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This study analyzed the inter-annual variability in solar radiation at Port 
Harcourt and Calabar, aiming at improving knowledge of solar resources. 
For the investigation, monthly mean global solar radiation data for fifteen 
years (2000 – 2014) was collected from Nigerian Meteorological Agency 
(NIMET), and the monthly mean extraterrestrial solar radiation was 
determined using globally recognized standard relation. The clearness 
index parameter was employed for characterizing the spatial variability of 
solar radiation for Calabar and Port Harcourt. The statistics of the 
monthly mean solar radiation deviations of Port Harcourt and Calabar 
was tested using the Kolmogorov–Smirnov method. The test results 
showed that they are normally distributed random variables. Furthermore, 
the analysis of sequential properties showed that the coefficients of the 
auto-correlation with lag 1 are significant for both stations. The auto-
correlation coefficients with lag 1, though usually not significant, are 
negative for both stations. The auto regression lag 1 (AR-1) is the 
recommended procedure (model equation) for generating monthly solar 
radiation synthetic time series, with auto-correlation coefficients varying 
from 0.30 to 0.47 for both stations in the South-South of Nigeria.  

 
Keywords:  Global solar radiation; Clearness index; Extraterrestrial solar radiation; Calabar; Nigeria 
 
 
1. Introduction  
  

A wide range of solar energy applications, including modeling, design of solar 
crop dryers, and photovoltaic system sizing, requires a huge amount of knowledge of 
global solar radiation. The daily solar radiation intensity is normally among the variables 
collected by weather stations. The important role played by knowledge sharing in the 
subject of solar radiation and its subsequent exploitation has necessitated the need to 
develop ways of predicting the incident solar radiation in the interest of the regions of the 
globe like tropical Africa, where routine measurements are lacking in spite of the huge 
availability of solar energy in the region [1].  As the fossil fuel reserves suffer severe 
depletion, it becomes imperative that alternative energy resources should be explored and 
utilized with high conversion efficiency to help bridge the wide gap between energy 
supply and energy demand [2]. For sub-Saharan African countries such as Nigeria, the 
economic and efficient utilization of solar energy has become inevitable because of the 
abundance and reliability of solar energy resource. Augustine and Nnabuchi [3] estimated 
that Nigeria has approximately 3,000 hours of annual sunshine. Offiong [4] stated that the 
mean daily solar radiation received in Nigeria is up to 20MJ/m²/day. This, however, 



 
Peer-Reviewed Article   Trends in Renewable Energy, 6 
 

 
Tr Ren Energy, 2020, Vol.6, No.2, 111-130. doi: 10.17737/tre.2020.6.2.00114 112 

depends on the location and the time of the year. Despite this huge amount of solar 
energy, Nigeria with a rural population of over 97,000 inhabitants [5], still has her 
population suffering deprivation from conventional energy due to poor infrastructural 
facilities and subsequent unreliability in energy supply.  

Solar energy is among the most important alternative energy resources with 
excellent potentials for utilization in both rural and urban communities. Having vast 
knowledge of the distribution of solar energy at a geographical location is significant for 
the creation and advancement of new solar energy devices with improved efficiency [6]. 
Data on solar radiation is a basic requirement for conducting feasibility studies with 
respect to solar energy systems. Augustine and Nnabuchi [3] opined that the knowledge 
of solar energy acquired over a long period ought to be applicable not only to the site 
where the radiation data was collected, but also to other locations with similar climates. 

Nigeria is located between Latitude 4°N and 14°N.  This vantage position enables 
the country to receive a vast amount of solar energy throughout the year. Solar radiation 
data can be accessed in a variety of forms depending on choice and application. Several 
scholars [1, 2, 4, 6] have emphasized the importance of solar radiation data in the design 
and operation of efficient solar energy devices which are anchored on accurate and 
detailed information of solar radiation climatology. The diurnal and seasonal patterns of 
both the hourly/daily clearness and the cloudiness indices were clearly shown in the 
datasets. Okogbue et al [7] investigated the optical sky conditions in some selected 
locations in the major ecological zones of Nigeria using monthly global solar irradiance 
data for an interval not less than 20 years. Many empirical studies on the portioning of 
solar irradiance have been presented for various regions of the world [8]. 

Solar irradiance is defined as the power per unit area (W/m  received from the 
sun in the form of electromagnetic radiation within the range of wavelength that the 
measuring instrument can detect. When the solar irradiance is integrated over time, it is 
referred to as solar irradiation, insolation, or solar exposure. Nevertheless, for practical 
purposes, it is apt to often use insolation  and irradiance interchangeably. Irradiance may 
be measured on top of the atmosphere or at the earth's surface after atmospheric 
attenuation effects of absorption, reflection and scattering. Irradiance measured on top of 
the atmosphere depends on such factors as distance from the sun, the solar cycle, and 
changes in cross-cycle. In addition, irradiance on the earth's surface is affected by the tilt 
of the measuring surface, the solar altitude, and the conditions of the atmosphere. Solar 
radiation is radiant energy which the sun emits, essentially electromagnetic energy. 
Almost half of the radiation is contained in the visible wave band of the electromagnetic 
spectrum (www.sciencedaily.com/terms/solar_radiation htm). The other half mostly lies 
in the near-infrared band, while some lie in the ultraviolet region of the spectrum. The 
aim of the study is to characterize the global solar radiation at Port Harcourt and Calabar 
in South-South Nigeria using 15 years’ data (2000–2014).  
 
 
2. Study Area 
 

Port Harcourt and Calabar have a tropical climate with wet and dry seasons. Two 
distinct wet seasons are observed: the more intense season is observed from April to July 
whereas a less intense one occurs from September to November. At the peak of the wet 
season, the meteorological condition at the stations is wet about half the time. Port 
Harcourt and Calabar experience a dry season (when rain falls less than two days in a 
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month) in August, as well as from December to March. This second part of dry season is 
accompanied by Harmattan winds which originate from the Sahara Desert and have their 
peak from December to early February. Port Harcourt and Calabar have a fairly small 
temperature range, generally between 33°C and 21°C. The hottest month is March, when 
the mean diurnal temperatures reach about 29°C. July is the coldest month with a mean 
temperature of about 25°C [9]. The geographical information of the study area is 
presented in Table 1, while the map showing the distance between the locations under 
study (Port Harcourt and Calabar) is shown in Fig. 1. 
 
Table 1. Meteorological stations 

Station name Latitude Longitude Elevation. 
Calabar 4.71’ N 8.55’ E 62.3 m 

Port Harcourt 4.40’ N 7.17’ E 19.55 m 
 
 

3. Methodology 
 
3.1 Data 

The monthly mean daily ground - measured global solar radiation data used for 
this study (Port Harcourt and Calabar) was obtained from the Nigeria Meteorological 
Agency, Oshodi Lagos [10]. The data accessed covered a period of fifteen years (2000-
2014) for Port Harcourt and Calabar. The monthly mean daily extraterrestrial solar 
radiation )( oH is the solar radiation received by horizontal surface during a day at the top 
of the atmosphere, calculated using the procedure for monthly mean extraterrestrial solar 
radiation shown in Table 2 and expressed theoretically as: 

sinsin
360

2
sincoscos

365
360cos033.0124 S

SSC
nIoH   (1) 

 The mean sunrise hour angle s   can be evaluated as:  

tantancos 1
s          (2) 

365

284360
sin45.23

n
        (3) 

where  represents the latitude,  is the solar declination and n is the number of days of 
the year beginning from first January. ISC is the solar constant and other symbols retain 
their meanings in the usual notation. 
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Fig. 1. Map showing distance between Port Harcourt and Calabar 

 
Table 2. Representative day of each month for calculation of the monthly mean extraterrestrial 
solar radiation for Port Harcourt and Calabar [11] 
Month  n for ith day of the month  Representative day n  
January 1 17 17 -20.9 
February i+31 16 47 -13.0 
March i+59 16 75 -2.4 
April i+90 15 105 9.4 
May i+120 15 135 18.8 
June i+151 11 162 23.1 
July i+181 17 198 21.2 
August i+212 16 228 13.5 
September i+243 15 258 2.2 
October i+273 15 288 -9.6 
November i+304 14 318 -18.9 
December i+334 10 344 -23.0 
 
3.2 Data Analysis 

In order to carry out the time series proposed for this study, astronomical trends 
were eliminated by dividing global solar radiation (H) by the extraterrestrial solar 
radiation (Ho).  Trends removal in the global solar radiation was executed by subtracting 
the mean of the clearness index from the long-term monthly mean values of clearness 
indices for Port Harcourt and Calabar. Thus, the seasonal trend removal of solar radiation 
was evaluated using the following expressions. 

ktktkt '           (4) 

Where 'kt  deviations of monthly average of the daily clearness index; kt  grand 
average of kt , and kt = clearness index (i.e., H/Ho). The Kolmogorov–Smirnov normality 
and total auto-correlation functions tests were equally used to determine the deviation and 
interannual variability of solar radiation at Port Harcourt and Calabar.  
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4. Results and Discussion 
 
4.1 Results 

The descriptive statistics of measured global solar radiation, calculated 
extraterrestrial solar radiation, and evaluated clearness indices for Port Harcourt and 
Calabar are shown in Tables 3 – 5. Figures 2 and 3 present inter-monthly deviations of 
clearness indices for Port Harcourt and Calabar.  In Figures 4 – 16, the series of annual 
and monthly anomalies of clearness indices for Port Harcourt and Calabar are shown. 
Tables 6 and 7 together with Figures 17 and 18 present the total auto-correlation 
functions in deviation of km - <km> for Port Harcourt and Calabar. Figures 19 and 20 
show the condition of normality of clearness index deviation for Calabar and Port 
Harcourt.  

 
Table 3. Descriptive statistics of monthly mean daily global solar radiation (MJm-2day-1) for Port 
Harcourt and Calabar 

 N Range Minimum Maximum Sum Mean Std. 
Deviation 

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic 

Port Harcourt 12 5.16 12.87 18.03 185.88 15.4900 .44056 1.52616 

Calabar 12 5.17 12.60 17.77 187.69 15.6408 .47382 1.64134 

Valid N 
(listwise) 

12 
       

 
Table 4. Descriptive Statistics of monthly mean daily extraterrestrial solar radiation (MJm-2day-1) 
for Port Harcourt and Calabar 

 N Range Minimu
m 

Maximu
m 

Sum Mean Std. 
Deviation 

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic 

Calabar 12 3.85 33.78 37.64 431.74 35.9784 .34991 1.21213 
Port Harcourt 12 3.87 33.78 37.65 431.85 35.9878 .35078 1.21514 

Valid N 
(listwise) 

12 
       

 
Table 5. Descriptive Statistics of monthly mean daily clearness index for Port Harcourt and Calabar 

 N Range Minimum Maximum Sum Mean Std. 
Deviation 

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic 

Port Harcourt 12 .1635 .3541 .5176 5.1731 .431088 .0137923 .0477779 

Calabar 12 .1656 .3444 .5100 5.2250 .435419 .0145954 .0505600 
Valid N 

(listwise) 
12 

       

 



 
Peer-Reviewed Article   Trends in Renewable Energy, 6 
 

 
Tr Ren Energy, 2020, Vol.6, No.2, 111-130. doi: 10.17737/tre.2020.6.2.00114 116 

 
Fig. 2. Monthly mean daily clearness index (kt) deviation series for Port Harcourt and Calabar for 
January – December for fifteen years.  

 

 
Fig. 3. Monthly mean daily clearness index deviation series for Port Harcourt and Calabar 
   

 
Fig. 4. Solar Radiation deviation series for Port Harcourt and Calabar for January – December for 
fifteen years. Kt =Annual monthly daily clearness index, <kt> = average of kt 
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Fig. 5. Solar Radiation deviation series for Port Harcourt and Calabar for January for fifteen 
years. Kt = monthly mean daily clearness index, <kt> = mean of kt 
 

 
Fig. 6. Solar Radiation deviation series for Port Harcourt and Calabar for February for fifteen 
years. Kt = monthly mean daily clearness index, <kt> = mean of kt 
 

 
Fig. 7. Solar Radiation deviation series for Port Harcourt and Calabar for March for fifteen years. 
Kt = monthly mean daily clearness index, <kt> = mean of kt 
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Fig. 8. Solar Radiation deviation series for Port Harcourt and Calabar for April for fifteen years. Kt 
= monthly mean daily clearness index, <kt> = mean of kt 
 

 
Fig. 9. Solar Radiation deviation series for Port Harcourt and Calabar for May for fifteen years. Kt 
= monthly mean daily clearness index, <kt> = mean of kt 
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Fig. 10. Solar Radiation deviation series for Port Harcourt and Calabar for June for fifteen years. 
Kt = monthly mean daily clearness index, <kt> = mean of kt 
 

 
Fig. 11. Solar Radiation deviation series for Port Harcourt and Calabar for July for fifteen years. 
Kt = monthly mean daily clearness index, <kt> = mean of kt 
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Fig. 12. Solar Radiation deviation series for Port Harcourt and Calabar for August for fifteen 
years.  Kt = monthly mean daily clearness index, <kt> = mean of kt 
 

 
Fig. 13. Solar Radiation deviation series for Port Harcourt and Calabar for September for fifteen 
years. 
 Kt = monthly mean daily clearness index, <kt> = mean of kt 
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Fig. 14. Solar Radiation deviation series for Port Harcourt and Calabar for October for fifteen 
years. 
 Kt = monthly mean daily clearness index, <kt> = mean of kt 
 
 

 
Fig. 15. Solar Radiation deviation series for Port Harcourt and Calabar for November for fifteen 
years. 
 Kt = monthly mean daily clearness index, <kt> = mean of kt 
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Fig. 16. Solar Radiation deviation series for Port Harcourt and Calabar for December for fifteen 
years. 
 Kt = monthly mean daily clearness index, <kt> = mean of kt 
 
Table 6. Total auto-correlation function in deviation series of km - <km> for Port Harcourt 

Lag Autocorrelation Std. Errora Box-Ljung Statistic 

Value df Sig.b 

1 .108 .074 2.144 1 .143 

2 -.216 .074 10.722 2 .005 

3 -.106 .074 12.802 3 .005 

4 .063 .073 13.537 4 .009 

5 -.057 .073 14.135 5 .015 

6 -.094 .073 15.794 6 .015 

7 -.003 .073 15.796 7 .027 

8 -.002 .072 15.796 8 .045 

9 -.088 .072 17.269 9 .045 

10 .006 .072 17.275 10 .068 

11 .004 .072 17.278 11 .100 

12 -.065 .072 18.094 12 .113 

13 -.275 .071 32.933 13 .002 

14 .154 .071 37.620 14 .001 

15 .392 .071 68.054 15 .000 

16 -.011 .071 68.077 16 .000 

a. The underlying process assumed is independence (white noise). 
b. Based on the asymptotic chi-square approximation. 
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Fig. 17. Total auto-correlation function in deviation series of km - <km> for Port Harcourt 
 
Table 7. Total auto-correlation function in deviation series of km - <km> for Calabar 

Lag Autocorrelation Std. Errora Box-Ljung Statistic 

Value df Sig.b 

1 .031 .074 .171 1 .679 

2 -.149 .074 4.281 2 .118 

3 -.135 .074 7.650 3 .054 

4 -.013 .073 7.680 4 .104 

5 -.014 .073 7.716 5 .173 

6 -.115 .073 10.226 6 .115 

7 -.015 .073 10.268 7 .174 

8 -.078 .072 11.440 8 .178 

9 .030 .072 11.611 9 .236 

10 .019 .072 11.678 10 .307 

11 .050 .072 12.158 11 .352 

12 -.075 .072 13.256 12 .351 

13 -.197 .071 20.874 13 .075 

14 .070 .071 21.843 14 .082 

15 .298 .071 39.448 15 .001 

16 -.108 .071 41.764 16 .000 

a. The underlying process assumed is independent (white noise). 
b. Based on the asymptotic chi-square approximation. 
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Fig. 18. Total auto-correlation function in deviation series of km - <km> for Calabar 
 

 
Fig. 19.  Normality condition (Gaussian distribution) for clearness index deviation for Calabar 
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Fig. 20. Normality condition (Gaussian distribution) for clearness index deviation for Port Harcourt 
 
4.2 Discussion 
 A close examination of Tables 3 and 4 shows that the maximum values of the 
monthly mean daily global solar radiation on a horizontal surface and the monthly mean 
daily extraterrestrial solar radiation for Port Harcourt are 18.03 12dayMJm  and 
37.65 12dayMJm , respectively, whereas 17.77 12dayMJm  and 37.64 12dayMJm  were 
registered for Calabar, respectively. High values of monthly mean daily global solar 
radiation for the two cities were observed in the dry season months of November to April 
with peaks in November and February. There is a drop in December and January values 
of global solar radiation in the two cities, because of the Harmattan that reaches its peak 
from December to January. The months of occurrence is expected because high values of 
global solar radiation obtained during the dry season at the study location can be 
attributed to many contributory factors. The fact that the earth is closest to the sun in 
early January (The perihelion) than any other time is one significant factor. This 
observation is also attributed to the prevalence of low smog, low relative humidity, low 
cloud cover, low reflection, scattering and absorption by clouds together with low 
absorption of diffuse solar radiation and near infrared component of the solar spectrum 
during the November – February months. This period is markedly dry at these locations. 
Combination of all these factors enhances the global solar radiation and clearness index 
received at these locations. Furthermore, Harmattan is not usually severe in these areas 
compared to other cities further inland. Therefore, the aerosol mass loading that 
characterizes the Harmattan season (majorly months of November to February in 
Nigeria) is not seriously pronounced in these cities, thereby increasing greatly the 
intensity of daily global solar radiation on a flat surface within the months of November 



 
Peer-Reviewed Article   Trends in Renewable Energy, 6 
 

 
Tr Ren Energy, 2020, Vol.6, No.2, 111-130. doi: 10.17737/tre.2020.6.2.00114 126 
 

to February. Nevertheless, Harmattan reaches its peak from December to January in these 
cities, causing a drop in monthly average daily global solar radiation from December to 
January. The Harmattan season is usually connected with the prevalence of thick dust 
haze and early morning fog and mist resulted from the radiation cooling in the night 
under clear skies. This result is in agreement with Amadi et al [12], which observed that 
Calabar and Port Harcourt experience the highest number of sunshine hours in the 
November to February months. These results are also in consonance with the literature 
[13,14]. These trends are similar to the reports of several research in the region which lies 
within tropical rainforest zone of Nigeria [15-21].  

It can be observed from Table 3 that the maximum global solar radiation received 
at Port Harcourt (18.03 12dayMJm ) and Calabar (17.77 12dayMJm ) are at par with 
each other. Similar observation also goes for the minimum values of global solar 
radiation received at the two cities (12.87 MJm2day-1 and 12.60 MJm2day-1) for Port 
Harcourt and Calabar, respectively. However, while the minimum was observed at Port 
Harcourt in July, it was observed at Calabar in August. A cursory look at Table 4 shows 
that the values of the maximum and minimum monthly mean daily global solar radiation 
received at Port Harcourt (37.65 MJm2day-1 and 33.78 MJm2day-1) and Calabar (37.64 
MJm2day-1 and 33.78 MJm2day-1) are at par. Perhaps, the attenuation effects of aerosols, 
water vapour and low-level clouds on direct normal irradiance [22, 23] share some 
similar features in the two cities, since they are both coastal cities. Being coastal cities, 
they are highly affected by water drops aerosols, high load of sea salts and water vapour 
loads. The two cities are both administrative and commercialized with associated high 
load of atmospheric aerosols. Perhaps this explains why the clearness index variations 
and solar radiation deviation series in Figs 2, 3 and 4 follow the same pattern. However, 
Port Harcourt has more manufacturing concerns and is more industrialized. The city and 
its suburbs play host to many up-stream, middle-stream and down-stream oil industry 
activities being the hub of oil industry activities in Nigeria. The subsequent release of 
environmental pollutants such as greenhouse gases and aerosols (notably soot aerosols) 
would induce changes which determine to a great extent the degree of inter-annual 
variability of solar radiation and its components in the city. The result of higher 
attenuation effect of aerosols on solar radiation in Port Harcourt is vividly captured in Fig 
3, where the monthly mean clearness indices of Calabar for the 15 years period is always 
higher than that of Port Harcourt, except for the months of July, August and November. 
This observation in Port Harcourt clearness index in July, August and November could be 
attributed to the indirect effects of aerosols on clouds and precipitation. Large aerosol 
particles are efficiently removed by the washout mechanism which occurs when such 
aerosols are cloud condensation nuclei. The cloud droplets that form on such aerosol 
particles return them to the earth’s surface which is their main atmospheric sink. This 
scavenging of the atmospheric aerosols increases the atmospheric transparency in the 
peak of rainy season in July and August in the area. The semi-direct effect of aerosol has 
to do with aerosols of soot origin (particulate black carbon) which absorb solar radiation 
and re-radiate it as thermal radiation inside cloud layers. This consequently heats the air 
mass and evaporates cloud droplets [24]. This perhaps causes higher transmissivity of the 
Port Harcourt atmosphere than that of Calabar in November when the rains cease.    

