonstrated on class maps by exploiting the  

HS-DET method [21]. On the basis of the impact investigation of the aforementioned 

three critical events, the study of iSHM and mSHM footprints can also act as a useful 

supplementary technique for identifying branch line faults and hook style energy thefts. 

 The rest of this paper is organized as follows: In Section II, the numerical results 

concerning the interoperability of DHM, iSHM, mSHM, the definition procedure and the 

class maps of OV LV BPL networks are demonstrated. The footprints of the 

aforementioned three critical events during the operation of the OV LV BPL networks 

are illustrated on the class maps. Apart from the presentation, interesting comparisons 
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with OV MV and OV HV BPL networks are provided while the proposed technique for 

identifying branch line faults and hook style energy thefts through iSHM and mSHM 

footprints is provided. 

 

 

2. Numerical Results and Discussion 
 

 In this Section, numerical results concerning the statistical behavior of OV LV 

BPL networks are categorized into the following subsections, namely: (i) iSHM: CASD 

MLEs of iSHM are reported while the performance of iSHM CASDs is assessed in terms 

of the best percentage change and average percentage change results. The best CASD of 

iSHM is found with respect to the aforementioned two performance metrics;  

(ii) mSHM: The performance of Empirical CASD is assessed; (iii) Definition procedure 

and class maps: The definition procedures for the best CASD of iSHM and the Empirical 

CASD of mSHM are applied while the corresponding class maps are illustrated; and  

(iv) Footprints: the footprints of the three OV LV BPL topology databases (i.e., TIM, 

FIIM and HS-DET method databases) are shown on the iSHM and mSHM class maps. 

 

2.1 CASD MLEs of iSHM for the OV LV BPL Networks 

In accordance with the iSHM definition [14], [15], the BPMN diagram of iSHM, 

which describes its operation, is given in Fig. 2(a) of [1]. As the CASD MLEs of iSHM 

are concerned, these are computed at the MLE computation module of Phase C of the 

iSHM BPMN diagram thus affecting all the remaining iSHM operation. As already been 

recognized in [15], [16], the efficiency of the CASDs is based on the respective CASD 

MLEs that further depend on the capacity estimation of the real indicative BPL 

topologies that is extended to the case of OV LV BPL networks of this paper.  

 As the default operation settings have been assumed in [1], MLEs of the 

Gaussian, Lognormal, Wald, Weibull and Gumbel CASDs of iSHM are reported in Table 

1 for the real indicative OV LV BPL topologies of the main subclasses of Table 1 of [1]. 

Similarly to [15], [16], [18], [19], the graphical analysis concerning the capacity 

estimation performance of CASDs of iSHM can be securely neglected by simply 

applying capacity estimation performance metrics such as the percentage change and the 

average absolute percentage change instead. Indeed, the percentage change and the 

average absolute percentage change of each iSHM CASD are reported in Table 2 per 

each indicative OV LV BPL topology main subclass as well as the capacity of each real 

indicative OV LV BPL topology of main subclasses. 

 By comparing iSHM CASD MLEs of the real indicative OV LV BPL topologies, 

which are presented in Table 1, with the respective ones of the real indicative OV MV 

BPL topologies of Table 1 of [15] and the respective ones of the real indicative OV HV 

BPL topologies of Table 2 of [19], iSHM CASD MLEs of the real indicative OV LV 

BPL topologies present more similar behavior to the iSHM CASD MLEs of the real 

indicative OV MV BPL topologies rather than the ones of the OV HV BPL topologies. 

This is due to the fact that: (i) the OV LV MTL configuration can be considered as a 

vertical rearrangement of the OV MV MTL configuration; and (ii) the average 

transmission path of OV LV BPL topologies has been assumed to be the same to the one 

of OV MV BPL topologies as well as the topological characteristics. Taking into account 
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the findings of [15], same observations concerning the iSHM CASD MLEs of the 

indicative OV LV BPL topologies with the ones of OV MV BPL topologies can be 

expressed, namely: (a) , , , ,  , ,   

 
Table 1 

iSHM CASD MLEs of Real Indicative OV LV BPL Topologies of Table 1 of [1] for the Default Operation 

Settings 

Topology 

Name 

BPL 

Topology 

Class 

Description 

Gaussian MLEs Lognormal MLEs Wald MLEs Weibull MLEs Gumbel MLEs 

          

