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With the development of industrialization, a large number of non-
renewable fuels (such as coal and crude oil) are consumed, and the 
harmful substances produced in the combustion process of a large 
number of fossil fuels have caused serious pollution to the atmosphere, 
and the harmful gases produced by combustion have caused disastrous 
damage to the ecological balance. Therefore, finding clean energy and 
exploring alternative fuels are very important in today's society. This 
paper mainly reviews the studies on the alternative fuels of dimethyl 
ether (DME). Firstly, the types of alternative fuels currently researched 
by society and their respective advantages and disadvantages are 
analyzed, and the preparation of dimethyl ether and its advantages and 
disadvantages are analyzed in detail. In addition, the physicochemical 
properties, combustion and emission characteristics of dimethyl ether 
and diesel are compared and analyzed. The conclusion is that the 
injection delay angle of dimethyl ether is larger than that of diesel, the 
ignition delay period is shorter than that of diesel, and the maximum 
explosion pressure, maximum pressure rise rate and combustion noise 
of dimethyl ether are lower than that of diesel. The diffusion combustion 
speed of DME is faster than that of diesel, and the combustion duration 
is shorter than that of diesel. At the same time, as an alternative energy, 
dimethyl ether engine has a significant reduction in NOx emission, a very 
low level of HC and CO emission, and zero soot emission. In conclusion, 
the DME engine has good performance and emission characteristics.  

 
Keywords:  Dimethyl ether; Diesel engine; Alternative fuel; Clean fuel 

 

 
Introduction  
  

 A good ecological environment is not only the basis for human survival, but also 

the prerequisite for the sustainable and stable development of society. With the rapid 

development of global industry and economy, the main energy sources of human society, 

such as coal, crude oil and natural gas, have been irreversibly depleted after hundreds of 

years of over exploitation and huge consumption. As a populous country, China's per 

capita reserves of major fossil energy are far below the world's per capita level. In 

addition, the rough economic development model consumes a lot of energy, resulting in 

low production efficiency. Moreover, China has always been dependent on major fossil 

energy sources. It is a major problem that China's development is constrained by the 

energy problem. The implementation of sustainable development strategy, energy 

security and stable economic development must first solve the energy problem. 

In addition, with the continuous increase of the total energy consumption, a large 

number of harmful substances generated during the burning of fossil fuels have caused 
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serious pollution to the atmosphere, and the harmful gases generated during the burning 

have caused catastrophic damage to the ecological balance. These damages may include a 

series of chain reactions (such as climate warming, glacier melting, and sea level rise), 

and some coastal areas are in danger of being submerged. The above problems are 

threatening the survival of mankind and have already aroused great concern and concern 

of our government [1]. Under the dual pressure of energy pressure and environmental 

pressure, it is urgent for our government and researchers to work together to accelerate 

the development and utilization of new, cleaner and more environmentally friendly 

alternative energy. 

 
Table 1.  Main Components and Hazards of Automobile Exhaust 

Component Main hazards 

CO 

If CO in the atmosphere enters the human body, it will quickly combine 

with hemoglobin, weakening the ability of blood to provide for human 

tissues, causing chronic poisoning such as headache and dizziness 

caused by hypoxia, and making the reaction function, sensory function, 

memory function, etc. unable to work normally. 

 

HC 

Olefins have anesthetic effect and irritation to mucous membrane. HC 

will react with NO2 to generate photochemical smoke. Aromatic 

hydrocarbons are harmful to blood, liver and nervous system. 

Polycyclic aromatic hydrocarbons and their derivatives have certain 

carcinogenic effect, and aldehydes are harmful to eye mucous 

membrane, respiratory tract and blood. 

 

NOx 

It slowly oxidizes NO2 in the atmosphere and combines with water to 

form nitric acid after being inhaled by the human body, causing cough, 

asthma, even emphysema and myocardial damage. NOx is one of the 

main factors to form chemical smog. 

 

PM 

The main component is carbon, which can be suspended in the 

atmosphere for a long time without sedimentation. It will penetrate deep 

into human lungs, causing mechanical overload, damage the self 

purification devices of various channels in the lungs, and promote the 

toxic effect of other pollutants. 

 

Automobile is an indispensable means of transportation in modern social life. 

With the continuous increase of car ownership, the exhaust emissions of traditional 

gasoline and diesel vehicles have an increasing impact on the environment. Among them, 

the pollution caused by automobile exhaust accounts for 60%~70% of the total air 

pollution. Due to multiple reasons such as automobile exhaust emissions and the 

environment, most parts of China are almost covered by a thick haze every day, which 

also makes the words "air quality" and "PM2.5" become frequently used words "smog" 

attacking the city. Under the heavy fog, automobile exhaust emissions become the culprit 

causing smog, and become the target of public criticism for a time. Among them, the 

hazards of the main components of exhaust gas from automobile internal combustion 

engines are shown in Table 1 [2]. These ingredients will have more and more negative 

effects on the environment and human body as the number of cars increases. 