It also necessary to state that the degree of surrounding ecological factors such as 
tree canopies, forest, green fields and vegetation equally converts the direct component of 
global solar radiation into photosynthetically active radiation needed by plants and crops 
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for manufacturing food in the areas [25-27]. Thus, these factors are equally fundamental 
parameters that modify the global solar radiation and inter-annual variability of monthly 
mean global solar radiation and clearness index deviations in Port Harcourt and Calabar 
irrespective of the fact that the extraterrestrial solar radiation, elevation and latitude of 
Calabar and Port Harcourt are similar, with both cities sharing the same eco-climatic 
zone. These deviations are shown in Figures 2 – 16.  

The minimum values of extraterrestrial solar radiation (33.78 12dayMJm  and 
33.78 12dayMJm ) and global solar radiation (12.87 12dayMJm  and 12.60 

12dayMJm ) obtained during the rainy season in the months of July and August 
respectively for Port Harcourt and Calabar is equally expected for a tropical site [14]. The 
months in which they occur are also expected, because the atmosphere in those months is 
characterized by higher cloud cover, high relative humidity and associated scattering and 
absorption of direct and diffuse radiation in the solar wave band, thereby producing low 
amount of global solar radiation intercepted at the site. These trends align with the reports 
of many solar energy researchers in the region which is the tropical rainforest ecological 
zone of Nigeria [15-21].  

The average of the monthly clearness index describes the percentage depletion of 
the incident global solar radiation by the sky, and therefore displays both the amount of 
available solar radiation and variations in the condition of the atmosphere at a particular 
locality. The prevailing clearness index variation is within the range of 0.35 – 0.45 for 
Port Harcourt and 0.34 – 0.46 for Calabar within the April to October months in the wet 
season; 0.43 - 0.52 for Port Harcourt and 0.44 – 0.51 for Calabar within the November to 
March months in the dry season, with an annual value of 0.43 for Port Harcourt and 0.44 
for Calabar. The clearness index statistics is displayed in Table 5. These values are 
similar to some other reports in the same region of tropical rainforest eco-climatic zone of 
Nigeria [15-21]. 

Using the weather classification suggested by Iqbal [28] which are: (1) heavily 
overcast weather (kt ≤ 0.4); (2) partly overcast weather (0.4 ≤ kt ≤ 0.6); and (3) clear 
weather (kt ≥ 7), Port Harcourt and Calabar fall within the combination of heavily 
overcast weather and partly overcast weather. However, on the average, the cities have 
partly overcast weather. During the November to April months, the weather condition is 
clearly partly overcast. It was observed that global solar radiation varies directly with the 
clearness index and it increases very quickly as the heavily overcast sky becomes clearer. 
This is a demonstration that the clearness index has optimal control over global solar 
radiation at Port Harcourt and Calabar, Nigeria. 

In Tables 6 and 7 and Figures 17 – 18, the illustrations of total auto-correlation 
functions for Port Harcourt and Calabar are displayed. The total auto-correlation shows 
vividly the seasonality of the coefficients; although showing some seasonality, it is much 
smaller. Where the auto-correlation coefficient with a given lag is situated externally in 
relation to the vertical lines, it can be confirmed, up to the 95% confidence level, that it is 
different from zero.   
  The solar radiation deviations analysis tested using the Kolmogorov–Smirnov 
method indicates that they are normally distributed random variables. Figures 19 – 20 
show that for Port Harcourt and Calabar, the monthly mean solar radiation deviations are 
normally distributed. Furthermore, the analysis of sequential properties reveals that the 
autocorrelation coefficients with lag 1 are significant for Port Harcourt. In Calabar, the 
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correlation of monthly values does not show any clear regional configuration; so it is 
pertinent to remark that in these cases, Calabar is related to Port Harcourt. Generally, the 
auto-correlation coefficients with lag 1, though they are not significant, are negative for 
almost all the Port Harcourt and Calabar. These trends are consistent with the reports of 
many solar energy researchers in Brazil [29-32]. 
 
 
CONCLUSIONS 
 
  In this study, the characteristics of inter-annual variability of solar radiation were 
analyzed for Port Harcourt and Calabar. To do this, fifteen years (2000 – 2014) monthly 
mean global solar radiation were collected from NIMET while the monthly mean 
extraterrestrial solar radiation were calculated from standard relation recognized globally. 
Clearness index parameter was employed for characterizing the spatial variability of solar 
radiation for Port Harcourt and Calabar. From the results, Calabar and Port Harcourt 
received similar amounts of solar radiation. However, the stations recorded different 
degrees of inter-annual variability over the fifteen years period. The result revealed that 
solar radiation at Calabar deviates more than that of Port Harcourt as a result of 
anthropogenic, environmental, geographical and ecological influence on the 
transmissivity and optical properties of the atmosphere. The statistics for the monthly 
average solar radiation deviations for Port Harcourt and Calabar were tested using the 
Kolmogorov–Smirnov method. The test results portray them as normally distributed 
random variables.   
 
 
CONFLICTS OF INTEREST  

 
The authors declare that there is no conflict of interests regarding the publication 

of this paper  
 
 

REFERENCES  
 
[1]  Okogbue, E. C. and Adedokun, J. A. (2002). On the estimation of solar radiation 

in Ondo. Nigerian Journal of Physics, 14, 97-99. 
[2] Aklaque, A. M., Firoz, A. and Wasim, M. A. (2009). Estimation of global and 

diffuse solar radiation for Hyderabad, Sindh, Pakistan. Journal of Basic and 
Applied Science, 5(2), 73-77. 

[3] Augustine, C. and Nnabuchi, M. N. (2010). Analysis of some meteorological data 
for some selected cities in the eastern and southern zones of Nigeria. African 
Journal of Environmental Science and Technology, 4(2), 92-99. 

[4] Offiong, A. (2003). Assessing the economic and environmental prospects of 
stand-by solar powered systems. Nigeria. J. Applied Sci. and Env. Management, 
7(1), 37-42. 

[5] Oti, M. I. (1995). Design, manufacture and installation of multi-bladed wind mill. 
NJSE, 13, 110-117. 

[6] Chegaar, M. and Chibani, A. (2000). A simple method for computing global solar 
radiation. Rev. Energ. Ren. Chem, 111-115. 



 
Peer-Reviewed Article   Trends in Renewable Energy, 6 
 

 
Tr Ren Energy, 2020, Vol.6, No.2, 111-130. doi: 10.17737/tre.2020.6.2.00114 129 
 

[7] Okogbue, E. C., Adedokun, J. A. and Holmgren, B. (2009). Hourly and daily 
clearness index and diffuse fraction at a tropical station, Ile-Ife, Nigeria. Int. J. 
Climatol. 29(8), 1035-1047. 

[8] Udo, S. O. and Aro, T. O. (2000). New empirical relationships for determining 
global PAR from measurements of global solar radiation, infrared radiation or 
sunshine duration. Int. J. Climatol., 20, 1265-1274.                   

[9] Nwokolo, S.C. and Ogbulezie, J. C. (2017). A comprehensive review of empirical 
models for estimating global solar radiation in Africa. Renewable and Sustainable 
Energy Reviews, 78, 955-995. DOI: https://doi.org/10.1016/j.rser.2017.04.101 

[10] Nigeria Meteorological Agency (NiMet)  http://www.nimet.gov.ng/.  
[11] Klein, S. A. (1977). Calculation of monthly average insolation on tilted surfaces. 

Solar Energy, 19(4), 325-329. DOI: https://doi.org/10.1016/0038-
092X(77)90001-9 

[12] Amadi, S. O., Udo, S. O., and Ewona, I. O. (2014). The spatial and temporal 
variability of sunshine hours in Nigeria (1961–2012). IOSR J. Appl. Phys, 6(6), 1-
10. DOI: 10.9790/4861-06630110 

[13] Babatunde, E. B. (2001). Solar radiation modeling for a tropical station, llorin, 
Nigeria. Ph.D. Thesis 

[14] Babatunde, E. B., and Aro, T. O. (2001). Characteristic variations of global (total) 
solar radiation at Ilorin, Nigeria. Nigeria Journal Solar Energy, 9, 157 - 173.  

[15] Maduekwe, A. A. L., and Chendo, M. A. C. (1995). Predicting the components of 
the total hemispherical solar radiation from sunshine duration measurements in 
Lagos, Nigeria. Renewable Energy, 6(7), 807-812. DOI: 
https://doi.org/10.1016/0960-1481(95)91008-2 

[16]     Fagbenle, R. O. (1993). Total solar radiation estimates in Nigeria using a 
maximum-likelihood quadratic fit. Renewable Energy, 3(6), 813-817. DOI: 
https://doi.org/10.1016/0960-1481(93)90089-Y 

[17] Falayi, E., Adepitan, J., and Rabiu, A. (2008). Empirical models for the 
correlation of global solar radiation with meteorological data for Iseyin, Nigeria. 
International journal of physical sciences, 3(9), 210-216.  

[18] Adaramola, M. S. (2012). Estimating global solar radiation using common 
meteorological data in Akure, Nigeria. Renewable Energy, 47, 38-44. DOI: 
https://doi.org/10.1016/j.renene.2012.04.005 

[19] Ohunakin, O. S., Adaramola, M. S., Oyewola, O. M., and Fagbenle, R. O. (2013). 
Correlations for estimating solar radiation using sunshine hours and temperature 
measurement in Osogbo, Osun State, Nigeria. Frontiers in Energy, 7(2), 214-222. 
DOI: 10.1007/s11708-013-0241-2 

[20] Okundamiya, M. S., Emagbetere, J. O., and Ogujor, E. A. (2016). Evaluation of 
various global solar radiation models for Nigeria. International Journal of Green 
Energy, 13(5), 505-512. DOI: 10.1080/15435075.2014.968921 

[21] Ayodele, T. R., and Ogunjuyigbe, A. S. O. (2016). Performance assessment of 
empirical models for prediction of daily and monthly average global solar 
radiation: the case study of Ibadan, Nigeria. International Journal of Ambient 
Energy, 38(8), 803-813. DOI: 10.1080/01430750.2016.1222961 

[22] Cornejo, L., Martín-Pomares, L., Alarcon, D., Blanco, J., and Polo, J. (2018). A 
through analysis of solar irradiation measurements in the region of Arica 
Parinacota, Chile. Renewable Energy, 112, 197-208. DOI: 
https://doi.org/10.1016/j.renene.2017.04.012 



 
Peer-Reviewed Article   Trends in Renewable Energy, 6 
 

 
Tr Ren Energy, 2020, Vol.6, No.2, 111-130. doi: 10.17737/tre.2020.6.2.00114 130 
 

[23] Polo, J., and Estalayo, G. (2015). Impact of atmospheric aerosol loads on 
Concentrating Solar Power production in arid-desert sites. Solar Energy, 115, 
621-631. DOI: https://doi.org/10.1016/j.solener.2015.03.031 

[24] Ramanathan, V., Crutzen, P. J., Kiehl, J. T. and Rosenfeld, D. (2001). Aerosols, 
climate and the hydrological cycle. Science, 294, 2119-2124.  

[25] Spitters, C. J., and Musabilha, V. M. M. (1986). The Conservative Ratio of 
Photosynthetically Active to Total Radiation in the Tropics. Journal of Applied 
Ecology, 19(3), 853-858. DOI: 10.2307/2403287 

[26] Black, J. N. (1954). The distribution of solar radiation over the Earth's surface. 
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 7(2), 165-189. 
DOI: 10.1007/BF02243320 

[27] Cartledge, O. (1973). Solar Radiation Climate in a Subtropical Region. Nature 
Physical Science, 242(114), 11-12. DOI: 10.1038/physci242011a0 

[28] Iqbal, M. (1980). Prediction of hourly diffuse solar radiation from measured 
hourly global solar radiation on a horizontal surface. Solar Energy, 24(5), 491-
503. 

[29] Tiba, C., and Fraidenraich, N. (2004). Analysis of monthly time series of solar 
radiation and sunshine hours in tropical climates. Renewable Energy, 29(7), 1147-
1160. DOI: https://doi.org/10.1016/j.renene.2003.11.016 

[30] Aguiar, R., and Boland, J. (1999). Interannual variability of meteorological 
parameters in temperate climates. In: 1999 ISES Solar World Congress, G. 
Grossman, ed., Elsevier, pp: I-353.  

[31] Aguiar, R. J., Collares-Pereira, M., and Conde, J. P. (1988). Simple procedure for 
generating sequences of daily radiation values using a library of Markov 
transition matrices. Solar Energy, 40(3), 269-279. DOI: 
https://doi.org/10.1016/0038-092X(88)90049-7 

[32] Graham, V. A., Hollands, K. G. T., and Unny, T. E. (1988). A time series model 
for Kt with application to global synthetic weather generation. Solar Energy, 
40(2), 83-92. DOI: https://doi.org/10.1016/0038-092X(88)90075-8 

 
 
Article copyright: © 2020 Solomon Okechukwu Amadi, Timothy Dike, Samuel 
Chukwujindu Nwokolo. This is an open access article distributed under the terms of the 
Creative Commons Attribution 4.0 International License, which permits unrestricted use 
and distribution provided the original author and source are credited. 
 

 
 



Trends in Renewable Energy 
OPEN ACCESS ISSN: 2376-2144 

Peer-Reviewed Article   futureenergysp.com/index.php/tre 
 

 
*Corresponding author: vbrajuu@gmail.com             131 
Tr Ren Energy, 2020, Vol.6, No.2, 131-155. doi: 10.17737/tre.2020.6.2.00115 
 

 
Mathematical Analysis of Solar Photovoltaic Array 
Configurations with Partial Shaded Modules  
 
*V. Bala Raju, Dr. Ch. Chengaiah  
 
Dept. of EEE, SV University College of Engg., Tirupati, India 
 
Received February 24, 2020; Accepted April 22, 2020; Published April 28, 2020 

 
Solar-based photovoltaic (SPV) cells produce power from sunlight 
through the photovoltaic effect. The yield voltage of a single PV cell is 
small, so the voltage is extended by interfacing PV cells in series 
arrangement known as PV module or panel. Solar PV array comprises of 
series and parallel connections of modules in the grid structure with a 
few columns and rows. The various kinds of SPV array configurations or 
topologies are shaped by changing the number of electrical connections 
between module to module in an array. This paper presents the 
mathematical examination of 6×6 size regular SPV array configurations, 
including Total-Cross-Tied, Parallel, Honey-Comb, Series-Parallel, 
Series, Bridge-Linked types beneath un-shading case, and different 
proposed shading cases (primarily short narrow, short wide, long narrow, 
and long wide shadings). The electrical proportionate circuit of the SPV 
array setups was analyzed by Kirchhoff’s laws at distinctive nodes and 
loops in a sun powered PV array. The location of global maximum power 
point (GMPP) was determined hypothetically and distinguished in 
Matlab/simulation software at various shading conditions.  

 
Keywords:  Photovoltaic cell; Module; Array; Configurations; Shaded modules; Row currents; PV array 
power. 
 
 
1. Introduction  
  
 The expanded electrical energy demand around the world, ecological issues, and 
the global warming effect due to the use of fossil fuels have brought about the developing 
selection of sustainable power sources for power generation. Sustainable power source is 
an elective wellspring of electrical energy for providing the necessary energy demand. 
Among all renewable energy sources, the photovoltaic (PV) system has a more preferred 
position than other sources, because of the most recent improvement in PV innovation, 
value drop of PV modules or panels, rugged and simple in design requiring very little 
maintenance, subsidies provided by the government, no pollution etc. [1]. Solar-based PV 
(SPV) power is gotten by the immediate transformation strategy for sunlight into power. 
The exhibition of the SPV system relies upon solar-based irradiance, shading effect, 
maturing impact, temperature, and degradation impacts, and so on. The most influencing 
factors are temperature and solar-based irradiance [2-3]. The sun-oriented PV system has 
a unique extreme power point (MPP) under uniform irradiance case, and numerous peaks 
happen under non-uniform irradiance cases, for example, local peaks, global peaks. This 
global peak point is considered on the yield P-V characteristics [4]. 
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 Solar-oriented PV cells can straightforwardly convert the sun powered capacity 
into the electrical power and be associated through various interconnections of cells to 
achieve more power. The sun-based PV panel or module is shaped by arranging PV cells 
in series, while the PV array is framed by the series and parallel association of PV panels. 
The quantity of interconnections between modules in a array are changed to make the 
diverse SPV exhibit association topologies, for example, Series, Bridge-Link, Parallel, 
Total-Cross-Tied (TCT), Series-Parallel, and Honey-Comb types [5]. Among all 
topologies, TCT has least mismatch, low shading losses, and high producing yield power 
[6]. Many researchers have introduced literature reviews on solar PV array configurations 
under incomplete shading conditions [7-10]. 

This paper presents the mathematical examination of a 6×6 SPV array 
arrangement under four shading cases including short narrow (SN), long wide (LW), 
short wide (SW) and long narrow (LN) shadings, and one un-shading case (U). The 
mathematical examination of a 6×6 size regular designs was gotten from Kirchhoff's 
laws, i.e., Kirchhoff's current law (KCL) was applied at hubs, and Kirchhoff's voltage law 
(KVL) was applied at closed loops. 

This paper initially discusses the modeling of a single diode photovoltaic cell, 
module, and array in Section 2. Different conventional SPV arrangements are introduced 
in Section 3. In Sections 4 and 5, the numerical investigation of conventional type 
configurations under the non-shading case and four shading cases and furthermore 
reproduction results for a 6×6 array designs are introduced. In Section 6, conclusions are 
given.   
 
 
2. Modeling of Solar Photovoltaic System 
 
2.1 Modeling of Photovoltaic Cell, Module, and Array 
 Sun oriented photovoltaic cells directly convert photon energy from sun based 
irradiance into DC electricity through the photovoltaic effect. Each cell generates a small 
amount of the current, and these cells are connected in series to form a single module or 
panel and produce higher currents. The combination of series and parallel connected PV 
panels forms a SPV array.  

 
Figure 1. Formation of the solar PV cell to an array. 
 
 Figure 1 shows the formation of the SPV array with several cells and modules. 
The simplified models of single diode PV cell and PV array are shown in Figure 2 and 
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Figure 3, respectively. The solar PV array is made by series-connected (NS) and parallel 
connected (NP) PV panels.  

 
Figure 2. (a) Single diode solar PV cell (b) Equivalent circuit of a PV cell 
 

The mathematical representation of a PV cell is given in Equation 1 [11]. 
 

 

 

 
Figure 3. Circuit of solar photovoltaic array 
 

The mathematical representation of the PV module given in Equation 2, 
 

 

 
where IL is the current generated by the module light, represented as 
 

 

 
where, Kisc is the module short circuit co-efficient, ILSTC the current generated by the 
module light at STC (Standard Test Conditions). G is the incident irradiance, and G0 is 
the standard irradiation. Im and Vm are output current and voltage of PV module, Icell and 
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Vcell are output current and voltage of a single diode PV cell, ILcell is photo generated 
current of a solar PV cell and I0 is reverse saturation current. 

The simplified mathematical equation of PV array [10-11] is given by 
 

 

 
where, NP and NS are the total number of parallel and series connected panels in the SPV 
array, RSH and RS are parallel and series resistances of the module, Va and Ia are the 
voltage and current of the SPV array. IL denotes the photo-electric current, Io is reverse 
saturation current, q: charge, a: diode ideality factor, k: Boltzmann constant and T is the 
temperature of the solar cell at STC.  

The above set of equations is used to model the PV array to simulate I-V and P-V 
characteristics with the help of parameters in the datasheet of a solar PV module. 