Urban case 

A 

Typical OV 

MV BPL 

urban 

topology class 

12.77 

 

11.70 

 

2.08 

 

1.06 

 

12.77 

 

6.5 

 

13.29 

 

1.11 

 

19.27 

 

14.98 

 

Urban case 

B 

Aggravated 

OV MV BPL 

urban 

topology class 

17.80 

 

13.53 

 

2.51 

 

0.99 

 

17.80 

 

9.3 

 

19.28 

 

1.31 

 

25.24 

 

17.36 

 

Suburban 

case 

OV MV BPL 

suburban 

topology class 

7.50 

 

9.85 

 

1.20 

 

1.45 

 

7.50 

 

1.1 

 

6.62 

 

0.81 

 

13.41 

 

15.93 

 

Rural case OV MV BPL 

rural topology 

class 

2.92 

 

2.93 

 

0.42 

 

1.22 

2.94 

2.92 

 

1.1 

9.03×10-10 

2.80 

 

0.92 

 

4.48 

 

3.10 

 

“LOS” case OV MV BPL 

“LOS” 

transmission 

class 

1×10-11 

 

0 

 

-25.33 

 

4×10-15 

 

1×10-11 

 

2.62×103 

 

1×10-11 

 

∞ 

 

1×10-11 

 

0 

 

 
Table 2 

Percentage Change between the Average Capacity of the OV LV BPL Topology Classes and the Capacity 

of the Indicative Topology of the Respective Classes for the Five Examined CASDs of iSHM when the 

Default Operation Settings are assumed 

(grey background: best results, black background: unsuccessful capacity estimation) 

Indicative 

OV LV BPL 

Topology 

Name 

(OV LV 

Capacity in 

Mbps) 

BPL 

Topology 

Class 

Description 

Percentage Change  

(%) 

iSHM 

 

Gaussian  

 

Lognormal 

 

Wald 

 

Weibull 

 

Gumbel 

Urban case A 

(275) 

Typical BPL 

urban class 

-3.43 0.86 4.12 0.008 -6.29 

Urban case B 

(234) 

Aggravated 

BPL urban  

-3.88 1.72 9.90 0.068 -5.58 

Suburban case 

(322) 

BPL suburban 

class 

-4.21 -0.93 3.70 -0.11 -8.72 

Rural case 

(361) 

BPL rural 

class 

-0.63 -0.54 0.02 -0.01 -1.17 

Average Absolute Percentage 

Change  

(%) 3.04 1.01 4.43 0.05 5.44 
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and  of OV LV BPL topologies increase as the multipath environment of  

the OV LV BPL topologies becomes more intense; and (b)  and  of 

OV LV BPL topologies receive very close values among them that anyway may act as an 

identity value of the power grid type (i.e., in this case OV LV) rather than OV LV BPL 

topology identifier. 

In accordance with [16], [15], [18], [19], it has been proven that the capacity 

performance success can be assessed by applying the metrics of capacity, capacity 

percentage change and average absolute capacity percentage change, as reported in  

Table 2. More specifically: 

• iSHM CASD capacity estimation performance for OV LV BPL subclasses 

presents similarities with the one of OV MV BPL subclasses rather than the one 

of OV HV BPL subclasses. Since OV distribution BPL topologies are mainly 

characterized by the significant lower 1km long transmission paths in comparison 

with the 25km long transmission paths of OV HV BPL topologies, which implies 

a weaker “LOS” attenuation mechanism, and by the multipath aggravation due to 

the frequent and relatively short branches of distribution power grids, it is evident 

that a CASD separation may occur on the basis of the examined power grid level.  

• Similarly to OV MV BPL topology subclasses, Weibull CASD succeeds in 

satisfying the 3% absolute threshold of percentage change and average absolute 

percentage change in all the OV LV BPL topology subclasses examined. 

Actually, Weibull CASD achieves the best percentage change and average 

absolute percentage change in all the cases examined (see grey background in the 

column of Weibull CASD in Table 2). Note that the only CASD that can produce 

successful capacity estimations but with significantly worse performance in 

comparison with the one of Weibull CASD, especially in the cases of urban 

environments, is Lognormal CASD. In contrast with the Gaussian CASD that 

operates as the best CASD in OV HV BPL networks, Gaussian, Wald and 

Gumbel cannot successfully operate in OV LV BPL topologies apart from the 

rural case that anyway resembles to the OV HV BPL signal transmission in terms 

of the scarce presence of branches. Here, it should be also reminded that the best 

fit for UN MV BPL networks is Wald CASD as outlined in [15]. 