 
 

3. Solar PV Array Configurations 
 
3.1 Conventional Solar PV Array Configurations 
 There are six basic PV array configurations available which are known as a 
conventional type of configurations or topologies. From this conventional type, hybrid 
PV array topologies are developed by combining any two conventional type 
configurations. The primary conventional configurations of PV array are [12]:  
 a. Simple Series (SS) connection  
 b. Series-Parallel (S-P) connection 
 c. Bridge-Linked (B-L) connection  
 d. Simple Parallel (SP) connection  
 e. Total-Cross-Tied (T-C-T) connection  
 f. Honey-Comb (H-C) connection configuration. 
Figure 4 shows the conventional array configurations of a 6×6 size solar PV array. 
Simple-Series (SS): In this connection, one module is connected to another module like a 
series connection, as shown in Figure 4(a). In a series connection, the total voltage is the 
sum of each module voltages, so the output array voltage is high in a SS topology. 
Simple-Parallel (P): In this connection, all SPV modules are parallel connected, as 
shown in Figure 4(b). In a parallel connection, the total current is the sum of each module 
currents, so the output array current is high in a parallel topology. 
Series-Parallel (SP): In this type, the number of series-connected modules called strings 
is connected to form a series-parallel (SP) topology, as displayed in Figure 4(c). 
Bridge-Link (BL): This BL topology is adapted from a wheat-stone bridge, and this 
scheme is derived from the bridge rectifier connections, as shown in Figure 4(e).  
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Honey-Comb (HC): In this connection, solar PV panels are connected in hexagon shape 
by the honeycomb architecture, as shown in Figure 4(f). 

 
Figure 4. 6×6 Solar PV array conventional configurations 

 
Total-Cross-Tied (TCT): This TCT connection is formed by establishing the electrical 
contacts or ties among the rows and columns of the S-P connection topology, as shown in 
Figure 4(d).  
 In this TCT connection, SPV modules are connected in matrix form. The labeled 
number mn in matrix form indicates; first index m represents the row number and second 
index n represents the column number. For example, in a 6×6 connected SPV array 1st 
row consists of PV modules labeling from 11 (1st row and 1st column) to 16 (1st row and 
6th column) , and the 1st column consists of modules from 11 (1st row and 1st column) to 
61 (6th row and 1st column), as shown in Figure 4.  

  
 

4. Mathematical Analysis of SPV Array Configurations 
 

In this section, mathematical examination is performed for a 6×6 size PV array 
conventional configuration, appeared in Figures 5 to 10. The mathematical is performed 
with the assistance of Kirchhoff's laws, i.e., Kirchhoff's current law is applied at nodes 
and Kirchhoff’s voltage law is applied at closed loops.  
 
4.1 Different Interconnection Array Configurations 
 
(i) Simple Series Configuration 
 
 The simplest topology or configuration of the PV system is Simple Series 
connection type, as shown in Figure 5. Where IPV and VPV are the current and voltage of 
the PV array.   
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Figure 5. 6×6 Simple Series configuration 
 
In a series connection, the same current flowing through the 36 modules in the array. 
Apply KVL for one closed loop in the Simple Series topology and the KVL equation is 
written as, 

 

where n is the number of modules in an array configuration. 
 
It is noted that a 6×6 array of SS connection has 36 module voltages and the one array 
current.  
 
i.e.,               

       
 
(ii) Simple Parallel Configuration  
 

The simple parallel configuration is shown in Figure 6. Where, IPV and VPV are the 
array current and voltage. 

In a parallel configuration, all the modules have the same voltage (In any parallel, 
the circuit voltages are equal), i.e., V1=V2=………. = V36 =V as shown in Figure 6 and 
different currents. Apply KCL at different nodes, then 
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Figure 6. 6×6 Simple Parallel configuration 
 
Where n is the number of modules in an array configuration. It is noted that a 6×6 array 
of parallel connection has 36 module currents and the one array voltage.  
 
i.e.,             

 

                   

 
(iii) Series-Parallel Configuration 
 The circuit of Series-Parallel (S-P) configuration of modules in an array is shown 
in Figure 7. This topology has four parallel strings, and each contains nine series-
connected modules.  

The total array current IPV is equal to the sum of the six-string currents. 
 

i.e.,                                       

 
The six parallel string voltages are equal to the array voltage. Apply KVL at 

parallel strings, then the equations are given by, 
 

 

 
The SP configuration has 36 module voltages and four-string currents. SP 

configuration voltages and currents in 1st, 2nd,3rd, 4th,5th, 6th columns are V1 to V6, V7 to 
V12, V13 to V18, V19 to V24, V25 to V30, V31 to V36 and I1, I2, I3, I4, I5, I6, respectively, which 
are shown in Figure 7.  
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Figure 7. 6×6 Series-Parallel configuration 
 
(iv) Total-Cross-Tied Configuration 
 
 The solar PV array with TCT configuration is shown in Figure 8. The voltage of 6 
parallel modules at the mth row is Vm.  
where,   

                   

 
The array voltage VPV is equal to the sum of six rows of individual module 

voltages: 

 

 
 
Where,  
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Apply KCL at nodes 1 to 5, as shown in Figure 8. 
 

 

 

 
Figure 8. 6×6 Total-Cross-Tied configuration 

 
The TCT topology has 36 module currents and 6 module voltages, as shown in 

Figure 8. TCT configuration has currents in 1st,2nd,3rd,4th,5th,6th columns, which are I1 to 
I6, I7 to I12, I13 to I18, I19 to I24, I25 to I30, I31 to I36, and voltages in 1st row to 6th rows are V1 
to V6. 
 
 (v) Bridge-linked Connection Configuration 
  
The solar PV array with B-L configuration is shown in Figure 9. The module currents and 
voltages are Im and Vp, respectively. The subscripts m, p are related to module number n, 
where,  
 

;   
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In this BL type connection topology, 30 module currents and 32 voltages across 
modules. Figure 9 shows the 12 nodes in the BL topology. 

 

 
Figure 9. 6×6 Bridge-Linked configuration 
 
The node numbers 3 and 8 at the left column, apply the KCL at node points: 

 
            

 
where the subscript q is related to m by, 

 
 
Similarly, apply KCL for the nodes 1, 6, 11 between 2nd & 3rd column and nodes 

4 , 9 between 3rd & 4th columns, 
 

            
 

For the node numbers 5,10 between 5th and 6th columns, apply the KCL at node 
points: 

 
  

 
in which the subscripts q and m relate to each other by, 
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Figure 9 shows the loops and each loop contains four modules, apply KVL for the 
loops: 

 
 
 
 
 

 
Finally, apply the KVL for six modules loop in the 1st column is given by 
 

 

The 6×6 BL configuration has 32 voltages and 30 currents which are shown in 
Figure 9. BL configuration voltages and currents in 1st, 2nd,3rd, 4th, 5th,6th columns are V1 
to V6, V7 to V12, V13 to V16, V17 to V22, V23 to V26, V27 to V32  and I1 to I3, I4 to I9, I10 to 
I15, I16 to I21, I22 to I27, I28 to I30,  respectively. 

 
(vi) Honey-Comb Connection Configuration 
 
 The PV array with HC connection configuration is shown in Figure 10. The 
module currents and voltages are Im and Vp, respectively. The subscripts m, p are related 
to module number n.  
where, 

  

 
In the HC connection type topology, the total number of nodes is 13. Apply KCL 

for each node, 
 

      

       
and the subscript q is related to m given by 
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Figure 10. 6×6 Honey-Comb configuration 

 
Then apply KVL to six or four modules in a loop,  
 

 

 

 

   

              
 
Finally, apply KVL for the six modules loop in the left column is given as,  

 

 

 
In 6×6, HC configuration has 25 module voltages and 32 currents, as shown in 

Figure 10. HC configuration has voltages and currents in 1st, 2nd, 3rd, 4th, 5th, 6th  columns 
are V1 to V6, V7 to V9, V10 to V14, V15 to V17, V18 to V22, V23 to V25 and I1 to I4, I5 to I10, 
I11 to I16, I17 to I22, I23 to I28, I29 to I32, respectively. 

 
Mathematical analysis of 6×6 PV connection configurations is tabulated in Table 

1. Where PPV, VPV and IPV are the output power, voltage and current of the SPV array 
respectively, V and I are the voltage and current output of a single PV module 
respectively. 
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4.2 Generation of Power Across the TCT array configuration 
 
 In this section, the power generation of SPV array with TCT configuration is 
discussed and output voltage, current and power of an array are theoretically calculated.  
 The current I generated by a single solar module at any irradiance G is given as, 
 

 

 
where G is irradiance at shading condition, and G0 is the standard irradiance of 1000 
W/m2. If the solar module receives full irradiance, the output current of the module is 
more and vice-versa.  
The PV array voltage VPV is given as the summation of individual module voltages in the 
rows in an array, i.e., 

 

where Vmp is the maximum module voltage at pth row. In a 6x6 TCT SPV array 
configuration, number of rows are 6, each row voltage is Vm ( the maximum module 
voltage), so the total voltage of an array is equal  to the sum of row voltage. By 
neglecting the voltage drop across diodes, the SPV array voltage is given as,  
 

 

where,  are the maximum voltage of parallel connected modules in rows. Each 
row has 6 number of modules are connected in parallel and the row voltage is equal to 

(total voltage is same as individual voltages in parallel connection), then 
 

 
 
By applying the Kirchhoff’s current law, the output current of an TCT SPV array 
configuration ( current across each node in an array) is given by, 

 

 

 
where, p and q are the number of rows and columns of the SPV array. 

 
For a 6×6 solar PV array TCT configuration, the number of rows is six are 

connected in series and number of modules per row is 6 are connected in parallel. The 
total array current is the sum of six number of module currents in each row given as, 
 

where,  are the maximum current of parallel connected modules in rows. Each 
row has 6 number of modules are connected in parallel and maximum current of each 
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module is equal to  (total current is the sum of individual module currents in parallel 
connection), then 
 

                                                                                       
 

where Im is the maximum generated current of each PV module in an array. 
Under un-shaded conditions, the power output of a 6×6 Solar PV TCT array is given as, 

 
    

 
 

Table 1. Parameters (V, I and P) of a 6×6 SPV Array Topologies 
 
Configurations 

OUTPUT 
Array Voltage 

 (V) 
Array Current 

 (A) 
Array Power 

(W) 
 
Simple Series 
 

 
 

 
 

 

Simple Parallel 
 

 
  

 
 

Series-Parallel 
   

 
 

Total-Cross-
Tied   

 
 

Bridge-Link 
 

 

 
 

Honey-Comb 
 

 

 
 

 
 
5. Mathematical Analysis of Partial Shaded SPV Array with TCT 
Configurations 
 
5.1 Row Currents and Output Powers of the SPV Array with TCT topology 
 
 Figure 12 shows the partially shaded modules in the 6×6 PV array with TCT 
configurations [13-14]. For mathematical analysis of 6×6, TCT configuration calculates 
the currents in each row, array voltage, and array power [12]. The row currents are given 
as 
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where  is row number, G0 is the standard irradiance of 1000 W/m2,  is the Pth row 
and 1st column irradiance value in W/m2. 
 

The 1st-row current is given as, 

 

 

 
The 2nd, 3rd,4th, 5th, and 6th-row currents are given as, 

 

 

 

 

 

 

 
Since the currents are different in each row, so two or more peaks occur in output 

characteristics (P-V curves). In the TCT SPV array configuration, the global MPP, is the 
product of voltage and current of each row. The array current depends on the irradiance, 
and the array voltage is the same for all the rows by neglecting the voltage drop across 
the diodes. Solar PV array output voltage and power are given as, 
 

 
 

 
 

The theoretical calculations of current, voltage, and power of TCT array topology 
are tabulated in Table 2. 
 
5.3 Generation and Location of Global MPP for Shaded PV Array TCT Topology 
 

The SPV array with TCT configuration under various shading cases are shown in 
Figure 12 [13]. For mathematical analysis of partially shaded conventional TCT 
configurations [15], four partial shading patterns are shown in Figure 11 and the 
irradiance of shaded panels is 500 W/m2  are considered. There are mainly, 
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(a) Short Narrow shading (SNS) 

(b) Short Wide shading    (SWS) 

(c) Long Narrow shading (SNS) 

(d) Long Wide shading    (SNS) 

(e) Un-shaded Case (U) 

 
Figure 11. Types of shading cases 
 
(a) Short Narrow Shading (SNS) 

The short narrow type of shading scenario is observed in Figure 12(a). For 
formulating the location of Global Maximum Power Point (GMPP) in the output P-V 
characteristics theoretically, first calculate the currents in each row of the SPV array. 
From Figure 12(a), the 1st-row current is calculated from Equation 31,  

 
 

 

where,  irradiances at shading and G0 is the 
standard irradiance of 1000W/m2. 
 

From Figure 12(a): In short narrow shading, PV panels in 1st, 2nd and 3rd rows are 
under full uniform irradiation level of 1000 W/m2, while the remaining rows are under 
different irradiance of 500 W/m2. The current generated by the 1st, 2nd, and 3rd rows are 
calculated as follows: 
 
  ---(i) 
 

Modules in row 4th, 5th and 6th are shaded and the corresponding row currents are 
given by, 
 
  --(ii) 
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From the row currents given in i and ii, it is observed that the currents in different 
rows are changing from 4.5 Im to 6 Im. Due to these varying currents, multiple peaks are 
generated in the output characteristics.  

 
Figure 12. 6×6 Solar array with TCT configuration under various shading conditions  
 

The maximum generated power of SPV array configuration under uniform 
irradiance of 1000 W/m2 is given as 

 
                  ---- (39) 

 
where Vm is the maximum voltage. In the TCT topology, there are six series-connected 
modules, the voltage across the PV Array is 6Vm and the array current is 4.5Im, due to the 
limitation of the array current in series-connected modules in the array topology. There is 
no module bypassed through the bypass diode, so the array voltage is 6Vm. 

In the TCT topology under short narrow shading case without bypassing the solar 
modules, the total array output power is given as 

       ----(40) 
(b) Short Wide Shading (SWS) 
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The short wide shading pattern can be observed in Figure 12(b). In this shading 
case, PV modules in 1st, 2nd, 3rd rows receive an irradiance of 1000 W/m2, while the 
remaining modules in rows are under shaded with solar irradiance of 500 W/m2. The 
current generated by the 1st, 2nd, and 3rd rows are calculated as follows: 
  
 

Modules in row 4th, 5th and 6th are shaded. Corresponding row currents are given 
by, 

 
   
 
   

  
(c) Long Narrow Shading (LNS) 

The long narrow shading pattern can be observed in Figure 12(c). In this shading 
case, PV modules in 1st row receive irradiance of 1000 W/m2, while the remaining 
modules in rows are shaded with an irradiance of 500 W/m2. Then the current in 1st row is 
calculated as follows: 

 
   

 
PV Modules in 2nd,3rd,4th,5th and 6th rows are under shading, and corresponding 

row currents are given by, 
 

         
 

 

 
(d) Long Wide Shading (LWS) 

The LWS shading case is observed in Figure 12(d). Assume shading modules 
have irradiance of 500 W/m2. In this type of shading case, all rows are shaded. From 
Figure 9(d): In long wide shading, PV modules in all rows are under shaded with solar 
irradiance of 500 W/m2. The current generated by the 1st, 2nd, 3rd, 4th, 5th, and 6th rows are 
calculated as follows: Row current is calculated from Equation 31. 

 

   
 

The PV modules in 4, 5, 6th rows are shaded, and corresponding row currents are 
given by, 

 
   

The currents generated in six rows in an array configuration are different due to 
non-uniform irradiance falling on the modules in an array configuration, which results in 
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the multiple peaks occur on the output P–V characteristics. The location of global MPP in 
output PV characteristics of conventional array topologies under different shading cases 
are tabulated in Tables 2 and 3, and the module currents in each row are based on the 
order in which modules were bypassed. By neglecting the voltage drops across the diodes 
and voltage variations across individual rows, then 

 
The voltage of PV array is given as, VPV=6 Vm.  
Total Array power is given as, PPV =VPV IPV.           ----(41) 
 

In Table 2, the array current IPV
* denotes the minimum of six-row currents due to series 

connection of six modules, and the current is limited to minimum row current. Only the 
minimum current will flow through the array configurations[16-17]. 
 
(e) Un-Shaded Case-U: 

In the un-shade case, 36 PV modules in a 6×6 array TCT configuration receive 
uniform irradiance of 1000 W/m2.The parameters are calculated under uniform irradiance 
case by equation 24 to 28,  

 
The array current VPV = 6 Im 
array voltage        IPV  =  6 Vm  and 
array power         PPV =  36 Vm.Im.          ----(42) 

 
5.3 Theoretical Calculations and Discussions 
 

In this paper, mathematical analysis of a 6×6 size, solar based PV array 
configurations is performed under four shading cases including short narrow, short wide, 
long narrow, and long wide types of partial shadings, as appeared in Figures 12(a) to 
12(d). Table 3 demonstrates the hypothetical figuring to determine the maximum global 
power for the Total-Cross-Tied PV array design. Under uniform irradiance implies the 
non-shading case, the TCT configuration has an extreme maximum array power of 36 
VmIm; while in shading cases, the currents in each row are different because of progress in 
irradiance on the PV modules in an array and corresponding power also changed. In the 
case of short narrow shading (SNS), the minimum current is 4.5 Im from the rows 4th, 5th, 
6th, and remaining row currents are equal to 6 Im. Modules are connected in series due to 
this; the current is limited to the minimum current of rows[16-17], so the array current is 
4.5 Im, and array voltage is 6 Vm. The resultant array power is 27 VmIm. In the remaining 
three shading cases, the energy yield of the PV array TCT configuration is less than the 
SNS case. The theoretical results are tabulated in Table 3 for the TCT 6×6 PV array 
configuration. In series connections, high voltages are generated by PV modules and high 
currents are produced in parallel connections. In S-P and TCT connections, the output 
power of the array is more under  short narrow case as compared to other shading cases. 

From the mathematical analysis of a 6×6 size solar PV array configurations, it can 
be concluded that: 



 
Peer-Reviewed Article   Trends in Renewable Energy, 6 
 
 
 

 
Tr Ren Energy, 2020, Vol.6, No.2, 131-155. doi: 10.17737/tre.2020.6.2.00115 150 
 
 
 

* In the simple series connection type of configuration, under uniform irradiance case, 
the maximum current (Im) is produced by the SPV modules of an array. Under shading 
cases, limitation due to the minimum current of 0.5 Im (is determined from Equation 31) 
with an irradiance of 500 W/m2, the voltage is Vm and neglect voltage drops across 
diodes. The resultant array power is only 18 Vm.Im, while in uniform case it is 36 VmIm. 
* In the simple parallel connection type of configurations, under uniform irradiance case 
the maximum current (Im) is produced in each parallel connected modules in the PV 
array. Under shading cases, different currents are created and determined from Equation 
31. In the short narrow case, the array current and voltage is 31.5 Im  and Vm, and neglect 
voltage drops across diodes. The resultant array power is only 31.5 Vm.Im, though in 
uniform case it is 36 VmIm. 
* In the Series-Parallel connection type of configurations, under uniform irradiance case 
the array current is the aggregate of six-string currents (series connection of modules), 
i.e., 6 Im, array voltage is 6 Vm, and the resultant array power is 36 Vm.Im. Under the short 
narrow case, because of shading with irradiance of 500 W/m2, the array current is 4.5 Im, 
the array voltage across 6 PV modules is 6 Vm, and the resulting array power is 27 VmIm. 
* In the TCT connection type of configurations, under uniform irradiance case, the array 
current, the voltage, and the power are 6 Im, 6 Vm, and 36 Vm.Im, respectively. In short 
narrow shading case, row 4, 5, 6 has a minimum current of 4.5 Im, and the voltage is 6 Vm 
(neglecting voltage drops across the diodes). When the rows in the configuration are 
connected in series, because of limitation in series current, the array current is limited to 
4.5 Im and the resultant power is 27 Vm.Im. 
* In the B-L connection type of configurations, under uniform irradiance case, the 
maximum array current in parallel strings is 6 Im, the voltage is 6 Vm and the array power 
is 36 Vm.Im. Under different shading cases, the output power of the array is changed.     
* In the H-C connection type of configurations, under uniform irradiance case, the array 
current is 6 Im, the voltage is 6 Vm and the power is 36 VmIm. The output power of an array 
configuration is changed, and it depends upon the shading pattern. 

Theoretical calculations of different solar PV array configurations are presented in 
Table 2 and 3. 

 
Table 2. Theoretical calculations of the location of GMPP in PV array with S, P and S-P 

configurations under irradiance of 500 W/m2 
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Table 3. Theoretical calculations of the location of GMPP in SPV Array with TCT configuration 
under irradiance of 500 W/m2 

 
Shading 

Cases 

Order of row currents 
in which the modules 

are bypassed (IR) 

Array  
Voltage 

(VR) 

Array Power 
(PPV = VR. IR ) 

Location of 
GMPP 
(PPV) 

 
Un-Shaded  

Case (U) 

IR6 = 6 Im 6 Vm 36 Vm. Im  
IR5 = 6 Im 6 Vm 36 Vm. Im  
IR4 = 6 Im 6 Vm 36 Vm. Im 36 Vm. Im 
IR3 = 6 Im 6 Vm 36 Vm. Im  
IR2 = 6 Im 6 Vm 36 Vm. Im  
IR1 = 6 Im 6 Vm 36 Vm. Im  

 
 

Short 
Narrow 
Shading 

(SNS) 

  IR6 = 4.5 Im 6 Vm 27 Vm. Im 27 Vm. Im 
   IR5 = 4.5 Im 5 Vm 22.5 Vm. Im  
    IR4 = 4.5 Im 4 Vm 18 Vm. Im  

IR3 = 6 Im 3 Vm 18 Vm. Im  
IR2 = 6 Im 2 Vm 12 Vm. Im  
IR1 = 6 Im Vm 6 Vm. Im  

 
Short Wide 

Shading 
(SWS) 

IR6 = 3 Im 6 Vm 18 Vm. Im 18 Vm. Im 
IR5 = 3 Im 5 Vm 15 Vm. Im  

   IR4 = 4.5 Im 4 Vm 18 Vm. Im  
IR3 = 6 Im 3 Vm 18 Vm. Im  
IR2 = 6 Im 2 Vm 12 Vm. Im  
IR1 = 6 Im Vm 6 Vm. Im  

 
Long 

Narrow 
Shading 
(LNS) 

IR6 = 4 Im 6 Vm 24 Vm. Im 24 Vm. Im 
IR5 = 4 Im 5 Vm 20 Vm. Im  
IR4 = 4 Im 4 Vm 16 Vm. Im  
IR3 = 5 Im 3 Vm 15 Vm. Im  
IR2 = 5 Im 2 Vm 10 Vm. Im  
IR1 = 6 Im Vm 6 Vm. Im  

 
Long Wide 

Shading 
(LWS) 

IR6 = 3 Im 6 Vm 18 Vm. Im 18 Vm. Im 
IR5 = 3 Im 5 Vm 15 Vm. Im  
IR4 = 3 Im 4 Vm 12 Vm. Im  
IR3 = 5 Im 3 Vm 15 Vm. Im  
IR2 = 5 Im 2 Vm 10 Vm. Im  
IR1 = 5 Im Vm 6 Vm. Im  

 
5.4 Simulation Results 

The 6×6 solar PV array conventional topologies, mainly S-P, TCT, BL, HC types 
of models, are developed and simulated in Matlab/Simulink software. The Vikram solar 
ELDORA 270W [Pmax is 270W] panel specifications are used in simulation of a 6×6 size 
SPV array with S-P, TCT, BL and HC configurations under SNS,SWS,LNS,LWS 
shading cases. The simulation results are tabulated in Table 4, and the maximum PV 
array powers observed in the TCT topology are 7714 W, 5478 W, 6865 W, and 5284 W 
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under proposed four shading cases, respectively. The output characteristics (V-P) of 
different array configurations are appeared in Figures 13 to 16. 

 
Table 4. Simulation results of a 6×6 solar PV array configurations under different shading cases 

 
i. S-P Configuration P-V Characteristics 

 
Figure 13. PV Curves for S-P type connection 
 
ii. TCT Configuration P-V Characteristics  

 
Figure 14. PV Curves for TCT type connection 
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iii. B-L Configuration P-V Characteristics 

  
 
 

Figure 15. PV Curves for B-L type connection 
 
iv. H-C Configuration P-V Characteristics 

 
Figure 16. PV Curves for HC type connection 
 
 
6. CONCLUSIONS 
 
 In this paper, mathematical investigation of conventional solar PV array 
configurations in particularly SS, P, SP, TCT, BL and HC types under uniform irradiance 
case, i.e., non-shading case and proposed partial shading cases including short narrow, 
short wide, long narrow and long wide shading cases are presented. The 6×6 size solar 
PV array configurations are considered for examining under non-shading and partial 
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shading cases. Under various shading cases, each row current is determined based on the 
order of row currents, in which the modules are bypassed for the identification of a global 
peak power position in the output characteristics of different PV array configurations. 
This mathematical analysis is based on the KVL and KCL equations of a different 
module connections in a PV array. From the theoretical calculations and simulation 
analysis, the array output power is greater in TCT configuration under short narrow 
shading conditions. It can be concluded that the energy yield of an array relies upon the 
shading pattern in the SPV array configurations. 
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Due to the smart grid (SG) operation, the power utilities are dealing with 
a cataclysm of big data that demands advanced information technology 
(IT) infrastructure and business analytics while one cause of this growth 
is the nature of the power grid operation that demands real-time 
measurements. In [1], [2], the theoretical framework and the numerical 
results for the interoperability of Deterministic Hybrid Model (DHM),  
initial Statistical Hybrid Model (iSHM), the definition procedure and  
the class maps have been presented for the overhead low-voltage 
broadband over power lines (OV LV BPL) networks as well as  
the iSHM footprints. On the basis of the five real indicative OV LV BPL 
topologies of [1], [2], the impact of measurement differences that follow 
either continuous uniform distributions (CUDs) or normal distributions 
(NDs) of different intensities is first highlighted on iSHM footprints.  
 
 

Keywords: Smart Grid; Broadband over Power Lines (BPL) networks; Power Line Communications 
(PLC); Distribution and Transmission Power Grids; Capacity, Statistics; Business Analytics; IT; Modeling 
 
 
  



 
Peer-Reviewed Article   Trends in Renewable Energy, 6 
 

Tr Ren Energy, 2020, Vol.6, No.2, 156-186. doi: 10.17737/tre.2020.6.2.00117 157 
 

Nomenclature 
AWGN Additive White Gaussian Noise 
BPL Broadband over Power Lines 
BPMN Business Process Model and Notation 
CASD Channel Attenuation Statistical 

Distribution 
CDF Cumulative Density Function  
CS2 module Coupling Scheme version 2 module 
CUD Continuous Uniform Distribution 
DHM Deterministic Hybrid Model 
EMI ElectroMagnetic Interference 
ICT Information and Communication 

Technology 
IPSD limits Injected Power Spectral Density Limits 
IT Information Technology 
iSHM initial Statistical Hybrid Model 
LOS Line-of-Sight 
LV Low Voltage 
L1PMA L1 Piecewise Monotonic Approximation 
L2WPMA L2 Weighted Piecewise Monotonic 

Approximation 
MLE Maximum Likelihood Estimator 
mSHM modified Statistical Hybrid Model 
MTL Multiconductor Transmission Line  
ND Normal Distribution 
OV Overhead 
PSD Power Spectral Density 
PDF Probability Density Function 
SG Smart Grid 
SHM Statistical Hybrid Model 
TIM  Topology Identification Methodology 
TL Transmission Line 
WtG Wire-to-Ground 
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1. Introduction 
 
To support various SG applications, the vintage transmission and distribution 

power grids need to obtain additional intelligence by rendering ITs as their key aspect 
[1]-[3]. Actually, the supported SG applications impose a big data challenge that requires 
IT infrastructure and advanced business analytics techniques in order to face with the vast 
amounts of data and their analytics [4], [5]. The adoption of the available SG ICT 
solutions may help towards the support of reliable and secured bi-directional data 
communications across the entire power grid, better power grid monitoring and 
management, further data integration of other power grid related sources,  
the improvement of power grid efficiency and the deal with fervent issues of modern 
energy networks [6]. Among the available SG ICT solutions, BPL networks attract the 
great attention from the stakeholders among the other available communications 
technologies since these networks can exploit the already installed wired power grid 
infrastructure without the need for additional wiring costs except for the ones that are 
related with network equipment [7]-[9]. 

As the operation of BPL networks is concerned across the power grid,  
a lot of evolution steps took place recently by focusing on the statistical processing of the 
communications channel that is proven to be a hostile medium for communications as the 
infrastructure and the equipment of transmission and distribution power grids are 
designed to deliver power rather information [1], [10]-[14]. On the basis of  
the well-validated DHM for transmission and distribution power grids [10], [11],  
[15]-[18], the proposed SHM framework, which consists of its iSHM and mSHM 
versions, has recently been proposed in [19]-[21]. Also, new tools that are integrated with 
SHM and further exploit its operation are available in [1], [2], [22]-[24], namely:  
(i) The definition procedure: This procedure enriches the existing BPL topology classes 
with virtual BPL topology subclasses statistically defined in terms of the applied  
SHM version and its corresponding successful CASD parameter pairs  
(i.e, MLEs and CDF for iSHM and mSHM CASDs, respectively);  
(ii) The class maps: 2D contour plots illustrate the borders between adjacent BPL 
topology classes while CASD parameter pairs with the corresponding BPL topology 
subclass average capacities are represented on the class map; and  
(iii) The class map footprints of critical events of the operation of power grids:  
The real OV LV BPL topologies, the real OV LV BPL topologies with a sole branch line 
fault and the real OV LV BPL topologies with a single hook for energy theft can be 
illustrated as superimposed white areas upon the class maps for given power grid type, 
SHM version, CASD, coupling scheme, IPSD limits and noise levels. In accordance with 
[2], the most descriptive class map footprints are the iSHM ones, which are going to be 
exploited in this paper, since their representation depends on a straightforward procedure 
rather than the approximation of mSHM ones. Until now, the results of iSHM and its 
accompanying tools have exploited as inputs the theoretical numerical results came from 
the operation of DHM. 

Already been mentioned in [25]-[29], measurement differences between the 
experimental and theoretical results may occur due to a number of practical reasons and 
“real-life” difficulties thus having as a result the influence of the DHM numerical results 
in terms of the transfer function and capacity and, from now on, the destabilization of the 
entire iSHM framework operation (i.e., iSHM results as well as the accompanying tools). 
In accordance with [25], [26], [29], [30], a typical scenario to take into account 
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measurement differences during the BPL network analysis is their handling as error 
distributions such as CUDs and NDs that are superimposed to the coupling scheme 
transfer function theoretical numerical results of DHM. In this paper, the impact of 
measurement differences as CUDs and NDs on the iSHM framework operation is first 
assessed through the iSHM class map footprints of a list of real indicative OV LV BPL 
topologies. 
 The rest of this paper is organized as follows: In Section II, the interaction among 
DHM, iSHM, the definition procedure, the class maps and footprints of OV LV BPL 
topologies is briefly outlined. Section III deals with the measurement differences and the 
mathematics concerning the integration of the corresponding measurement difference 
CUDs and NDs in SHM and its accompanying tools. In Section IV, the numerical results 
regarding the impact of measurement differences on the iSHM footprints of the 
aforementioned real indicative OV LV BPL topologies are shown. Section V concludes 
this paper.  
 
 
2. The Basics of DHM, iSHM, the Definition Procedure, the Class Maps and 
the Footprints of OV LV BPL Topologies 
  
 Prior to examine the interaction of DHM, iSHM, the definition procedure, the 
class maps and the footprints of OV LV BPL topologies, brief details concerning the 
applied OV LV MTL configuration and indicative OV LV BPL topologies are given in 
Sec.2.1. Helpful operation details for DHM, iSHM, the definition procedure,  
the class maps and the footprints of OV LV BPL topologies are reported in Secs 2.2-2.7, 
respectively. 
 
2.1 OV LV MTL Configuration and Indicative OV LV BPL Topologies 
 As the BPL signal propagation is examined, the typical OV LV MTL 
configuration that is applied in this paper is shown in Fig. 1(a) of [1]. Note that the 
applied OV LV MTL configuration consists of four parallel non-insulated conductors 
(i.e., ), which are hung in vertical arrangement. More details concerning the 
MTL configuration dimensions, the conductor dimensions and the conductor structure 
are given in [18], [31] while the ground properties and the role of ground  
during the BPL signal propagation over OV power lines are detailed in [10], [18],  
[32]-[36]. 
 As the BPL signal transmission is studied, the typical OV LV BPL topology that 
is used in this paper is shown in Fig. 1(b) of [1]. In fact, the examined typical OV LV 
BPL topology is the division result of OV LV BPL networks into simpler topologies of 
fixed end-to-end connection length (say, 1000m in this paper) but different topological 
characteristics (say, number of branches, distances between branches and branch lengths) 
that depend on the underlying power grid. In accordance with [37], [38], [18], [39], five 
OV LV BPL topology classes (i.e., “LOS”, rural, suburban, urban A and urban B) with 
their respective representative OV LV BPL topologies, which act as the real indicative 
OV LV BPL topologies of this paper, can be defined so that a classification of all OV 
LV BPL topologies (i.e., either real or virtual ones) can be made in terms of their 
capacity. In Table 1 of [1], the five real indicative OV LV BPL topologies of this paper 
are reported as well as their topological characteristics. 
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2.2 DHM 
 With reference to BPMN diagrams of iSHM [1], [19], [21], it is evident that the 
numerical results of DHM act as the cornerstone of iSHM, class maps and footprints. 
DHM is a well validated model that has extensively been employed to examine the 
behavior of various transmission and distribution BPL networks [10], [11], [15]-[18], 
[32], [40]-[43]. In general terms, DHM consists of four interconnected submodules; say, 
two internal submodules (i.e., the bottom-up and top-down approach modules) and two 
external ones (i.e., the coupling scheme and the capacity computation modules).  
The numerical results of DHM that are of interest for iSHM and its tools of this paper are 
the transfer function and the capacity for given BPL topology, MTL configuration, 
coupling scheme, EMI policy and noise level. Mathematically, the output of the 
interconnection of the aforementioned internal submodules is the  line 
channel transfer function matrix  

                     (1) 
where  is the  modal channel transfer function matrix that 
mainly depends on the examined OV LV MTL configuration and OV LV BPL topology 
and  is a  matrix that depends on the frequency, the physical 
properties of the TLs and the geometry of the OV LV MTL configuration. With reference 
to eq. (1), the output of the coupling scheme module is the coupling scheme channel 
transfer function that relates output and input BPL signal through  

                (2) 
for given coupling scheme where C  denotes the applied coupling scheme among the 
supported coupling schemes of CS2 module [44], [45],  is the input coupling  
column vector that deals with the BPL signal injection interface and is defined by the 
applied coupling scheme and  is the ouput coupling  line vector that deals 
with the BPL signal extraction interface and is also defined by the applied coupling 
scheme. With reference to eq. (2), the output of the capacity computation module is the 
capacity C that is given by [1], [37], [46], [47] 

                         (3) 
,                                            (4) 

                                          (5) 
where  is the flat-fading subchannel start frequency,  is the flat-fading subchannel 
frequency spacing,  is the number of subchannels in the examined 3-30MHz frequency 
range,  is the 1×Q line vector that consists of the flat-fading subchannel start frequencies 

,  is the applied IPSD limits in dBm/Hz,  is the applied AWGN PSD levels in 
dBm/Hz and  is an operator that converts dBm/Hz into a linear power ratio (W/Hz). 
More details concerning the applied coupling scheme, IPSD limits and AWGN PSD 
levels are given in [1], [2]. 
 
2.3 iSHM 
 Already been mentioned, SHM consists of iSHM and mSHM. With reference to 
the BPMN diagrams of iSHM and mSHM [1], [19], iSHM consists of six Phases  
(i.e., Phase A-F) while each Phase is clearly defined in terms of its procedure and the 
input / output files.  
 In accordance with [19] and with reference to Fig. 2(a) of [1], the operation of 
iSHM can be described through the concatenation of six Phases (i.e., Phases A-F).  
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The input of iSHM, which coincides with the input parameters of its Phase A,  
is the topological characteristics of the examined real indicative OV LV BPL topologies, 
the applied coupling scheme, IPSD limits and AWGN PSD levels. The output of iSHM, 
which coincides with the output of Phase F, is the capacity range of each OV LV BPL 
topology main subclass for given CASD when each OV LV BPL topology main subclass 
consists of its representative real indicative OV LV BPL topology from Phase A and  
P statistically equivalent virtual OV LV BPL topologies to the real indicative one  
in terms of CASD MLEs. Note that iSHM may support five CASDs with their 
corresponding MLEs (i.e., Gaussian, Lognormal, Wald, Weibull and Gumbel CASDs) 
while each CASD exhibits different performance depending on the input parameters of 
Phase A. 

In accordance with [2], the performance of iSHM CASDs is assessed in terms of 
the best percentage change and average percentage change results that are performance 
capacity metrics. By evaluating the CASD approximation accuracy to the real capacity 
results, the best CASD is chosen for iSHM and are further applied during the definition 
procedure, class maps and footprints. 
 
2.4 The Definition Procedure and Class Maps 
 As already been identified in [23], [24], [48], OV LV BPL topology classes are 
underrepresented since iSHM only exploits the five main OV LV BPL topology 
subclasses in order to define the respective classes for given CASD. The definition 
procedure, which has been introduced in [48], clearly solves this issue by statistically 
defining and inserting virtual indicative OV LV BPL topologies with their respective 
subclasses in the existing five OV LV BPL topology classes of iSHM by appropriately 
computing MLEs of iSHM CASDs. An appropriate flowchart that describes the 
definition procedure of iSHM for OV LV BPL networks is given in Fig. 3(a) of [1]. 
 In accordance with [48], as the definition procedure of iSHM is concerned,  
it consists of eleven steps (i.e., FL1.01-FL1.11) that can be further categorized into three 
groups (i.e., Group 1.A-1.C). The input of the iSHM definition procedure is the five main 
OV LV BPL topology subclasses with their respective representative real indicative OV 
LV BPL topologies for given CASD. The output of the iSHM definition procedure is the 
class map that is a 2D contour plot where (i) each CASD parameter pair is corresponded 
to its OV LV BPL topology subclass average capacity; (ii) real and virtual OV LV BPL 
topology subclasses are described by corresponding CASD parameter pairs; (iii) the 
borders between the OV LV BPL topology classes are illustrated; and (iv) by taking into 
the capacity arrangement of OV LV BPL topology subclasses and the borders between 
the OV LV BPL topology classes, OV LV BPL topology class areas can be 
demonstrated. 

In Secs 2.3 and 2.4, DHM, iSHM, definition procedure and class maps have been 
presented that form all together an interconnected system but with specified settings.  
The set of the default operation settings that are used in this paper are simply reported in 
Sec3.4 of [1] as a whole. 
 
2.5 iSHM Footprints of Real OV LV BPL Topologies on Class Maps 
 The theoretical definition of footprints has been presented in [1] while the first 
numerical results concerning the application of footprints during critical events of the 
operation of OV LV power grids have been demonstrated in [2], say, the iSHM footprints 
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of the real OV LV BPL topologies, of the OV LV BPL topologies with a sole branch line 
fault and of the OV LV BPL topologies with a single hook for energy theft.  

As the iSHM footprints of the real OV LV BPL topologies are of interest  
in this paper, their computation is based on TIM that allows the accurate identification of 
an OV LV BPL topology with respect to its topological characteristics (i.e., number of 
branches, length of branches, length of main distribution lines and branch terminations) 
by applying piecewise monotonic data approximations even if significant measurement 
differences may occur [49]-[51]. In fact, the computation of footprints is feasible by 
exploiting: (i) the OV LV BPL topology database of TIM that consists of OV LV BPL 
topologies with their respective theoretical and measured coupling scheme channel 
transfer functions when appropriate TIM BPL topology database specifications  
(e.g., the maximum number of branches, the length spacing for both branch distance and 
branch length and the maximum branch length) are assumed; and (ii) the computation of 
CASD MLEs of each OV LV BPL topology of the TIM BPL topology database for given 
best CASD for the preparation of the iSHM footprint [1]. As been demonstrated in [2], 
iSHM footprints of the real OV LV BPL topologies without measurement differences can 
be shown as areas of superimposed white spots upon the iSHM class maps for given 
power grid type, CASD, coupling scheme, IPSD limits and noise limits. By studying 
iSHM footprints of the real OV LV BPL topologies of [2], it is clear that the footprint 
extent of the real OV LV BPL topologies remains a small area of the respective class 
maps thus highlighting the significant and successful role of the respective definition 
procedures towards the enrichment of OV LV BPL topology classes with virtual OV LV 
BPL topologies.  