In the rest of this paper, only Weibull CASD is going to be considered as the best fit 

CASD among the available ones of iSHM and to be applied during the following 

subsections of the definition procedure, class mapping and footprints. 

 

2.2 CASD of mSHM for the OV LV BPL Networks 

The BPMN diagram of mSHM is illustrated in Fig. 2(b) of [1]. In contrast with 

iSHM and its supported CASD MLEs, mSHM exploits the Empirical CASD through the 

Empirical CDF, which acts as the CASD parameter, of the coupling scheme channel 

attenuation difference for given OV LV BPL topology and coupling scheme. As already 

been recognized in [16], [18], [19], the efficiency of the mSHM CASD is based on the 

Empirical CDFs while it depends on the capacity estimation of the real indicative BPL 

topologies.  

 As the default operation settings have been assumed in [1] for the computation of 

the Empirical CDFs of mSHM and similarly to iSHM, the graphical analysis concerning 
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the capacity estimation performance of Empirical CASD of mSHM can be securely  

 
Table 3 

Percentage Change between the Average Capacity of the OV LV BPL Topology Class and the Capacity of 

the Indicative Topology of the Respective Class for the Empirical CASD of mSHM when the Default 

Operation Settings are assumed 

(grey background: best results, black background: unsuccessful capacity estimation) 

Indicative 

OV LV BPL 

Topology 

Name 

(OV LV 

Capacity in 

Mbps) 

BPL 

Topology 

Class 

Description 

Percentage Change  

(%) 

mSHM 

 

Empirical  

Urban case A 

(275) 

Typical BPL 

urban class 

0.14 

Urban case B 

(234) 

Aggravated 

BPL urban  

0.19 

Suburban case 

(322) 

BPL suburban 

class 

0.09 

Rural case 

(361) 

BPL rural 

class 

0.03 

Average Absolute Percentage 

Change  

(%) 0.11 

 

neglected while the aforementioned capacity estimation performance metrics are applied 

instead. Indeed, the percentage change and the average absolute percentage change of 

mSHM Empirical CASD are reported in Table 3 per each indicative OV LV BPL 

topology main subclass as well as the capacity of each real indicative OV LV BPL 

topology of main subclasses, which anyway coincides with the respective one of Table 2. 

By comparing the results of Table 3 and 2, it is evident that Empirical CASD of 

mSHM presents a capacity performance success for the main OV LV BPL subclasses 

(grey background of the last column of Table 3) that can be considered to be comparable 

with the one of Weibull CASD of iSHM, which anyway demonstrates the best fit results. 

In all the main OV LV BPL subclasses examined, Empirical CASD succeeds in 

satisfying the 3% absolute threshold of percentage change and average absolute 

percentage change. As been mentioned in Sec.2.1, this is an expected result since 

capacity estimation performance for OV LV BPL subclasses presents more similarities 

with the one of OV MV BPL subclasses rather than the one of OV HV BPL subclasses. 

Therefore, apart from the Weibull CASD of iSHM, the Empirical CASD of mSHM is 

also going to be applied during the following subsections of the definition procedure, 

class mapping and footprints. 

 

2.3 iSHM and mSHM Class Mapping for OV LV BPL Classes for the  
Default Operation Settings 

 Already been presented in [1], iSHM and mSHM definition procedures for OV 

LV BPL topologies are here applied for the class mapping. From Sec.2.2, Weibull CASD 

of iSHM and Empirical CASD of mSHM are considered to execute the most successful 
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capacity estimations for OV LV BPL topologies and for that reason the corresponding 

class maps are illustrated in this paper.  

As the iSHM class map scenario is concerned, there are 5 pairs of  and 

 that are the Weibull CASD MLEs, for the respective real indicative OV LV BPL 

topologies of the main subclasses of Table 1 of [1]. The iSHM class map of OV LV BPL 

topologies is plotted in Fig. 1 with respect to  and  for the default 

operation settings of [1] when the average capacity of each OV LV BPL topology 

subclass is considered. Note that as the spacings of the horizontal axis, the spacings of the 

vertical axis and the capacity borders between the adjacent distribution BPL topology 

classes are concerned, their computation is in accordance with [18], [19]. 