Although iSHM footprints of the real OV LV BPL topologies graphically reveal 
the internal zones of the respective class maps where real OV LV BPL topologies can be 
located, the measurement differences during the computation of the coupling scheme 
transfer functions have been ignored in [2]. In this paper, the option of the TIM OV LV 
BPL topology database that considers measurement differences during the computation 
of coupling scheme transfer functions is activated thus allowing the impact assessment of 
measurement differences when various distributions are applied. In the following Section, 
the mathematics of the measurement difference distributions are reported as well as their 
interaction with DHM, iSHM, definition procedures, class maps and footprints. Note that 
although default operation settings have been assumed in Sec 2.4 of [2] for the interaction 
of iSHM footprints with the remaining set (i.e., DHM, iSHM, definition procedures and 
class maps), there are no need for these assumptions here since the impact of 
measurement differences is going be studied with reference to the five real indicative OV 
LV BPL topologies of Table 1 of [1]. 
 
3. The Involvement of Measurement Differences from DHM to  
iSHM Footprints 
 
 In this Section, the way the measurement differences are taken into account in 
DHM are presented. In addition, the approach and the settings for the study of  
iSHM footprints when measurement differences are applied are reported.  
 
3.1 Measurement Differences in DHM 
 From DHM to iSHM footprints, the theoretical computation of the coupling 
scheme channel transfer function, which is mathematically described in eq. (2), has been 
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applied so far since no measurement differences have been assumed. However, a set of 
practical reasons and “real-life” conditions, which can be grouped into six categories 
[25], [27], [52], are taken into account in this paper so that the role and the effect of 
measurement differences can be further investigated. In accordance with [25], [27], [52] 
and eq. (2), the measured coupling scheme transfer function  after the 
consideration of measurement differences is determined by 

, q=1,…,Q                 (6) 
where  denotes the applied measurement difference distribution –either CUD or ND–, 
d1 is the first parameter of the applied measurement difference distribution (the minimum 
value  or the mean  of CUD or ND, respectively), d2 is the second parameter 
of the applied measurement difference distribution (the maximum value  or the 
standard deviation  of CUD or ND, respectively),  is the measurement 
difference at frequency  for given measurement difference distribution, I is the number 
of different  line vectors of measurement differences per applied measurement 
difference distribution, first and second parameter and i indicates the ith among I line 
vectors of measurement differences. In this paper, 100 line vectors of measurement 
differences are going to be assumed per applied measurement difference distribution,  
first and second parameter (I=100). 
 
3.2 Measurement Differences and Settings for the SHM Footprints 
 In order to highlight the impact of measurement differences on iSHM footprints 
for the five real indicative OV LV BPL topologies of Table 1 of [1], the iSHM class map 
that is shown in Fig. 1 of [2] is adopted as the graphical basis. With reference to the five 
real indicative OV LV BPL topologies of Table 1 of [1] and the BPMN diagrams of 
iSHM [1], [19], it is evident that the applied theoretical coupling scheme transfer 
functions are going to be replaced by the measured ones, which are described in eq. (6), 
thus directly affecting the output of DHM module of Phase A of the iSHM BPMN 
diagrams –see Fig. 2(a) of [1], respectively–.  
 To illustrate the impact of each line vector of measurement differences on the 
class maps of each real OV LV BPL topology of Table 1 of [1], the corresponding 
measured coupling scheme transfer function is accompanied by: (i) the respective MLEs 
of the Weibull CASD as described in iSHM BPMN diagram Phase C of Fig. 2(a) of [1] 
(i.e., MLE computation module). Here, it should be noted that the Weibull CASD has 
been verified to be the best CASD for OV LV BPL topologies in [2]; and  
(ii) the capacity; when the default operation settings of Sec.3.4 of [1] are assumed.  

As the iSHM footprint of each real OV LV BPL topology of Table 1 of [1] is 
considered for given measurement difference distribution, first and second parameter,  
the same procedure that is presented in [1] for the iSHM footprint of real OV LV BPL 
topologies is also followed here but with the following two differences: (i) Only the five 
real OV LV BPL topologies of Table 1 of [1] are used and not the entire TIM OV LV 
BPL topology database; and (ii) for each of the five real OV LV BPL topologies of Table 
1 of [1], 100 white spots are expected to appear on Weibull CASD class maps as 
footprint that correspond to the respective combination of Weibull CASD MLEs and 
capacity of the 100 line vectors of measurement differences that are superimposed to the 
coupling scheme transfer function of each of the five real OV LV BPL topologies of 
Table 1 of [1].  
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4. Numerical Results and Discussion 
 
 In this Section, numerical results assessing the impact of measurement differences 
on iSHM footprints of OV LV BPL topologies are demonstrated. First, the effect of the 
different measurement distributions (i.e., CUD or ND) is highlighted through  
the iSHM footprints for the five real OV LV BPL topologies of Table 1 of [1].  
Second, the sensitivity of the aforementioned real OV LV BPL topologies to the 
measurement differences is revealed through their iSHM footprints.  
Third, for given real OV LV BPL topology, the effect of the intensity of measurement 
differences, say, the change of the first and second parameter values of the CUD and ND 
measurement distributions, on iSHM footprints is revealed.  
 
4.1 iSHM Class Maps of OV LV BPL Topologies 

In accordance with the iSHM definition [1], [19], [20], the CASD MLEs of  
iSHM are computed at the Phase C of Fig. 2(a) of [1]. As the default operation settings 
have been assumed in [1], MLEs of the Gaussian, Lognormal, Wald, Weibull and 
Gumbel CASDs of iSHM have been reported in Table 1 of [2] for the main subclasses of 
the real indicative OV LV BPL topologies of Table 1 of [1]. Their capacity estimation 
performance of CASDs of iSHM has been benchmarked via the percentage change and 
the average absolute percentage change of Table 2 of [2]. In accordance with Table 2 of 
[2], Weibull CASD performs the best performance among the available iSHM CASDs 
with respect to the percentage change and average absolute percentage change in all the 
examined OV LV BPL topology main subclasses. Therefore, only Weibull CASD is 
going to be applied during the following subsections. In accordance with [2], [23], [24], 
the iSHM class map of OV LV BPL topologies is plotted in Fig. 1 with respect to 

,  and the average capacity of each OV LV BPL topology subclass. 
 
4.2 iSHM Footprints of Measurement Differences – The Effect of the Different 
Distributions of Measurement Differences on OV LV BPL Topologies 
 The impact of measurement differences on iSHM class maps of OV LV BPL 
topologies is examined via footprints. Actually, the effect of the different distributions of 
measurement differences (i.e., CUD or ND) and the behavior of each of the real 
indicative OV LV BPL topologies when measurement differences are applied are going 
to be studied in this subsection. With reference to the iSHM class map of Fig. 1,  
the iSHM footprint of the real indicative OV LV BPL urban case A is illustrated as 
superimposed white spots on class maps in Fig. 2(a). Note that the CUD measurement 
difference of maximum value  of 3dB and 100 line vectors of random measurement 
differences of the aforementioned CUD are assumed during the preparation of Fig. 2(a). 
In Figs. 2(b)-(e), similar footprints with Fig. 2(a) are illustrated but for the case of urban 
case B, suburban case, rural case and “LOS” case, respectively, when the same 100 line 
vectors of measurement differences are applied. In Figs. 3(a)-(e), similar footprints with 
Figs. 2(a)-(e) are given but for the case of ND measurement differences of mean  and 
standard deviation  that are equal to 0dB and 3/2dB, respectively. Note that the same 
100 line vectors of ND measurement differences are applied among Figs. 3(a)-(e).  
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Fig. 1.  iSHM class map of OV LV BPL topologies when 3-30MHz frequency band, WtG1 coupling 
scheme and FCC Part 15 are assumed [2].  
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Fig. 2.  iSHM footprints of the real indicative OV LV BPL topologies when 3-30MHz frequency band, 
WtG1 coupling scheme, FCC Part 15 and CUD measurement differences of maximum value aCUD = 3dB 
are assumed. (a) Urban case A. (b) Urban case B. (c) Suburban case. (d) Rural case. (e) “LOS” case.  
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Fig. 3.  Same plots but for ND measurement difference of mean 0dB and standard deviation  

 = 3/2dB.  
 
 
 By observing Figs. 2(a)-(e) and 3(a)-(e), several interesting observations can be 
made regarding the presence of measurement differences, namely: 

 By comparing the aforementioned figures with Figs. 3(a) and 3(b) of [2],  
it is evident that the iSHM footprint behavior when measurement differences are 
applied present similarities to the behavior of OV LV BPL topologies with short 
branches for given OV LV BPL topology class. With reference to the theoretical 
values of  and  of the real indicative OV LV BPL topologies that 
act as the representative ones of classes, measurement differences tend to reduce 
the theoretical values of  and  of the representative OV LV BPL 
topologies thus forming the iSHM footprint as a diagonal white area of 100 white 
spots that is located at the lower left area of the examined class with approximate 
direction to the axis origin.  

 As the location and the extent of the iSHM footprint are concerned for given  
OV LV BPL topology class, the footprint remains almost the same when the 
standard deviation  of ND measurement differences is approximately equal to 
the half of the maximum value aCUD of CUD measurement differences while the 
mean value  of ND measurement differences is equal to zero. This fact can be 
explained by the distribution of PDFs of the previous CUD and ND measurement 
differences. Note that the mean  of ND measurement differences is assumed 
to be equal to 0, hereafter. 

 As the maximum value aCUD of CUD measurement differences and the standard 
deviation  of ND measurement differences remain low –say, Figs. 2(a)-(e) and 
3(a)-(e)–, the footprint remains within the class area boundaries for given real 
indicative OV LV BPL topology. 
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 The direction of the footprint as well as its location can be explained by the 
management of the measurement differences with respect to the measured 
coupling scheme channel attenuation difference between each measured  
OV LV BPL topology and its respective theoretical “LOS” case [19].  
More analytically, as the measured coupling scheme channel attenuation 
difference between each examined OV LV BPL topology and its respective 
theoretical “LOS” case is concerned, this should be remain greater or equal to 
zero (zero restriction of the measured coupling scheme channel attenuation 
difference). The zero restriction of the measured coupling scheme channel 
attenuation difference is a crucial condition for the fine iSHM procedure so that 
the MLE computation module of Phase C of iSHM BPMN diagram can operate 
and produce the Weibull MLEs of the examined OV LV BPL topology [19].  
In accordance with [20], the coupling scheme channel attenuation differences are 
assumed to be equal to an arbitrarily low value, say 1×10-11, instead of zero so 
that MLEs of Weibull CASD, which comprise natural logarithms and 
denominators, can be calculated. 

 Depending on the intensity of measurement differences and the examined real 
indicative OV LV BPL topology, the zero restriction of the measured coupling 
scheme channel attenuation difference has as a result the greater concentration of 
channel attenuation difference values at zero that further affects the Weibull 
CASD approximation and its corresponding MLEs. In fact, as more channel 
attenuation difference values are located at zero, the approximated Weibull PDF 
tends to increase its maximum PDF value and to shift he location of the maximum 
PDF left tthat further entail simultaneously lower values of  and  
with respect to the theoretical values of  and  for given real 
indicative OV LV BPL topology.  

 The aforementioned zero restriction of the measured coupling scheme channel 
attenuation difference explains the dependence of the extent of the footprint on 
the multipath aggravation of the examined real indicative OV LV BPL topologies. 
Since coupling scheme transfer functions of less aggravated OV LV BPL 
topologies (i.e., suburban and rural case) are closer to the “LOS” case,  
the zero restriction of the measured coupling scheme channel attenuation 
difference may be activated more frequently than in the cases of aggravated OV 
LV BPL topologies (i.e., urban case A and B) when measurement differences are 
applied. Struggling to approximate the greater number of zero channel attenuation 
differences, the deeper notches due to the remaining measurement differences for 
given line vector have little effect to the approximated Weibull PDFs and, hence, 
small differences are expected to the Weibull CASD MLEs for the assumed line 
vectors of measurement differences thus entailing reduced sizes of the footprints 
of the less aggravated OV LV BPL topologies.  

 As the OV LV BPL “LOS” case is examined as well as its iSHM footprint 
behavior when measurement differences are applied, the iSHM footprint of 
“LOS” case is located very close to the axes origin while its extent remains the 
smallest among the examined ones of real indicative OV LV BPL topologies. As 
measurement differences are superimposed to the coupling scheme channel 
attenuation of OV LV BPL “LOS” case, this has as effect almost the half of the 
measured coupling scheme channel attenuation difference values between the 
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measured OV LV BPL “LOS” case and the theoretical “LOS” case be equal to 
zero due to the zero restriction of the measured coupling scheme channel 
attenuation difference and the other half of the measured coupling scheme 
channel attenuation difference values be affected by the measurement differences. 
The latter values are responsible for the little shift of the iSHM footprint of 
“LOS” case with reference to the axis origin. 

Until now, the impact of measurement differences on class maps of the real indicative 
OV LV BPL topologies has been investigated in terms of the relative location and the 
extent of the corresponding iSHM footprints. The most important characteristic of 
measurement differences that is their intensity is studied in the following subsection. 
 
4.3 iSHM Footprints of Measurement Differences – The Effect of the Different 
Intensities of Measurement Differences on OV LV BPL Topologies 
 Higher intensities of measurement differences imply higher maximum values 

 and standard deviations  when CUD and ND measurement differences are 
applied, respectively. With reference to the iSHM class map of Fig. 1, the iSHM footprint 
of the real indicative OV LV BPL topology of urban case A is illustrated as 
superimposed spots on class maps in Fig. 4(a) when the maximum value  of CUD 
measurement differences ranges from 0B to 15dB. Conversely to Fig. 2(a), only one 
random line vector of measurement differences is applied for each maximum value  
while the color of superimposed spots becomes redder as the maximum value  
increases. In Figs. 4(b)-(e), similar footprints with Fig. 4(a) are illustrated but for the case 
of urban case B, suburban case, rural case and “LOS” case, respectively, when the same 
line vectors of measurement differences per maximum value  are applied.  
In Figs. 5(a)-(e), similar footprints with Figs. 4(a)-(e) are given but for the case of ND 
measurement differences where the mean  is equal to 0dB and the standard deviation 

 ranges from 0dB to 15/2dB, respectively. Note that the same line vectors of ND 
measurement differences per standard deviation  are applied in Figs. 5(a)-(e).  
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Fig. 4.  iSHM footprints of the real indicative OV LV BPL topologies when 3-30MHz frequency band, 
WtG1 coupling scheme, FCC Part 15 and CUD measurement differences of maximum value aCUD that 
ranges from 0dB (black spot) to 15dB (red spot) are assumed. (i) Urban case A. (ii) Urban case B  
(iii) Suburban case (iv) Rural case (v) “LOS” case.  
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Fig. 5.  Same plots but for ND measurement difference of mean 0dB and standard deviation  

 that ranges from 0dB (black spot) to 7.5dB (red spot).  
 
 
 By combining Figs. 4(a)-(e) and 5(a)-(e) with the respective figures of the 
previous subsections, interesting conclusions can be deduced regarding the behavior of 
iSHM footprints when measurement differences of different intensities are applied.  
More specifically: 

 As the maximum value  of CUD measurement differences or  
standard deviation  of ND measurement differences increase,  

 and  of the measured real indicative OV LV BPL topologies 
simultaneously decrease. The iSHM footprint that is created from the increasing 
measurement differences, denoted hereafter as iSHM footprint due to the 
increasing measurement differences, starts from the theoretical values of  
and  of the examined representative OV LV BPL topologies and tends to 
the iSHM footprint of “LOS” case that is located very close to the axes origin. 
The trend of the iSHM footprint due to the increasing measurement differences is 
explained by the fact that higher measurement differences force the measured 
coupling scheme channel attenuation of the real indicative OV LV BPL 
topologies to the zero restriction of the measured coupling scheme channel 
attenuation difference or to deeper spectral notches. Hence, the decrease of 

 and  of the measured real indicative OV LV BPL topologies 
compared with the respective theoretical ones is explained by the effort of the 
Weibull PDF to approximate the empirical PDFs of the measured coupling 
scheme channel attenuation differences. 

 By observing Figs. 4(e) and 5(e), the iSHM footprint of the OV LV BPL “LOS” 
case due to the increasing measurement differences remains close to the axes 
origin. In fact, the distance of the iSHM footprint of the OV LV BPL “LOS” case 
from the axes origin when no measurement differences are applied is explained by 
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the fact that the coupling scheme channel attenuation differences is assumed to be 
equal to 1×10-11 instead of zero so that Weibull CASD MLEs can be calculated 
[19].  

 The iSHM footprint due to the increasing measurement differences depends on 
the examined OV LV BPL topology class since its trend becomes steeper as more 
aggravated BPL topologies are studied. Actually, for high values of maximum 
value  of CUD measurement differences and standard deviation  of ND 
measurement differences, the iSHM footprint due to the increasing measurement 
differences can exceed the boundaries of the examined OV LV BPL topology 
class. As it was expected, the latter situation complicates either the identification 
of the examined OV LV BPL topology or the categorization of the examined  
OV LV BPL topology into the five classes.  

 The significant Weibull MLEs distortion that is caused by the presence of  
high measurement differences may affect the monitoring and controlling of the 
OV LV power grid [28], [29]. To mitigate the measurement differences and 
preserve the validity of the collected data, piecewise monotonic data 
approximations, such as L1PMA [27] and L2WPMA [53], have been extensively 
applied in distribution and transmission BPL networks until now so that measured 
data can be filtered and restored. The future research is focused on the 
exploitation of the piecewise monotonic data approximations so that the lower left 
direction of the iSHM footprint due to measurement differences towards the axes 
origin can be inverted so that predictive tools that can exploit SHM footprints, 
such as the identification of OV LV BPL topologies and the detection of hooks 
for energy thefts [2], are not critically affected.   
As been demonstrated, the operation of the SG produces big data whose wiser 

management may allow higher performances concerning the monitoring and controlling 
of the SG. Indeed, measurement differences combined with the real time operation are 
going to create a cataclysm of data that may mislead the existing predictive tools of the 
SG if they are not appropriately filtered. The interaction of iSHM footprints with 
piecewise monotonic data approximations may enhance the quality of business analytics 
of SG under the harsh real time conditions. 
 
5. Conclusions 
 
 The numerical results concerning the behavior of iSHM footprints of the  
OV LV BPL networks when measurement differences are applied have been 
demonstrated as well as countermeasures proposals for ensuring the quality of business 
analytics and the tools of the SG. From iSHM footprints of the real indicative OV LV 
BPL topologies due to the increasing measurement differences, it has been verified that: 
(i) iSHM footprints of more aggravated OV LV BPL topologies (i.e., urban case A and 
case B) are more sensitive to the measurement differences (higher extent of the 
corresponding iSHM footprints); (ii) When measurement differences remain relatively 
low, the iSHM footprint of the affected OV LV BPL topology remains within the 
corresponding class area boundaries; (iii) iSHM footprints due to the increasing 
measurement differences of all examined real OV LV BPL topologies present the same 
direction; say, towards the axes origin; (iv) As the measurement differences remain high, 
all affected OV LV BPL topologies tend to present similar Weibull CASD MLEs; and 
(v) High measurement differences jam the broadband tools of the SG, such as the 



 
Peer-Reviewed Article   Trends in Renewable Energy, 6 
 

Tr Ren Energy, 2020, Vol.6, No.2, 156-186. doi: 10.17737/tre.2020.6.2.00117 181 
 

topology identification technique via iSHM footprint, thus influencing the quality of 
business analytics of the SG. To mitigate the measurement differences and retrieve the 
theoretical iSHM footprint from the measured one, piecewise monotonic data 
approximations, such as L1PMA and L2WPMA, are investigated in [54], [55]. 
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Business analytics and IT infrastructure preserve the integrity of the 
smart grid (SG) operation against the flood of big data that may be 
susceptible to faults, such as measurement differences. In [1], the impact 
of measurement differences that follow continuous uniform distributions 
(CUDs) of different magnitudes has been investigated via  
initial Statistical Hybrid Model (iSHM) footprints during the operation of 
overhead low-voltage broadband over power lines (OV LV BPL) 
networks. In this companion paper, the mitigation efficiency of piecewise 
monotonic data approximations, such as L1PMA and L2WPMA, is 
qualitatively assessed in terms of iSHM footprints when the 
aforementioned measurement difference CUD of different intensities are 
applied. 
 
 

Keywords: Smart Grid; Broadband over Power Lines (BPL) networks; Power Line Communications 
(PLC); Distribution and Transmission Power Grids; Capacity, Statistics; Business Analytics; IT; Modeling 
 
 
  



 
Peer-Reviewed Article   Trends in Renewable Energy, 6 
 

 
Tr Ren Energy, 2020, Vol.6, No.2, 187-213. doi: 10.17737/tre.2020.6.2.00118 188 
 

Nomenclature 
BPL Broadband over Power Lines 
BPMN Business Process Model and Notation 
CASD Channel Attenuation Statistical 

Distribution 
CUD Continuous Uniform Distribution 
DHM deterministic hybrid model 
FIIM  Fault and Instability Identification 

Methodology 
HS-DET method hook style energy theft detection method 
IP  Internet Protocol 
IT Information Technology 
iSHM initial Statistical Hybrid Model 
LOS Line-of-Sight 
LV Low Voltage 
L1PMA L1 Piecewise Monotonic Approximation 
L2WPMA L2 Weighted Piecewise Monotonic 

Approximation 
MLE Maximum Likelihood Estimator 
ND Normal Distribution 
OV Overhead 
PES Percent Error Sum  
SG Smart Grid 
SHM Statistical Hybrid Model 
TIM  Topology Identification Methodology 
WtG Wire-to-Ground 
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1. Introduction 
 
During the recent years, the transformation of the traditional power grid to the SG 

urges the installation of a parallel advanced IP-based communications network enhanced 
with a plethora of broadband applications and business analytics [1]-[14].  
Among the available communications solutions that can support this communications 
network, BPL networks can play an important role since they exploit the already installed 
wired power grid infrastructure [4], [15]-[23]. 
 However, big data that overwhelm SG are susceptible to errors that can affect 
business analytics and decisions based on them. Indeed, as the operation of  
BPL networks is concerned across SG, the already installed wired power grid 
infrastructure is a hostile medium for communications as it is designed to deliver power 
rather information [19], [21], [24]-[27]. As the BPL channel modeling is concerned, the 
recently proposed iSHM, which is based on the well-validated DHM, can be deployed for 
the broadband channel description of transmission and distribution power grids [19]-[23], 
[28]-[31]. Also, a plethora of related broadband iSHM tools, such as the definition 
procedure, the class maps and the iSHM footprints, have been so far demonstrated and 
tested in order to assist the operation of iSHM towards a more accurate statistical 
description of the communications channel [32]-[35]. Except for the communications 
channel itself, measurement differences between the experimental and theoretical results 
during the channel attenuation determination, briefly denoted as measurement 
differences, may occur due to a number of practical reasons and “real-life” difficulties 
that may critically influence iSHM operation, the interaction of broadband iSHM tools 
with iSHM and finally the SG big data with the related decisions. 
 Actually, the impact of measurement differences that can be treated as CUDs has 
been assessed through the iSHM footprints for a list of real indicative OV LV BPL 
topologies in [1] while appropriate countermeasures that are based on piecewise 
monotonic data approximations and iSHM footprints are first presented and assessed in 
this companion paper. The numerical results of [1] confirmed the nasty impact of 
measurement differences on the behavior of iSHM footprints of the OV LV BPL 
topologies since high measurement differences may jam the SG broadband tools, such as 
the topology identification technique and energy theft identification, which are based on 
the analysis of iSHM footprints. To restore the affected iSHM footprints and to preserve 
the quality of business analytics, piecewise monotonic data approximations, such as 
L1PMA [36] and L2WPMA [37], which have been successfully applied in distribution 
and transmission BPL networks for the mitigation of measurement differences in 
broadband applications of TIM [8], FIIM [8] and HS-DET method [38], can also be 
applied in iSHM footprints so that the contaminated measured data can be partially 
restored and the approximated iSHM footprints tend to be gathered close to the respective 
theoretical values. 
 The rest of this paper is organized as follows: Section II synopsizes the 
mathematics of measurement differences. Also, the piecewise monotonic data 
approximations of interest, say L1PMA and L2WPMA, are briefly outlined. L1PMA and 
L2WPMA mitigation character is analyzed in mathematical terms as well as their 
involvement in the iSHM operation and iSHM footprints. In Section III, the numerical 
results regarding the mitigation impact of piecewise monotonic data approximations 
against the measurement differences on the iSHM footprints are shown. Section IV 
concludes this paper.  
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2. Measurement Differences and Countermeasures in DHM and iSHM 
Footprints 
 
 In accordance with [1], measurement differences affect the iSHM performance 
since they are mathematically superimposed on the numerical results of DHM, which is 
the core element of the Phase A of the BPMN diagram of iSHM [29]. First, a synopsis of 
the mathematical involvement of the CUD measurement differences in DHM is provided. 
Second, a presentation of the two piecewise monotonic data approximations of interest, 
say L1PMA and L2WPMA, is presented as well as the required mathematics.  
 
2.1 Measurement Differences in DHM and iSHM Footprint Operation Settings 
 Due to practical reasons and “real-life” conditions [36], [39], [40], measurement 
differences may be observed among the theoretical and measured coupling scheme 
transfer functions for given OV LV BPL topology and coupling scheme. In accordance 
with [1], [36], [39], [40], these measurement differences can be decently treated either as 
CUDs of variable maximum value aCUD or as NDs of variable standard deviation  
when the mean value  is assumed to be equal to zero. Since measurement differences 

 that follow the aforementioned distributions are added to the theoretical 
coupling scheme transfer function , the measured coupling scheme transfer 
function  can be determined by [1], [6], [41] 

, q=1,…,Q                 (1) 
where C  denotes the applied coupling scheme,  denotes the applied measurement 
difference distribution –either CUD of this paper or ND–,  is the flat-fading subchannel 
start frequency,  is the number of subchannels in the examined frequency range, d1 is 
the first parameter of the applied measurement difference distribution (i.e., the minimum 
value  of CUD), d2 is the second parameter of the applied measurement difference 
distribution (i.e., the maximum value  of CUD),  is the theoretical 
coupling scheme transfer function at frequency  for given coupling scheme,  
is the measurement difference at frequency  for given measurement difference 
distribution, I is the number of different  line vectors of measurement differences per 
applied measurement difference distribution, first and second parameter and i indicates 
the ith among I line vectors of measurement differences.  
 
2.2 Piecewise Monotonic Data Approximations and iSHM Footprints 
 Piecewise monotonic data approximations have extensively been applied in 
transmission and distribution BPL topologies during various critical broadband 
applications that require the mitigation of measurement differences in order to ensure the 
smooth operation of the power grid [36], [39], [42]-[46]. A synthesis of suitable 
quantitative performance metrics has been proposed and benchmarked so far, such as 
PES, fault PES and ΔPES, for the mitigation of measurement differences during the BPL 
channel attenuation determination [44], [14]. During the preparation of the improved 
iSHM footprints, piecewise monotonic data approximations are going to filter the 
numerical results of DHM that are contaminated by measurement differences between the 
Phases A and B of the BPMN diagram of iSHM [29]. From the available piecewise 
monotonic data approximations [37], [42], [47]-[51], L1PMA and L2WPMA are applied 
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in this paper while the corresponding iSHM footprints can be considered as new 
qualitative performance metrics.  
 As L1PMA is integrated in BPMN diagram of iSHM, L1PMA receives as input 
the measured OV LV BPL coupling scheme transfer function data from Phase A and 
gives as output the corresponding approximated data that are further delivered to Phase B 
of the BPMN diagram of iSHM. By exploiting the piecewise monotonicity property of 
OV LV BPL coupling scheme transfer functions, L1PMA decomposes the input data into 
separate monotonous sections between the adjacent turning points (primary extrema) 
[49], [50]. The main advantage of L1PMA is its mitigation performance against the 
uncorrelated measurement differences generated by CUDs by identifying and ignoring 
the few large measurement differences [36], [42], [44]. In programming terms, by having 
developed and exploiting the appropriate MATLAB - Octave / Fortran interface, L1PMA 
Fortran software package, which is freely available in [52], gives the best fit of the 
measured OV LV BPL coupling scheme transfer function data given the number of 
monotonic sections (i.e., either user- or computer-defined). 

As L2WPMA is regarded, L2WPMA holds the same position with L1PMA in the 
BPMN diagram of iSHM. Similarly to L1PMA, appropriate Fortran software package 
that interoperates with the existing MATLAB - Octave module is freely available online 
in [37]. L2WPMA operates in a same way to L1PMA since L2WPMA decomposes the 
examined input measured data contaminated by measurement differences into separate 
monotonous sections between its primary extrema [37], [42], [44]. Conversely to 
L1PMA, L2WPMA exploits the first divided of input data while it minimizes the 
weighted sum of the square of the measurement differences by requiring specific number 
of sign changes that are defined either by user or the computer.  
 Note that the default operation settings, which are described in Sec 3.4 of [24] and 
Sec. 3.2 of [1], that regulate the interconnected operation from DHM to iSHM footprints 
are also assumed in this paper. In order to allow the application of piecewise monotonic 
data approximations, the only mandatory change concerning the assumed default 
operation settings has to do with the required BPL frequency range; due to restrictions in 
the number of monotonic sections and sign changes imposed by the Fortran software 
packages of L1PMA and L2WPMA, respectively, the BPL frequency range and  
flat-fading subchannel frequency spacing are assumed to be equal to 3-30MHz and 
1MHz, respectively. Therefore, the number of flat-fading subchannels Q is equal to 27 
while the flat-fading subchannel start frequencies are given by 

, q=1,…,Q                                     (2) 
Note that small differences are expected to appear in iSHM class maps and iSHM 
footprints of OV LV BPL topologies of [1] due to the aforementioned changes of  
BPL frequency range settings but the generality of the mitigation measurement difference 
analysis remains valid. 

As the mathematics of piecewise monotonic data approximations is considered, 
the approximated coupling scheme transfer function can be expressed as  

, q=1,…,Q           (3) 
where P  denotes the applied piecewise monotonic data approximation, say L1PMA and 
L2WPMA, and  synopsizes the aforementioned procedure for given piecewise 
monotonic data approximation that is anyway executed by the corresponding software 
package. 
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3. Numerical Results and Discussion 
 
 In this Section, numerical results that qualitatively assesses the mitigation impact 
of piecewise monotonic data approximations against measurement differences on iSHM 
footprints of OV LV BPL topologies are demonstrated. First, the countermeasures effect 
of L1PMA and L2WPMA is qualitatively benchmarked for given intensity of the 
measurement difference CUD. Second, the impact of the user-defined numbers of 
L1PMA monotonic sections and L2WPMA sign changes is graphically assessed with 
respect to the mitigation of measurement differences. Third, the mitigation performance 
of L1PMA and L2WPMA is finally qualitatively assessed against the measurement 
differences of increasing intensity. 
 
3.1 iSHM Class Maps of OV LV BPL Topologies  

In accordance with the BPMN diagram of iSHM [29], the CASD MLEs of iSHM 
are computed at the Phase C of Fig. 2(a) of [24]. In accordance with [35], Weibull CASD 
MLEs are going to be used in this paper since Weibull CASD performs the best 
performance among the available iSHM CASDs with reference to the percentage change 
and average absolute percentage change when OV LV BPL topology main subclasses are 
examined. In accordance with [33]-[35], the iSHM class map of OV LV BPL topologies, 
which acts as the graphical basis for the demonstration of iSHM footprints due to 
measurement differences, is plotted in Fig. 1 with respect to ,  and the 
average capacity of each OV LV BPL topology subclass when the default operation 
settings of [1], [24] and the modified BPL frequency range settings of Sec.2.2 are 
assumed.  

By comparing Fig. 1 with Fig. 1 of [1], differences are observed in capacity 
borders and the location of the real indicative OV LV BPL topologies of Table 1 of [24] 
since different frequency range properties from those of [1] are assumed in this paper in 
order to allow the fine operation of L1PMA and L2WPMA [44]. Also, to focus on the 
demonstration of the mitigation impact results of piecewise monotonic data 
approximations, only one real indicative OV LV BPL topology of the main subclasses of 
Table 1 of [24], say, urban case A, is going to be examined in this paper. According to 
[1], aggravated OV LV BPL topologies, such as urban case A and B, that are 
characterized by intense multipath environments, are more sensitive to measurement 
differences as unveiled in iSHM footprints of [1] and for that reason urban case A is 
arbitrarily chosen to be investigated in this paper. Note that the real indicative OV LV 
BPL rural case is located outside the  upper limit of Fig. 1 due to the 
aforementioned frequency range properties. 
 
3.2 iSHM Footprints due to Measurement Differences and the Countermeasures 
of Piecewise Monotonic Data Approximations 
 The impact of measurement differences on iSHM class maps of  
OV LV BPL topologies can be examined via the iSHM footprints as well as the effect of 
the proposed countermeasures. The mitigation impact of piecewise monotonic 
approximations can be checked by the comparison of the iSHM footprint due to 
measurement differences and the iSHM footprint after the application of the 
countermeasures in terms of the footprint size reduction, direction to the axes origin and 
mitigation shift.  
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Fig. 1.  iSHM class map of OV LV BPL topologies when 3-30MHz frequency band, 1MHz frequency 
subchannel spacing, WtG1 coupling scheme and FCC Part 15 are assumed [35].  
 
 

With reference to the iSHM class map of Fig. 1, the iSHM footprint due to 
measurement differences of the arbitrary 5dB maximum value  for the real 
indicative OV LV BPL urban case A is illustrated in Fig. 2 as superimposed white circles 
on the iSHM class map. Also, in Fig. 2, the iSHM footprint after the application of 
L1PMA against the aforementioned measurement differences is shown as superimposed 
cyan squares when 4 monotonic sections are assumed. Note that 100 line vectors of 
random measurement differences of the aforementioned CUD are assumed during the 
preparation of Fig. 2 that imply 100 white circles and 100 respective cyan squares.  
In Fig. 3, similar iSHM footprints with Fig. 2 are illustrated but for the application of 
L2WPMA when 4 sign changes and the same 100 line vectors of measurement 
differences are assumed.  

By comparing iSHM footprints due to measurement differences of Figs 2 and 3 
with Fig. 3(a) of [1], it is obvious that the fewer data of the numerical results of DHM of 
this paper render the iSHM footprint due to measurements more sensitive to the 
measurement differences and more segmented. The destructive result of measurement 
differences is justified by the extent of the iSHM footprint due to measurement 
differences that starts from the neighborhood of the theoretical values of  and 

 of the real indicative OV LV BPL urban case A and reaches up to the OV LV 
BPL rural class topology.  

As the L1PMA is applied, its mitigation efficiency against the measurement 
differences is visible by the shift of the iSHM footprint towards the up right direction due 
to the L1PMA application near to the theoretical values of  and  of the 
real indicative OV LV BPL urban case A. Indeed, cyan squares that come from the 
L1PMA application are located closer to the theoretical values of  and  of 
the real indicative OV LV BPL urban case A compared with the white circles supported 
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by the measurement differences. In Fig. 3, same results regarding the iSHM footprint of 
the approximated data are observed after the L2WPMA application.  

 
Fig. 2.  iSHM footprints of the real indicative OV LV BPL urban case A when 3-30MHz frequency band, 
1MHz frequency subchannel spacing, WtG1 coupling scheme, FCC Part 15, CUD measurement differences 
of maximum value aCUD = 5dB (white circles) are assumed and L1PMA of 4 monotonic sections  
(cyan squares) is applied.  
 

 
Fig. 3.  Same plot with Fig. 2 but for L2WPMA of 4 sign changes (magenta triangles).  
 

 
 Until now, the mitigation impact of measurement differences on class maps has 
been investigated in terms of the relative location and the extent of the corresponding 
iSHM footprints due to the application of L1PMA and L2WPMA. In the following 
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subsection, the impact of monotonic sections and sign changes of L1PMA and 
L2WPMA, respectively, is assessed against the measurement differences for given 
measurement difference intensity. 
 
3.3 The Role of Monotonic Sections and Sign Changes against the Measurement 
Differences 
 In accordance with [42], [44], the selection of the numbers of monotonic sections 
for L1PMA and of the sign changes for L2WPMA has a critical effect during their 
application and their mitigation effect against the measurement differences. In order to 
highlight the importance of the right selection of the number of L1PMA monotonic 
sections and of L2WPMA sign changes, various strategies have been applied that exploit 
either the deterministic definition or the adaptive one until now [36], [39], [42]-[44]. 
 Similarly to Fig. 2, the iSHM footprint due to measurement differences of the 
arbitrary 6dB maximum value  for the real indicative OV LV BPL urban case A is 
illustrated in Fig. 4(a). Also, in Fig. 4(a), the iSHM footprint due to the application of 
L1PMA against the aforementioned measurement differences is shown as superimposed 
cyan squares when 1 monotonic section is assumed. In Figs. 4(b)-(i), similar footprints 
with Fig. 4(a) are illustrated but for the number of monotonic sections ranging from 2 to 
9, respectively. In Figs. 5(a)-(i), similar footprints with Figs. 4(a)-(i) are illustrated but for 
the application of L2WPMA when sign changes range from 1 to 9, respectively, and the 
same 100 line vectors of measurement differences are assumed in Figs. 4(a)-(i) and  
5(a)-(i). 

From Figs. 4(a)-(i) and 5(a)-(i), it is obvious that the careful selection of  
L1PMA monotonic sections and L2WPMA sign changes may have different impact on 
the mitigation of measurement differences whereas a bad selection may even make the 
approximated data worse than the measured ones. Indeed, as the L1PMA monotonic 
sections are concerned, the predefined number of monotonic sections forces L1PMA to 
create a pattern of specific monotonic sections for the approximated coupling scheme 
transfer function data by appropriately filtering the examined measured coupling scheme 
transfer function data. On the basis of the predefined number of monotonic sections,  
the L1PMA concept is that measurement differences that mainly disrupt the pattern for 
the examined measured coupling scheme transfer function data are ignored thus 
delivering the approximated coupling scheme transfer function data for given number of 
monotonic sections. A relatively high number of monotonic sections, which is 
significantly greater than the number of monotonic sections of the theoretical coupling 
scheme channel attenuation data (e.g., greater than 8 monotonic sections in Fig. 4), can 
have the opposite results to the expected ones due to the overapproximation of the 
measured data; say, in this case, a significant number of contaminated data by 
measurement differences should be taken into account so that the number of monotonic 
sections of the approximated coupling scheme transfer function data agrees with the 
predefined number of monotonic sections. The overapproximation of the measured data, 
which comes from the application of relatively high numbers of monotonic sections, can 
be observed in iSHM footprints in the cases where cyan squares of the approximated 
coupling scheme transfer function data start to coincide with the white circles of the 
measured coupling scheme transfer function data. Conversely, when significantly lower 
number of monotonic sections is assumed (e.g., 1 or 2 monotonic sections in Fig. 4),  
an average value of the measured coupling scheme transfer function data is expected.  
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Fig. 4.  iSHM footprints of the real indicative OV LV BPL urban case A when 3-30MHz frequency band, 
1MHz frequency subchannel spacing, WtG1 coupling scheme, FCC Part 15, CUD measurement differences 
of maximum value aCUD = 6dB (white circles) are assumed and various L1PMA monotonic sections  
(cyan squares) is applied. (a) 1 monotonic section. (b) 2 monotonic sections. (c) 3 monotonic sections.  
(d) 4 monotonic sections. (e) 5 monotonic sections. (f) 6 monotonic sections. (g) 7 monotonic sections.  
(h) 8 monotonic sections. (i) 9 monotonic sections. 
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Fig. 5.  Same plots with Fig. 4 but for L2WPMA of different sign changes (magenta triangles). (a) 1 sign 
change. (b) 2 sign changes. (c) 3 sign changes. (d) 4 sign changes. (e) 5 sign changes. (f) 6 sign changes. 
(g) 7 sign changes. (h) 8 sign changes. (i) 9 sign changes. 
 
 
L1PMA approximations of very low monotonic sections are revealed in iSHM footprints 
by the significantly higher distances between the white circles and the respective cyan 
squares that can anyway lead to a safe mitigation of measurement differences.  
Same results concerning the selection of L2WPMA sign changes are observed in 
L2WPMA iSHM footprints. Anyway, a successful selection of L1PMA monotonic 
sections or L2WPMA sign changes is characterized by corresponding iSHM footprint 
whose cyan squares or magenta triangles are located closer to the sign of the real 
indicative OV LV BPL urban case A than the white circles of the measured coupling 
scheme transfer function data. In the rest of this paper, 1 monotonic section and  
5 sign changes are assumed for the application of L1PMA and L2WPMA, respectively, 
by visually comparing Figs. 4(a)-(i) and 5(a)-(i), respectively. 