As the mSHM class map scenario is concerned, in accordance with [17]-[19],  

the examined real indicative OV LV BPL topologies of the main subclasses are examined 

separately during the preparation of mSHM class maps. Among the five real indicative 

OV LV BPL topologies of the main subclasses of Table 1 of [1], three of them are of 

interest in this paper and are going to be investigated through mSHM class maps; say, 

OV LV BPL urban case A, suburban case and rural case. With reference to [1], the 

mSHM class map of OV LV BPL topologies is plotted in Fig. 2(a) with respect to the 

indicative OV LV BPL urban case A, horizontal shift  and vertical shift  

for the default operation settings when the average capacity of each OV LV BPL 

topology subclass is assumed. In the same 2D contour plot, the capacity borders between 

the adjacent distribution BPL topology classes and the capacity of the reference 

indicative OV LV BPL urban case A are also shown. In Figs. 2(b) and 2(c), same plots 

with Fig. 2(a) are shown but for the case of the OV LV BPL suburban case and of the  

OV LV BPL rural case, respectively. 

By observing Fig. 1 and Figs. 2(a)-(c) and by comparing them with the respective 

ones of [18] and [19], it is evident that iSHM and mSHM class maps of OV LV BPL 

topologies present more similarities with the respective ones of OV MV BPL topologies 

rather than of UN MV BPL topologies and of OV HV BPL topologies. Apart from the 

approximate same capacity border values between the adjacent distribution BPL topology 

classes, the pattern of iSHM class maps present the same class area notches when the 

distribution BPL topologies are examined in contrast with the rectangular class areas of 

UN MV BPL topologies and OV HV BPL topologies. Also, as the mSHM class maps are 

regarded, the extent and the capacity border continuity of the “LOS” class area  

–i.e., yellow class area in Figs. 2(a)-(c)– remain very similar between the OV MV BPL 

topologies and OV LV BPL ones. 

Anyway, it should be noted that common issues among all the iSHM and mSHM 

class maps of transmission and distribution BPL topologies stand that are: (i) the clear 

distinction between the adjacent BPL topology classes regardless of the type of the 

examined class map; and (ii) the same general pattern of mSHM class maps where a large 

“LOS” class area exists at the left of the mSHM class map and two separate aggravated 

urban case class areas lie at the top and bottom right of the mSHM class map.  

On the basis of Fig. 1 and Figs. 2(a)-(c), the footprints of the three OV LV BPL 

topology databases (i.e., TIM, FIIM and HS-DET method databases), which are going to 

be studied in Secs. 2.4-2.6, respectively, are graphically superimposed on the 

aforementioned iSHM and mSHM class maps. 
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Fig. 1.  iSHM class map for the average capacity of the OV LV BPL topologies in the 3-30MHz 
frequency band when WtG1 coupling scheme is deployed and FCC Part 15 is applied.  
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Fig. 2.  mSHM class map for the average capacity of the OV LV BPL topologies in the 3-30MHz 
frequency band when WtG1 coupling scheme is deployed and FCC Part 15 is applied for 
reference indicative OV HV BPL urban case A. (a) OV LV BPL urban case A. (b) OV LV BPL 
suburban case. (c) OV LV BPL rural case.  

 

 

2.4 TIM Database Footprint on iSHM and mSHM Class Maps for the  
Default Operation Settings 

 In this Section, the footprint of the real OV LV BPL topologies is first illustrated 

on the iSHM and mSHM class maps of Sec.2.3 thus distinguishing the real OV LV BPL 

topologies from the virtual ones. With reference to the TIM database [20],  

real OV LV BPL topologies with their respective theoretical coupling scheme channel 

transfer functions can be retrieved. However, there is a trade-off during the preparation of 

the TIM database of interest between the detail degree of the assumed topological 

characteristics and the execution time of the theoretical coupling scheme channel transfer 

function and capacity computations through DHM. The TIM BPL topology database 

specifications that have been reported in [20] for the database preparation and affect the 

total execution time are the maximum number of branches N, the length spacing Ls for 

both branch distance and branch length and the maximum branch length Lb while typical 

lengths of 1000m are assumed for the real OV LV BPL topologies. To maintain realistic 

total execution times of the footprint representations, two different cases concerning the 

footprint of real OV LV BPL topologies are here examined; say, the footprints of real OV 

LV BPL topologies with one and two branches on iSHM and mSHM class maps.  