In accordance with [36], [39], [42]-[44], the numbers of L1PMA monotonic 
sections and L2WPMA sign changes should be based mainly on the inherent properties 
of the examined theoretical coupling scheme transfer function data and secondarily on the 
intensity of measurement differences only for little adjustments. As the stochastic 
definition of the numbers of L1PMA monotonic sections and L2WPMA sign changes is 
applied in this paper, the aforementioned secondary dependence can be neglected. 
Therefore the 1 L1PMA monotonic section and 5 L2WPMA sign changes are assumed to 
act as constants for the following respective L1PMA and L2WPMA approximations.  
In the following subsection, the mitigation efficiency of L1PMA and L2WPMA against 
different intensities of measurement differences is qualitatively assessed through 
respective iSHM footprints.  
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3.4 L1PMA and L2WPMA iSHM Footprints and Different Intensities of 
Measurement Differences 
 Higher intensities of measurement differences entail higher maximum values 

 for the CUD measurement differences that are applied in this subsection.  
With reference to the iSHM class map of Fig. 1, the iSHM footprint due to measurement 
differences of the real indicative OV LV BPL urban case A is illustrated as a set of 
circles of various reddish colors in Fig. 6 when the maximum value  of CUD 
measurement differences ranges from 0B to 15dB. In contrast with Figs. 4(a)-(i),  
only one random line vector of measurement differences, say, the first one, is applied per 
each maximum value  while the color of the superimposed circles becomes redder as 
the maximum value  increases. Given the random line vector of measurement 
differences of maximum value  and its corresponding circle of the iSHM footprint, 
L1PMA approximates the corresponding measured coupling scheme transfer function 
data with the assumed 1 monotonic section of Sec.3.3 while the respective approximated 
coupling scheme transfer function data are illustrated as a square of the same color with 
the circle color it comes from and a cyan perimeter as well as a connecting line of the 
same color with the circle color between the circle and the square.  
In Fig. 7, similar iSHM footprint with Fig. 6 is shown but for the case of L2WPMA when 
the 5 sign changes of Sec.3.3 are assumed and triangles with magenta perimeter are 
plotted instead of the L1PMA squares. 
 From Figs. 6 and 7, it is clear that the increasing maximum value  of  
CUD measurement differences imposes the simultaneous decrease of  and 

 of the measured data of the real indicative OV LV BPL urban case A.  
In accordance with [1], the redder circles that come from the application of higher 
maximum values  are located closer to the axes origin rather than to the  and 

 of the theoretical data of the real indicative OV LV BPL urban case A.  
Hence, the iSHM footprint due to the increasing measurement differences starts from the 
neighborhood of the theoretical values of  and  of the real indicative OV 
LV BPL urban case A and tends to the axes origin in a down-left diagonal direction.  
The goal of the application of piecewise monotonic data approximations is to reverse the 
previous diagonal direction of red circles and to bring the approximated respective red 
L1PMA squares and L2WPMA triangles: (i) back to the OV LV BPL urban case A 
topology class as primary objective; and (ii) as close as possible to the theoretical values 
of  and  as secondary but more accurate objective.  

In order to qualitatively assess the performance of L1PMA and L2WPMA against 
the increasing measurement differences, the location and the distance of L1PMA squares 
and L2WPMA triangles that come from the respective circles of the measured data are 
tracked. In the vast majority of the cases, squares and triangles are located closer to the 
theoretical values of  and  of the real indicative OV LV BPL urban case 
A compared against the respective circles of the measured data. More analytically, in the 
examined cases where high measurement differences are applied, the L1PMA mitigation 
of measurement differences is important since from the six circles that are located at OV 
LV BPL rural and “LOS” topology classes, no squares remain inside the aforementioned 
classes. Similarly, L2WPMA countermeasures against measurement differences achieve 
to mitigate five out of the five circles that are located at OV LV BPL rural and  
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Fig. 6.  iSHM footprints of the real indicative OV LV BPL topologies when 3-30MHz frequency band, 
WtG1 coupling scheme, FCC Part 15, 1 monotonic section of L1PMA and CUD measurement differences 
of maximum value aCUD that ranges from 0dB (black spot) to 15dB (red spot) are assumed.  
 

 
Fig. 7.  Same plots but for 5 sign changes of L2WPMA.  
 
 
“LOS” topology classes. In addition, from the 16 available circles, 6 of them are located 
at the OV LV BPL urban case A topology class when 8 squares and 9 triangles are 
present in the visible part of the previous class after the application of L1PMA and 
L2WPMA, respectively. Anyway, the connecting lines with their triangle signs at their 
middle reveal the performance of L1PMA and L2WPMA against the measurement 
differences while the mitigation efficiency becomes more significant when measurement 
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differences are higher. Anyway, the promising results regarding the mitigation of higher 
measurement differences by L1PMA and L2WPMA was expected after the determination 
of respective monotonic sections and sign changes in Sec.3.3. 

In this subsection, the qualitative assessment of piecewise monotonic data 
approximations via iSHM footprints has revealed their strong potential against 
measurement differences of increasing intensity. The obvious evolution of this piece of 
research is the proposal of a quantitative assessment of the mitigation impact of 
piecewise monotonic data approximations based on iSHM footprints in [53] so that a 
more confident selection of L1PMA monotonic sections and L2WPMA sign changes can 
be achieved. 
 
 
4. Conclusions 
 
 To ensure the reliability of data that feed the business analytics and the tools of 
the SG, the mitigation performance of L1PMA and L2WPMA against measurement 
differences has been qualitatively assessed via iSHM footprints for OV LV BPL 
topologies. Indeed, L1PMA and L2WPMA iSHM footprints present significant 
improvement concerning their extent and their distance from Weibull CASD MLEs of 
the real indicative OV LV BPL urban case A when they are compared against iSHM 
footprints due to measurement differences. Also, it has been verified that the fine 
selection of L1PMA monotonic sections and L2WPMA sign changes plays critical role 
towards a successful mitigation of measurement differences. In addition,  
the proposed countermeasures of applying L1PMA and L2WPMA have been proven to 
be a valuable tool against high measurement differences since the mitigation efficiency 
in these cases is important. Finally, the qualitative assessment of piecewise monotonic 
data approximations has been validated via iSHM footprints but the continuation of the 
research in [53] focuses on the proposal of quantitative metrics for iSHM footprints that 
allows the more precise selection of L1PMA monotonic sections and L2WPMA sign 
changes on the basis of the available iSHM footprints. 
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Βig data that overwhelm smart grid (SG) are susceptible to errors that 
can further affect business analytics and related human decisions. In [1], 
the impact of measurement differences that follow various distributions 
has been examined via initial Statistical Hybrid Model (iSHM) footprints 
while the mitigation impact of piecewise monotonic data approximations 
has been qualitatively assessed via corresponding iSHM footprints in [2]. 
In this companion paper, the potential of applying piecewise monotonic 
data approximations in the intrinsic procedure of iSHM rather than its 
inputs and the quantitative mitigation analysis of piecewise monotonic 
data approximations against measurement differences via iSHM 
footprints are proposed for the overhead low-voltage broadband over 
power lines (OV LV BPL) topologies.  
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Nomenclature 
APDmd Average Percent Distance computation of 

the Measurement Differences 
APDna Average Percent Distance computation of 

the New Aspect  
APDta Average Percent Distance computation of 

the Traditional Aspect  
BPL Broadband over Power Lines 
BPMN Business Process Model and Notation 
CASD Channel Attenuation Statistical 

Distribution 
CUD Continuous Uniform Distribution 
DHM deterministic hybrid model 
EMI ElectroMagnetic Interference 
IP  Internet Protocol 
IT Information Technology 
iSHM initial Statistical Hybrid Model 
LOS Line-of-Sight 
LV Low Voltage 
L1PMA L1 Piecewise Monotonic Approximation 
L2WPMA L2 Weighted Piecewise Monotonic 

Approximation 
MLE Maximum Likelihood Estimator 
MTL Multiconductor Transmission Line 
ND Normal Distribution 
OV Overhead 
SG Smart Grid 
TL Transmission Line 
WtG Wire-to-Ground 
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1. Introduction 
 
BPL technology is among the communications proposals that are going to 

transform the vintage power grid into an advanced IP-based communications network 
enhanced with a plethora of broadband applications and business analytics, the so called 
SG [1]-[8]. The main advantage of SG is the reception of a plethora of data concerning 
the metering, monitoring and controlling of its infrastructure and equipment thus 
allowing the authorized personnel and customers to take decisions that further affect the 
SG operation. It is evident that right decisions urge reliable data and towards that 
direction piecewise monotonic data approximations contribute to the restoration of the 
contaminated data by measurement differences in OV LV BPL networks [1], [7],  
[9]-[11]. 

In this paper, it is already known that measurement differences are observed 
between the experimental and theoretical results during the transfer function 
determination of OV LV BPL topologies and are due to a number of practical reasons 
and “real-life” difficulties. Actually, coupling scheme transfer function determination 
occurs in the well-validated DHM that is the introductory core element of the recently 
proposed and here applied iSHM that is deployed for the statistical broadband channel 
description of OV LV BPL topologies [12]-[20]. Business analytics of SG exploit a 
plethora of related broadband iSHM tools, such as the definition procedure, the class 
maps and the iSHM footprints whose results are critically affected by the coupling 
scheme transfer function data of DHM. More specifically, it has been shown in [1] that 
the behavior of iSHM footprints due to the measurement differences of the OV LV BPL 
networks may be sensitive even to low intensities of measurement differences.  
In accordance with [1], when high measurement differences occur the broadband iSHM 
tools, such as the topology identification technique and the energy theft detection via 
iSHM footprint, can be totally jammed thus influencing the quality of business analytics 
of the SG and the supported human decisions. To enhance the reliability of SG data, 
piecewise monotonic data approximations, such as L1PMA and L2WPMA, have been 
deployed against the measurement differences while their qualitative evaluation was done 
via the respective L1PMA and L2WPMA iSHM footprints in [2]. Indeed, L1PMA and 
L2WPMA can achieve significant measurement difference restoration concerning the 
extent and the distance of iSHM footprints from the theoretical Weibull CASD MLEs of 
the real indicative OV LV BPL urban case A. Note that the qualitative methodology of 
[2] examined the degree of shrinkage and stress of the iSHM footprints due to 
measurement differences by the applied piecewise monotonic data approximations 
towards the theoretical Weibull CASD MLEs of the real indicative OV LV BPL urban 
case A. 

In this paper, first, a new aspect concerning the location of the application of 
piecewise monotonic data approximations inside the iSHM operation flowchart is 
proposed. Until now, piecewise monotonic data approximations have been applied right 
after the application of DHM to the coupling scheme transfer function data of the 
examined OV LV BPL topologies in order to suppress the measurement difference 
contamination at that location [7], [9], [21]-[28]. Since the result of the multipath 
aggravation of OV LV BPL topologies can be treated as a superposition of spectral 
notches of various depths and extents onto the coupling scheme transfer function of the 
OV LV BPL “LOS” case [14], [17], [29], piecewise monotonic data approximations can 
alternatively focus on the output results of the coupling scheme channel attenuation 
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difference module Δ of iSHM that is anyway an internal iSHM procedure;  
the coupling scheme channel attenuation difference module Δ of iSHM gives as output 
the coupling scheme channel attenuation difference between each examined OV LV BPL 
topology and the OV LV BPL “LOS” case thus providing more uncorrelated data in 
comparison with the ones of the traditional aspect. The unbiased data of the coupling 
scheme channel attenuation difference module Δ of iSHM can be proven valuable for a 
more efficient application of piecewise monotonic data approximations under certain 
conditions [30]-[33].  

Second, a quantitative methodology is proposed in this paper so that the 
assessment of the mitigation efficiency of piecewise monotonic data approximations 
against measurement differences can be feasible on the basis of the iSHM footprints of 
[2]. During the qualitative evaluation of L1PMA and L2WPMA in [2], it was clear that 
the critical intrinsic parameters of piecewise monotonic data approximations, such as 
L1PMA monotonic sections and L2WPMA sign changes, mainly affect the performance 
of piecewise monotonic data approximations against the measurement differences.  
The selection of the optimal numbers of L1PMA monotonic sections and L2WPMA sign 
changes has been made on the basis of the visual proximity of the respective L1PMA and 
L2WPMA iSHM footprints to the theoretical Weibull CASD MLEs for given real 
indicative OV LV BPL topology (say, real indicative OV LV BPL urban case A in [2]). 
Here, the evolution of the qualitative evaluation of the proximity is the proposal of a 
quantitative methodology that can compute the average distances of the piecewise 
monotonic data approximation iSHM footprints and iSHM footprints due to measurement 
differences and hence defines the critical intrinsic parameters of the piecewise monotonic 
data approximations by comparing and by sorting the gathered distances. Also, the new 
aspect, which is proposed in this paper, concerning the application of piecewise 
monotonic data approximations to the results of the coupling scheme channel attenuation 
difference module Δ of iSHM is also benchmarked through the new quantitative 
methodology. 
 The rest of this paper is organized as follows: Section II presents the mathematics 
of the new aspect regarding the application of piecewise monotonic data approximations 
to the results of the coupling scheme channel attenuation difference module Δ of iSHM. 
In Section III, the new quantitative methodology concerning the assessment of the 
mitigation efficiency of piecewise monotonic data approximations against measurement 
differences via iSHM footprints is presented. Section IV presents numerical results 
related with the application of the quantitative methodology and the new aspect of 
piecewise monotonic data approximation application location. Section V concludes this 
paper.  
 
 
2. New Aspect of Application for the Piecewise Monotonic Data 
Approximations against Measurement Differences 
 
 With reference to the BPMN diagram of iSHM [34], iSHM consists of six Phases 
(i.e., Phase A-F) while each Phase is clearly described by its procedure as well as its 
inputs and outputs. With reference to this BPMN diagram, Phase A consists of DHM that 
takes as inputs the examined real indicative OV LV BPL topology, the respective 
distribution MTL configuration and the applied coupling scheme while DHM results are 
the output of Phase A that is the theoretical coupling scheme transfer function 
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, q=1,…,Q when measurement differences are not assumed where C  denotes 
the applied coupling scheme,  is the flat-fading subchannel start frequency and  is the 
number of subchannels in the examined frequency range. When measurement differences 
are assumed during the preparation of iSHM footprints as in [1], [2], the measurement 
differences are treated as distributions; say, CUD of variable maximum value aCUD. After 
the measurement difference consideration, the output of Phase A, which is afterwards 
exploited by the iSHM footprints, is the measured coupling scheme transfer function that 
is given by [1], [5], [35] 

, q=1,…,Q                 (1) 
where  denotes the applied measurement difference distribution –i.e., CUD of this 
paper in accordance with [2]–, d1 is the first parameter of the applied measurement 
difference distribution (i.e., the minimum value  of CUD), d2 is the second 
parameter of the applied measurement difference distribution (i.e., the maximum value 

 of CUD),  is the measurement difference at frequency  for given 
measurement difference distribution and I is the number of different  line vectors of 
measurement differences per applied measurement difference distribution, first and 
second parameter. Until now and during the preparation of iSHM footprints of [1], [2], 
piecewise monotonic data approximations are applied to the measured coupling scheme 
transfer function of eq. (1) having as a result the approximated coupling scheme transfer 
function that is given by 

, q=1,…,Q           (2) 
where P  denotes the applied piecewise monotonic data approximation, say L1PMA or 
L2WPMA in this paper, and  synopsizes the procedure of the applied piecewise 
monotonic data approximation. Therefore, the application of piecewise monotonic data 
approximations is concentrated in the Phase A of the BPMN diagram of iSHM while the 
results of the remaining Phases, which are illustrated as I L1PMA cyan squares or I 
L2WPMA magenta triangles on iSHM footprints of [2], are based on the approximated 
coupling scheme transfer function data.  
 In this paper, an application aspect of piecewise monotonic data approximations is 
proposed that has to do with the location of the application of piecewise monotonic data 
approximations across the Phases of the BPMN diagram of iSHM [34]. Conversely to the 
traditional case where piecewise monotonic data approximations are applied to the output 
results of the Phase A (say, the results of DHM), the new aspect of application suggests 
that the piecewise monotonic data approximations should be applied to the results of 
Phase B of the BPMN diagram of iSHM during the preparation of the iSHM footprints. 
More specifically, Phase B of the BPMN diagram should receive as input the output of 
the Phase A that is the measured coupling scheme transfer function  given by 
eq. (1). Phase B consists of the coupling scheme channel attenuation difference module Δ 
that computes the measured channel attenuation difference  between the 
measured coupling scheme transfer function of the examined real indicative OV LV BPL 
topology, say, the real indicative OV LV BPL urban case A in this paper, and the 
theoretical coupling scheme transfer function of the OV LV BPL “LOS” case, namely 

, q=1,…,Q                (3) 
Note that the coupling scheme channel attenuation difference of eq. (3) always remains 
greater or equal to zero [34]. During the preparation of similar iSHM footprints of [1], [2] 
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with the new aspect, piecewise monotonic data approximations are applied to the 
measured channel attenuation difference of eq. (3) having as a result the approximated 
channel attenuation difference given by 

, q=1,…,Q              (4) 
Therefore, the application of piecewise monotonic data approximations during the new 
aspect leaves the results of the Phase A untouched whereas it focuses on the Phase Β of 
the BPMN diagram of iSHM. Similarly to the traditional aspect, the results of the 
remaining Phases, which are based on the approximated channel attenuation difference 
data, are going to be illustrated as I L1PMA cyan squares or I L2WPMA magenta 
triangles on similar iSHM footprints to the ones of [2]. 
 
 
3. New Quantitative Methodology for Assessing the Mitigation Efficiency of 
Piecewise Monotonic Data Approximations against Measurement 
Differences via iSHM Footprints 
 
 In accordance with the BPMN diagram of iSHM [18] and during the preparation 
of iSHM footprints, Phase C computes all the related iSHM Weibull CASD MLEs of the 
examined real indicative OV LV BPL topology, namely either for the theoretical 
coupling scheme channel attenuation difference (i.e,  and ) or the 
measured coupling scheme channel attenuation difference per measurement difference 
line vector i of eq. (3) (i.e,  and ) or the approximated coupling 
scheme channel attenuation difference per measurement difference line vector i via the 
traditional aspect for given number of monotonic sections (or sign changes) (i.e, 

 and ) or the approximated coupling scheme channel 
attenuation difference per measurement difference line vector i via the new aspect of eq. 
(4) for given number of L1PMA monotonic sections (or L2WPMA sign changes) (i.e, 

 and ). In accordance with [36]-[38], the iSHM class 
map of OV LV BPL topologies, which acts as the graphical basis for the demonstration 
of all the kinds of iSHM footprints, is plotted in Fig. 1 of [2] with respect to , 

 and the average capacity of each OV LV BPL topology subclass when the 
default operation settings of [1], [34] and the modified BPL frequency range settings of 
[2] are assumed. Through the prism of iSHM footprints, the effect of measurement 
differences and the countermeasures of piecewise monotonic data approximations against 
the measurement differences have been illustrated in Figs. 2-7 of [2]. The qualitative 
assessment of piecewise monotonic data approximations via iSHM footprints has 
revealed their strong potential against measurement differences while the selection of the 
critical parameters of the numbers of L1PMA monotonic sections or L2WPMA sign 
changes can be made by visually assessing the proximity of the I Weibull CASD MLEs 
of their approximated coupling scheme transfer function data with respect to the 
theoretical Weibull CASD MLEs for given real indicative OV LV BPL topology. 
 In this paper, a quantitative methodology is proposed that benchmarks the 
measurement difference mitigation efficiency of piecewise monotonic data 
approximations in terms of the average percent distance of the I Weibull CASD MLEs of 
the approximated coupling scheme transfer function data with respect to the theoretical 
Weibull CASD MLEs for given real indicative OV LV BPL topology. To apply the new 
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quantitative methodology with respect to iSHM footprints and to finally select the critical 
intrinsic parameters of the piecewise monotonic data approximations (i.e., the number of 
L1PMA monotonic sections and L2WPMA sign changes) that perform the best 
measurement difference mitigation, the following steps should be followed, namely: 

1. APDmd: Given the real indicative OV LV BPL topology and I measurement 
difference line vectors of the same intensity (i.e., of the same maximum value 

 in this paper), the average percent distance of the measurement differences 
from the theoretical Weibull CASD MLEs is given by: 

             (5) 
This step is necessary because it evaluates the initial condition and defines the 
goal of all the iSHM footprints of the applied piecewise monotonic data 
approximations. Any countermeasures implemented should present average 
percent distances lower than the average percent distance of the measurement 
differences of eq. (5) so that these countermeasures are considered effective. 

2. APDta: Given the real indicative OV LV BPL topology, I measurement difference 
line vectors of the same intensity and the number of L1PMA monotonic sections 
(or L2WPMA sign changes), the average percent distance of the approximated 
data of the traditional aspect from the theoretical Weibull CASD MLEs is given 
by: 

     (6) 
3. APDna: Similarly to APDta, given the real indicative OV LV BPL topology,  

I measurement difference line vectors of the same intensity and the number of 
L1PMA monotonic sections (or L2WPMA sign changes), the average percent 
distance between the approximated data of the new aspect and the theoretical 
Weibull CASD MLEs is given by: 

     (7) 
With reference to eqs. (5)-(7), it is obvious that interesting quantitative findings 

are going to be deduced in Sec. 4 where average percent distance comparisons can reveal: 
(i) the contamination degree due to the increasing measurement differences;  
(ii) the mitigation efficiency of the traditional aspect of the application of piecewise 
monotonic data approximations; (iii) the mitigation efficiency of the new aspect of the 
application of piecewise monotonic data approximations; and (iv) a benchmark 
comparison between the traditional aspect and the new one.  

 
 

4. Numerical Results and Discussion 
 
 In this Section, numerical results that quantitatively assess the mitigation 
efficiency of piecewise monotonic data approximations against measurement differences 
on iSHM footprints of OV LV BPL topologies are first presented. On the basis of the 
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proposed quantitative assessment, the new methodology of the average percent distance 
is going to be tested while this new methodology will assess L1PMA and L2WPMA for 
both aspects of application (i.e., either the traditional aspect or the new one). Similarly to 
[2], the countermeasures effect of L1PMA and L2WPMA of the traditional and new 
aspects is quantitatively benchmarked for given intensity of the measurement difference 
CUD while the impact of the number of L1PMA monotonic sections and the L2WPMA 
sign changes is here quantitatively assessed with respect to the mitigation of 
measurement differences. Similarly to [2], only the real indicative OV LV BPL urban 
case A is examined and 100 measurement difference line vector (i.e., I=100) are applied. 
 
4.1 iSHM Footprints due to Measurement Differences and the Countermeasures 
of Piecewise Monotonic Data Approximations (Traditional Aspect vs New Aspect) 
 As already been mentioned, the iSHM class map of OV LV BPL topologies, 
which is depicted in [36]-[38], acts as the graphical basis for the demonstration of the 
various iSHM footprints and is shown in Fig. 1. Similarly to [2], the iSHM footprint due 
to measurement differences of the arbitrary 5dB maximum value  for the real 
indicative OV LV BPL urban case A is also depicted in Fig. 1 as superimposed white 
circles on the iSHM class map as well as the iSHM footprint due to the application of 
L1PMA of the traditional aspect against the aforementioned measurement differences is 
shown as superimposed cyan squares when 4 monotonic sections are assumed. In Fig. 2, 
similar figure with Fig. 1 is plotted but for the case of L2WPMA of the traditional aspect 
when 4 sign changes are applied and superimposed magenta triangles are shown instead 
of cyan squares. Note that Figs. 1 and 2 are the same with Figs. 2 and 3 of [2] for:  
(i) comparison reasons between the traditional and the new aspect; and  
(ii) the demonstration of the proposed quantitative analysis. In Figs. 3 and 4, same plots 
with the respective Figs. 1 and 2 but for the new aspect. Here, it should be reminded that 
an iSHM footprint due to zero measurement differences consists of I white circles that all 
circles coincide at the theoretical values  and  of the real indicative 
OV LV BPL urban case A that is the optimum case and the iSHM footprint goal of the 
application of piecewise monotonic data approximations.  

By comparing iSHM footprints of Figs 1-4, each iSHM footprint due to 
measurement differences consists of 100 white circles forming a segmented white region 
that starts from the theoretical values  and  of the real indicative OV 
LV BPL urban case A where each white circle corresponds to one measurement 
difference line vector. Regardless of the applied aspect, each cyan square and  
each magenta triangle is the graphical approximation result on the iSHM footprint for 
each white circle when L1PMA and L2WPMA are applied, respectively.  

In accordance with [2], the qualitative approximation success of L1PMA and 
L2WPMA has been evaluated by the upper right shift of the respective iSHM footprints 
towards the theoretical values  and  of the real indicative OV LV 
BPL urban case A. Although the mitigation of measurement differences is clear after the 
application of the piecewise monotonic data approximations of both aspects,  
the qualitative assessment is not enough to recognize which of the iSHM footprints 
achieves the best mitigation. The quantitative methodology of Sec.3 can offer the 
required metrics to carefully benchmark the iSHM footprints after the application of 
piecewise monotonic data approximations and aspects of Figs. 1-4. The benchmark 
results of L1PMA and L2WPMA when traditional and new aspects are applied are 
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reported in Table 1 after the application of the quantitative methodology of Sec. 3 to  
Figs. 1-4.  
 
 

 
Fig. 1.  iSHM footprints of the real indicative OV LV BPL urban case A when 3-30MHz frequency band, 
1MHz frequency subchannel spacing, WtG1 coupling scheme, FCC Part 15, CUD measurement differences 
of maximum value aCUD = 5dB (white circles) are assumed and L1PMA of the traditional aspect of  
4 monotonic sections (cyan squares) is applied [2].  
 

 
Fig. 2.  Same plot with Fig. 1 but for L2WPMA of the traditional aspect of 4 sign changes (magenta 
triangles) [2].  
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Fig. 3.  Same plot with Fig. 1 but for L1PMA of the new aspect of 4 monotonic sections (cyan squares).  
 

 
Fig. 4.  Same plot with Fig. 2 but for L2WPMA of the new aspect of 4 sign changes (magenta triangles).  
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Table 1 
Quantitative methodology benchmark results for L1PMA and L2WPMA when Traditional and  

New Aspects are Applied  
Number of  

L1PMA Monotonic Sections / 
L2WPMA Sign Changes 

 
 

Measurement 
Differences 

 
(maximum 

value 
=5dB) 

Traditional Aspect New Aspect 
 
 

L1PMA 

 
 

L2WPMA 

 
 

L1PMA 

 
 

L2WPMA 

 
(%) 

 
(%) 

 
(%) 

 
(%) 

 
(%) 

4 61.22 53.90 38.67 51.98 36.09 
 
 
 By comparing the benchmark results of Table 1 with Figs. 1-4, it is evident that 
L1PMA and L2WPMA achieve to mitigate the measurement differences regardless of the 
aspect applied. Both piecewise monotonic data approximations of this paper shift their 
iSHM footprints up right in comparison with the iSHM footprint due to measurement 
differences. Note that the approximated iSHM footprints now lie closer to the theoretical 
values  and  of the real indicative OV LV BPL urban case A in 
comparison with the iSHM footprints due to measurement differences. Numerically, 
APDmd of the assumed measurement differences is equal to 61.22% whilst the worst 
performance of piecewise monotonic data approximations is achieved by L1PMA of the 
traditional aspect with APDta that is equal to 53.90%. 
 As the traditional and new aspects are here benchmarked, it is clear that the 
piecewise monotonic data approximations of the new aspect better mitigate the 
measurement differences in comparison with the respective ones of the traditional aspect. 
Numerically, L1PMA of the traditional aspect presents higher APDta, which is equal to 
53.90%, in comparison with the APDna of L1PMA of the new aspect that is equal to 
51.98%. Similarly, L2WPMA of the traditional aspect presents higher APDta, which is 
equal to 38.67%, in comparison with the APDna of L2WPMA of the new aspect that is 
equal to 36.09%. Anyway, the previous numerical results can also be observed in the 
previous Figs. 1-4. Piecewise monotonic data approximations of the new aspect handle 
more unbiased data in comparison with ones of the traditional aspect since the coupling 
scheme transfer function of the OV LV BPL “LOS” case acts as a background noise for 
the coupling scheme transfer function of the other OV LV BPL topologies. When 4 
monotonic sections or sign changes are assumed, the best mitigation performance against 
measurement differences is achieved by L2WPMA of the new aspect.  
 From the previous analysis, it is evident that during the quantitative methodology 
there is no need for visually comparing the iSHM footprints due to the measurement 
differences and the iSHM footprints after the application of piecewise monotonic data 
approximations since APD metrics can securely allow the selection of the most suitable 
piecewise monotonic data approximation as well as its critical parameters for both 
aspects (i.e., L1PMA monotonic sections or L2WPMA sign changes). Since the 
qualitative analysis has been fulfilled in [2], only tables of APD metrics are presented 
hereafter in order to assess the performance of the various versions of the piecewise 
monotonic data approximations. In the following subsection, the selection of the 
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aforementioned critical parameters of piecewise monotonic data approximations is 
justified by the APD metrics and visually verified by Figs. 4(a)-(i) and 5(a)-(i) of [2]. 
 
4.2 The Quantitative Methodology for Defining the Number of L1PMA Monotonic 
Sections and L2WPMA Sign Changes 
 Already been identified in [2], [10], [26], [39], [40], the selection of the numbers 
of L1PMA monotonic sections and of L2WPMA sign changes has a significant impact on 
the mitigation performance of measurement differences. Also, this selection of the critical 
parameters of the piecewise monotonic data approximations can remain untouchable 
despite the different intensities of measurement differences applied with satisfactory 
performance unless adaptive techniques such those presented in [10], [11], [26], [39], 
[40] should be applied.  
 With reference to Figs. 4(a)-(i) and 5(a)-(i) of [2] as well as the proposed 
quantitative methodology of Sec. 3, APD metrics of: (i) the applied measurement 
differences of the arbitrary 6dB maximum value  for the real indicative OV LV BPL 
urban case A; and (ii) the piecewise monotonic data approximations of both the aspects; 
are here reported in Table 2 when the numbers of L1PMA monotonic sections and 
L2WPMA sign changes range from 1 to 9. 
 From Table 2, several interesting remarks that agree with the visual findings of 
Figs. 4(a)-(i) and 5(a)-(i) of [2], can be pointed out, namely: 

 Depending on the number of L1PMA monotonic sections and  
L2WPMA sign changes, different mitigation performances can be observed 
among the available piecewise monotonic data approximations.  
The aforementioned result that is proven by the APD metrics of Table 2 has also 
been verified by the visual analysis of Figs. 4(a)-(i) and 5(a)-(i) of [2]. 

 As the application of L1PMA of the traditional aspect is concerned, its best 
mitigation performance with APDta of 38.48% is observed when one monotonic 
section is adopted. This APDta result is the best one among all the cases 
examined. Anyway, the same number of L1PMA monotonic sections has been 
verified for its mitigation performance by the visual examination of Figs. 4(a)-(i). 
As the number of monotonic sections increases so does APDta thus indicating that 
the relatively high intensity of measurement differences that is adopted in this 
subsection (i.e., maximum value  of 6dB) requires the rough approximation 
provided by the assumption of 1 monotonic section. The overapproximation, 
which is defined in [2], occurs when the number of L1PMA monotonic sections 
of the traditional aspect is greater than 5 (i.e., black background cells of the third 
and fourth columns of Table 2). 

 As the application of L2WPMA of the traditional aspect is regarded, its best 
mitigation performance with APDta of 39.54% is observed when four or five sign 
changes are adopted. With reference to Fig. 5(e) of [2], the same number of 
L2WPMA sign changes has been validated for its mitigation performance by the 
visual examination. As the number of sign changes increases APDta first presents 
significant high values that are even higher than the respective APDmds (i.e., 
black background cells of the fifth and sixth columns of Table 2), second starts to 
decrease till 39.54% of four or five sign changes and then increases tending to  
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Table 2 

Quantitative methodology benchmark results for L1PMA and L2WPMA when Traditional and  
New Aspects are Applied for various Numbers of L1PMA Monotonic Sections and  

L2WPMA Sign Changes 
Number of  

L1PMA Monotonic Sections / 
L2WPMA Sign Changes 

 
 

Measurement 
Differences 

 
(maximum 

value 
=6dB) 

Traditional Aspect New Aspect 
 
 

L1PMA 

 
 

L2WPMA 

 
 

L1PMA 

 
 

L2WPMA 

 
(%) 

 
(%) 

Reference 
Figure of 

[2] 

 
(%) 

Reference 
Figure of 

[2] 

 
(%) 

 
(%) 

1  
 
 
 
 

68.63 

38.48 Fig. 4(a) 111.58 Fig. 5(a) 40.19 118.94 
2 45.98 Fig. 4(b) 99.64 Fig. 5(b) 44.01 106.67 
3 57.67 Fig. 4(c) 51.58 Fig. 5(c) 55.63 45.94 
4 58.17 Fig. 4(d) 39.54 Fig. 5(d) 55.95 39.37 
5 62.04 Fig. 4(e) 39.54 Fig. 5(e) 59.57 39.37 
6 69.46 Fig. 4(f) 46.25 Fig. 5(f) 68.06 39.69 
7 69.51 Fig. 4(g) 46.25 Fig. 5(g) 68.11 39.69 
8 71.46 Fig. 4(h) 55.15 Fig. 5(h) 70.94 46.72 
9 71.46 Fig. 4(i) 55.15 Fig. 5(i) 70.94 46.72 
 

 
a state of overapproximation. In contrast with L1PMA of the traditional aspect, 
L2WPMA tends to approximate the spectral notches of the coupling scheme 
transfer function data by avoiding the rough approximation of  
1 monotonic section of L1PMA. 

 As the application of L1PMA of the new aspect is concerned, its APDna behavior 
presents similarities with APDta of the L1PMA of the traditional aspect with 
respect to the number of monotonic sections. Indeed, the best APDna of the 
L1PMA of the new aspect is equal to 40.19% when one monotonic section is 
adopted. In all the numbers of monotonic sections examined, L1PMA of the new 
aspect presents better APDna than APDta of the L1PMA of the traditional aspect 
except the case of the one monotonic section. Anyway, L1PMA of the new aspect 
achieves to mitigate measurement differences of the maximum value  of 6dB 
even if 7 monotonic sections are assumed. Above 7 monotonic sections,  
its APDna exceeds APDmd (i.e., black background cells of the seventh column of 
Table 2). 

 As the application of L2WPMA of the new aspect is regarded, its best mitigation 
performance with APDna of 39.37% is observed when four or five sign changes 
are adopted that is the same number of sign changes of L2WPMA of the 
traditional aspect. Below 3 monotonic sections, its APDna exceeds APDmd  
(i.e., black background cells of the eighth column of Table 2). For the monotonic 
sections that APDna is lower than APDmd, APDna of L2WPMA of the new 
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aspect always presents better values in comparison with APDta of L2WPMA of 
the traditional aspect. 

Note that the numbers of 1 L1PMA monotonic section for both aspects and 5 L2WPMA 
sign changes for both aspects are going to be adopted in the following analysis.  
In accordance with [2], the aforementioned numbers can be treated as the basis for the 
respective piecewise monotonic data approximations regardless of the intensity of the 
measurement differences. In order to check the mitigation efficiency of L1PMA and 
L2WPMA of both aspects against different intensities of measurement differences,  
their performance is assessed through the quantitative methodology on the basis of 
respective iSHM footprints.  
 
4.3 The Quantitative Methodology for L1PMA and L2WPMA iSHM Footprints of 
both Aspects when Different Intensities of Measurement Differences Occur 
 In accordance with Figs. 6 and 7 of [2], the mitigation performance of L1PMA 
and L2WPMA of the traditional aspect against the measurement differences has been 
visually proven to be important when measurement differences remain very high. 
Anyway, the promising results regarding the mitigation of higher measurement 
differences by L1PMA and L2WPMA of the traditional aspect was expected after the 
determination of respective monotonic sections and sign changes in Sec.3.3 of [2] for 
maximum value  of 6dB that is anyway sufficiently high. The aforementioned 
qualitative observations of [2] require the quantitative validation of this Section.  
 Unlike [2], in Table 3, APD metrics of: (i) the applied measurement differences of 
maximum values  that range from 0dB to 15dB for the real indicative OV LV BPL 
urban case A; and (ii) the results of the application of piecewise monotonic data 
approximations of both aspects; are here reported when the numbers of L1PMA 
monotonic sections and L2WPMA sign changes are equal to 1 and 5, respectively. 
 From Table 3, it is clear that the increasing maximum value  of CUD 
measurement differences entail significant increase of APDmd. Since L1PMA monotonic 
sections and L2WPMA sign changes have been defined when the relatively high 
measurement differences of Sec. 4.2 have been assumed, L1PMA and L2WPMA fail to 
mitigate the low measurement differences of maximum value of 1dB and 2dB. 
Here, the philosophy of the adaptive monotonic sections and sign changes, which have 
been proposed in [10], [11], can also be applied in iSHM footprints so that even the low 
measurement differences of maximum value of 1dB and 2dB can be mitigated by 
piecewise monotonic data approximations. 

In contrast with the situation occurs during the study of the very low measurement 
differences, L1PMA and L2WPMA can safely mitigate measurement differences whose 
maximum value  remains higher than 2dB regardless of the aspect adopted. In fact, 
for the high measurement differences, L1PMA of the traditional aspect when one 
monotonic section is applied achieves the best APDta in comparison with the APD 
metrics of the other examined piecewise monotonic data approximations till 
approximately maximum values of 10dB (cyan background cells of Table 3).  
For the very high measurement differences, L1PMA of the new aspect when one 
monotonic section is again applied starts to present the best APDna in comparison with 
the ones of the other examined piecewise monotonic data approximations. Anyway,  
the mitigation performance of all the examined piecewise monotonic data approximations 
mitigate measurement differences when maximum values  are greater than 2dB.  
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Table 3 
Quantitative methodology benchmark results for L1PMA and L2WPMA when Traditional and  

New Aspects are Applied  
(maximum value  ranges from 0dB to 15dB, numbers of L1PMA monotonic sections and L2WPMA 

sign changes are equal to 1 and 5, respectively) 
 
 
 
 
 

Maximum Value  of 
Measurement Differences  

(dB) 

 
 

Measurement 
Differences 

 
 

Traditional Aspect New Aspect 
 
 

L1PMA 
 

 
 

L2WPMA 
 

 
 

L1PMA 

 
 

L2WPMA 

 
(%) 

 
(%) 

 
(%) 

 
(%) 

 
(%) 

0 0 19.35 15.92 18.74 17.12 
1 7.99 18.95 18.58 19.12 18.80 
2 16.57 19.67 23.18 20.24 22.35 
3 32.23 20.43 24.41 21.73 24.42 
4 46.39 24.94 32.55 25.59 31.11 
5 61.22 33.78 38.67 34.57 36.09 
6 68.63 38.48 39.54 40.19 39.37 
7 72.73 39.05 41.40 39.16 42.64 
8 85.35 41.42 46.67 41.61 45.56 
9 84.34 43.93 48.43 44.34 49.25 

10 90.42 48.98 50.90 49.10 50.10 
11 96.07 46.94 51.24 46.47 55.05 
12 99.99 52.04 55.25 52.32 56.82 
13 101.48 50.14 57.20 49.57 59.39 
14 105.69 59.39 63.10 59.20 64.35 
15 110.69 58.65 59.95 58.58 63.99 

 
 
As L2WPMA is examined, mixed performance results occur between the traditional and 
new aspect. In general terms about L2WPMA, the traditional aspect is preferred when 
high measurement differences occur whereas the new aspect is used in the other cases. 

Through the prism of the new quantitative methodology, it is evident that 
piecewise monotonic data approximations can easily mitigate measurement differences 
when piecewise monotonic data approximations are well calibrated in terms of their 
critical intrinsic parameters. Depending on the applied piecewise monotonic data 
approximations and the intensity of measurement differences as previously analyzed,  
the selection among the available piecewise monotonic data approximations and aspects 
changes.  
 
 
5. Conclusions 
 
 After the proposal of the quantitative methodology of this companion paper,  
the reliability of BPL data that feed the business analytics and the tools of the SG is 
further enhanced. Towards the enhancement of the data quality and the data cleaning 
from the application of piecewise monotonic data approximations, such as L1PMA and 
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L2WPMA, the new aspect of applying piecewise monotonic data approximations can 
successfully mitigate measurement differences under conditions. With reference to  
iSHM footprints, it has been revealed that L1PMA and L2WPMA always mitigate 
measurements differences above a low threshold of 2dB while their performance 
becomes significant when measurement differences are important since the generated 
data of high measurement difference contamination are considered useless without a 
restoration. Finally, the interoperability of the qualitative and quantitative assessments of 
piecewise monotonic data approximations via iSHM footprints can be considered 
invaluable in order to ensure the data quality of the business analytics while the new 
aspects are added to the quiver of the available mitigation techniques against the 
measurement differences. 
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