Note that the TIM BPL topology database specifications and total execution time that 

correspond to each scenario and class map type are also reported. 

 As the iSHM footprint of the real OV LV BPL topologies with one branch are 

concerned, the maximum number of branches N, the length spacing Ls for both branch 

distance and branch length and the maximum branch length Lb are assumed to be equal to 
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1 m, 10 m and 1000 m, respectively. With reference to the iSHM class map of Fig. 1,  

the iSHM footprint of the real OV LV BPL topologies with one branch is illustrated as 

superimposed white areas on class maps in Fig. 3(a). Similarly, the iSHM footprint of the 

real OV LV BPL topologies with two branches is illustrated in Fig. 3(b) when the 

maximum number of branches N, the length spacing Ls for both branch distance and 

branch length and the maximum branch length Lb are assumed to be equal to 2, 100m and 

1000m, respectively. 

 As the mSHM footprint of the real OV LV BPL topologies with one branch are 

regarded, the TIM BPL topology database specifications are assumed to be the same with 

the ones of the iSHM footprint case. With reference to the mSHM class map of Fig. 2(c), 

the mSHM footprint of the real OV LV BPL topologies with one branch is illustrated as 

white areas in Fig. 4(a). Similarly, the mSHM footprint of the real OV LV BPL 

topologies with two branches is illustrated in Fig. 4(b) when the TIM BPL topology 

database specifications are assumed to be the same with the ones of the mSHM footprint 

case. 

From Figs. 3(a), 3(b), 4(a) and 4(b), interesting observations concerning the 

iSHM and mSHM footprint planning of the real OV LV BPL topologies can be pointed 

out. More specifically: 

• Since iSHM and mSHM class maps have already been prepared in Sec. 2.3,  

the total execution time considers the time that is required for the preparation of 

the TIM database given the TIM database specifications per each case as well as 

the required statistical and capacity processing. In terms of time, for the 

preparation of the footprints shown in Figs. 3(a), 3(b), 4(a) and 4(b), the total 

execution time is equal to 9674s, 7291s, 11646s, and 8567s, respectively. The 

different TIM database specifications regarding the two cases have been made so 

that the total execution time can remain relatively low without affecting the 

generality of the analysis. Anyway, different number of OV LV BPL topologies 

was expected for the two cases.  

• With reference to Fig. 3(a), the iSHM footprint of OV LV BPL topologies with 

one branch is clearly confined in the rural case area. More specifically, as the 

length of the sole branch of the examined OV LV BPL topology decreases,  

this forces the presence of deep notches in the corresponding theoretical coupling 

scheme channel transfer function thus creating a richer multipath environment 

[12]. Conversely, the consideration of longer branches can impose more frequent 

but less deep notches in the corresponding theoretical coupling scheme channel 

transfer functions in comparison with the shorter branches. In accordance with 

[1], [180], OV LV BPL topologies of rare but less deep notches are characterized 

by increased values of  and  and lower capacities. As the relative 

location of the OV LV BPL topologies with one short branch is concerned in the 

iSHM footprint, these topologies tend to be located at the lower left regions of the 

iSHM footprint while the OV LV BPL topologies with longer branches tend to be 

located at the opposite direction. Same observations can be expressed for the case 

of OV LV BPL topologies with two branches, where OV LV BPL topologies of 

two branches remain in the suburban case area with similar branch length 

behavior regarding the relative location in the class map suburban case area with 

the case of a single branch. 
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Fig. 3.  Footprints of the real OV LV BPL topologies of the TIM database. (a) iSHM footprint of 
OV LV BPL topologies with one branch. (b) iSHM footprint of OV LV BPL topologies with two 
branches.  
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Fig. 4.  Footprints of the real OV LV BPL topologies of the TIM database. (a) mSHM footprint of 
OV LV BPL topologies with one branch. (b) mSHM footprint of OV LV BPL topologies with two 
branches.  

 

• With reference to Figs. 4(a) and 4(b), the mSHM footprints of OV LV BPL 

topologies with one and two branches are clearly confined in the rural and 

suburban case areas, respectively. Although the number of the examined OV LV 

BPL topologies remains the same given the number of branches, the main 

difference between iSHM and mSHM footprints is first their extent; this is due to 
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the fact that the examined real OV LV BPL topologies are characterized by their 

own CASD MLEs during the iSHM definition procedure and can be 

straightforward superimposed to iSHM class maps whereas the examined real OV 

LV BPL topologies are classified among the existing pairs  of 

the mSHM class maps and demonstrated as white spots through the practical 

approximation of Frobenius distance analyzed in Sec.4.1 of [1]. As the number of 

spacings of the horizontal and vertical axes of the mSHM class maps of  

Figs. 2(a)-(c) is both equal to 10, all the white spots of Figs. 3(a) and 3(b) are 

classified into 8 white spots in Figs. 4(a) and 4(b), respectively. It is evident that 

as the number of spacings of the horizontal and vertical axes increases so does the 

number of white spots of the mSHM footprints of the real OV LV BPL topologies 

since a larger set of available pairs  can be examined.  

• The latter difference between the illustration of iSHM and mSHM footprints also 

explains the greater total execution times of mSHM footprints, which have been 

reported, in comparison with the ones of iSHM footprints for given number of 

branches of the real OV LV BPL topologies. As it is shown, the straightforward 

CASD MLE computation of iSHM definition procedure remains faster than the 

comparison among all the available virtual OV LV BPL topologies of each OV 

LV BPL topology subclass during the preparation of mSHM footprints.  

 

2.5 FIIM Database Footprint on iSHM and mSHM Class Maps for the Default 
Operation Settings 

 In this Section, the iSHM and mSHM footprints of the real OV LV BPL 

topologies with a sole branch line fault are first illustrated. For given real OV LV BPL 

topology, say, OV LV BPL urban case A, one branch line fault is once applied to each of 

the three branches of the examined OV LV BPL urban case A. With reference to the 

FIIM database [20], real OV LV BPL topologies with one branch line fault that are based 

on the OV LV BPL urban case A with their respective theoretical coupling scheme 

channel transfer functions can be retrieved. Similarly to the TIM database specifications, 

appropriate FIIM BPL topology database specifications that have been reported in [1] for 

the database preparation are assumed, namely the fault location at each existing branch of 

the real indicative OV LV BPL urban case A ranges from 0.1 m to the end of the 

corresponding branch with a step of 0.1m. Note that the faulty branch termination is 

again assumed to be open-circuit.  

As the iSHM footprint of the real OV LV BPL topologies with one branch line 

fault that are based on the real indicative OV LV BPL urban case A is concerned,  

the iSHM footprint of the real OV LV BPL topologies with one branch line fault is 

illustrated as superimposed white areas on class maps in Fig. 5 with reference to the 

iSHM class map of Fig. 1. Similarly to iSHM footprint of Fig. 5, the mSHM footprint of 

the real OV LV BPL topologies with one branch line fault that are based on the real 

indicative OV LV BPL urban case A is shown in Fig. 6. 
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Fig. 5.  iSHM footprint of the real OV LV BPL topologies of the FIIM database with one branch 
line fault with reference to the real indicative OV LV BPL urban case A.  

 

 

 
Fig. 6.  mSHM footprint of the real OV LV BPL topologies of the FIIM database with one branch 
line fault with reference to the real indicative OV LV BPL urban case A.  
 

From Figs. 5 and 6, it is observed that the real OV LV BPL topologies with one 

branch line fault, which are based on the real indicative OV LV BPL urban case A, are 

not strictly bounded in the class area of urban case A but are also extended to the class 

area of suburban case either in iSHM class map or in mSHM class map. The branch line 

faults of the real OV LV BPL topologies that are situated at the class area of the suburban 
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case are characterized by branch line lengths that are lower than approximately 2 m (short 

branches). This remark can be considered as the continuation of the remark of Sec.2.4, 

which has dealt with the relative position of OV LV BPL topologies with short branches 

at iSHM footprints (i.e., lower left regions of the corresponding class areas). Hence, 

iSHM and mSHM class maps better distinguishes branch line faults of short lengths since 

the corresponding OV LV BPL topologies with the branch line faults violate the class 

area borders thus allowing their imminent detection. In general, iSHM and mSHM class 

maps consist of class areas that are mainly represented by real OV LV BPL topologies of 

different number of long branches. The last observation about iSHM and mSHM class 

maps introduces a new technique concerning the detection of branch line faults and 

energy theft hooks (see also Sec.2.6) that depends on the characterization of the 

examined OV LV BPL topologies in terms of their number of long branches and not on 

the straightforward benchmark of their spectral metrics, such as coupling scheme transfer 

functions and capacities presented in [21]-[28]. 

 

2.6 HS-DET Method Database Footprint on iSHM and mSHM Class Maps for the 
Default Operation Settings 

 In this Section, the iSHM and mSHM footprints of the real OV LV BPL 

topologies with a single hook for energy theft are first illustrated. For given real OV LV 

BPL topology, say, the real indicative OV LV BPL suburban case, one hook, which is 

treated as a new branch [21], [29], [30], is hung on the existing real indicative OV LV 

BPL suburban case. With reference to HS-DET method database [21], real OV LV BPL 

topologies with a single hook for energy theft that are based on the real indicative OV LV 

BPL suburban case with their respective theoretical coupling scheme channel transfer 

functions can be retrieved. Similarly to the TIM and FIIM database specifications, 

appropriate HS-DET method database specifications that have been reported in [20] for 

the database preparation are assumed, namely the location of the hook for energy theft 

that ranges from 0.1 m to 1000 m with a step of 10 m and the length of the hook that 

ranges from 0.1 m to 200 m with a step of 10 m. Note that the branch termination, which 

is used for the simulation of the hook of the energy theft, is again assumed to be open-

circuit. 

As the iSHM footprint of the real OV LV BPL topologies with a single hook for 

energy theft that are based on the real indicative OV LV BPL suburban case is concerned, 

the iSHM footprint of the real OV LV BPL topologies with a single energy theft hook is 

illustrated as superimposed white areas on class maps in Fig. 7 with reference to the 

iSHM class map of Fig. 1. Similarly to iSHM footprint of Fig. 7, the mSHM footprint of 

the real OV LV BPL topologies with a single hook for energy theft that are based on the 

real indicative OV LV BPL suburban case is shown in Fig. 8. 
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Fig. 7.  iSHM footprint of the real OV LV BPL topologies of the HS-DET method database with a 
single hook for energy theft with reference to the real indicative OV LV BPL suburban case.  

 

 

 
Fig. 8.  mSHM footprint of the real OV LV BPL topologies of the HS-DET method database with a 
single hook for energy theft with reference to the real indicative OV LV BPL suburban case.  
 

From Figs. 7 and 8, it is evident that the proposed technique concerning the 

detection of branch line faults through iSHM and mSHM footprints can be easily 

extended in order to detect hooks for energy theft. Indeed, the insertion of a single hook, 

which is treated by the DHM as a new branch insertion to the existing real indicative OV 

LV BPL suburban case, has as result the shift of the iSHM and mSHM footprints right 
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inside the class area of urban case A with few exceptions that remain close to the right 

border of the class area of suburban case; the later exceptions are real OV LV BPL 

topologies that derive from the real indicative OV LV BPL suburban case while short 

hooks for energy thefts are deployed across them. Since the relative location of iSHM 

and mSHM footprints is more sensitive to the number of long branches rather than the 

multipath environment aggravation due to the short branches, the detection of the hooks 

for energy theft becomes easier in comparison with the detection of the branch line faults 

due to the visible violation of class area borders. Here, it should be mentioned that the 

detection of long hooks for energy thefts that is offered by the examination of the iSHM 

footprints may act as supplementary technique to the HS-DET method of [21], [29]-[31] 

that detects more easily the short hooks for energy theft. 

 

 

3. Conclusions 
  

 In this second paper, the numerical results concerning the iSHM and mSHM 

footprints of the OV LV BPL networks have been demonstrated as well as a new 

technique, which acts supplementary to the existing FIIM and HS-DET method.  

From iSHM and mSHM footprints of the OV LV BPL topologies it has been verified 

that: (i) Depending on the number of branches, the real OV LV BPL topologies are 

classified in the existing class areas; (ii) As the length of the branches of the real OV LV 

BPL topologies increases, their iSHM footprint tends to be located at the upper right 

regions of the corresponding class area; (iii) Branch line faults and hook style energy 

theft can be easily identified by studying the relative location in the corresponding class 

area given the real OV LV BPL topology of the basis; (iv) Hook style energy theft can be 

more easily detected in comparison with the branch line faults; and (v) Complimentary to 

FIIM and HS-DET method, which better operate with short branches, the study of iSHM 

and mSHM footprints can act as a useful supplementary technique for identifying branch 

line faults of short branches and hook style energy thefts of long hooks. 
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