From the perspective of long-term energy strategy, we should actively develop 

alternative clean fuels to reduce dependence on fossil fuels such as oil. Therefore, the 
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government should encourage and support the design, R&D and application of alternative 

fuel vehicles in policy, and give preferential policies in terms of taxation in the early 

stage of the development of alternative fuel vehicles, even for a period of time, to 

encourage the reduction of the consumption of fossil fuels such as oil, thus reducing 

environmental pollution [3]. 

 

 

Application of Alternative Fuels in Internal Combustion Engines  
  

Common Alternative Fuels 
At present, the most widely researched and applied alternative fuels mainly include 

liquefied/vaporized natural gas, liquefied petroleum gas, alcohol fuel, biofuel, hydrogen 

fuel, dimethyl ether (DME), mixed fuel, etc. [4-7]. A comparison of physical and 

chemical properties between traditional fuels and alternative clean fuels is shown in 

Table 2.  

1) Liquefied/vaporized natural gas and liquefied petroleum gas 

Liquefied/vaporized natural gas (LNG) and liquefied petroleum gas (LPG) have 

been widely used in urban public transport, and their outstanding feasibility has been 

confirmed. Liquefied/vaporized natural gas (LNG) and liquefied petroleum gas (LPG) 

have the following advantages: environmental protection, almost no black smoke in the 

emission, only a small amount of sulfur, and no benzene and lead, which greatly reduces 

the environmental pollution. With good antiknock property and much higher octane 

number than gasoline, the engine's power performance and thermal efficiency can be 

improved by appropriately increasing the compression ratio and adopting supercharging 

technology. With low vaporization temperature, it can enter the cylinder in the form of 

gas, with less carbon deposition, extending the engine overhaul cycle. It has high safety 

and adopts various structures and technologies to make the gas burn in a fully enclosed 

environment. The economy is good, and the price is lower than that of gasoline. 

However, since the natural gas is mainly stored in the west of China, and the application 

of natural gas is limited to local industries, the large-scale application of natural gas in 

China is limited [8]. 

2) Biodiesel 

Biodiesel has many advantages, such as rich resources, which can be obtained by 

esterification of plant or animal fats, and it is a renewable resource. Besides, it has high 

energy density, excellent economic performance and emission performance. It can be 

directly used without changing the original structure of compression ignition engines. 

However, if it is used for a long time, it will produce carbon deposits inside the fuel 

injectors, and cause deterioration of lubricating oil and other problems [9]. In addition, it 

is necessary to ensure sufficient raw materials and high costs in the production process. 

3) Alcohol fuel 

The sources of methanol and ethanol in alcohol fuels are very rich. They can not 

only be extracted from coal, heavy oil and natural gas, but also from renewable resources 

such as sugar cane, sugar beet and plant fiber. Moreover, the technology is relatively 

mature. The biggest advantage of methanol and ethanol as alternative fuels is that there is 

almost no soot generated during combustion, which is very clean, and CO, HC and NOX 

emissions are lower than those of compression ignition engines [10]. Therefore, alcohol 

fuel, one of the petroleum alternative fuels, has a great application prospect in the future. 
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4) Hydrogen 

Hydrogen is an efficient and clean fuel. When burning hydrogen and gasoline of 

the same quality, the heat release of hydrogen is 3 times that of gasoline. The combustion 

product of hydrogen is only water, which will not lead to carbon deposition in the engine 

and will not pollute the environment. However, hydrogen is a secondary energy and 

needs to be produced by other energy sources, which leads to high production costs [11]. 

Moreover, the difficulties in storage and transportation of hydrogen also lead to the 

limitations of its wide application. 

 
Table 2.   Comparison of physical and chemical properties between traditional fuels and 
alternative clean fuels 

Nature Gasoline Diesel Hydrogen 
Dimethyl 

ether 
Methanol Ethanol CNG LPG 

Molecular 

formula 
C5-C12 CxHy H2 CH3OCH3 CH3OH 

CH3CH2

OH 
CH4 

C3H8+C4

H10 

Octane 

number 
90-106 20-30 0 - 111 111 130 107 

Cetane 

number 
13-17 40-55 0 55-60 <15 <8 Low <10 

Theoretical air 

fuel ratio A/F 
14.8 14.6 34.3 8.9 6.5 9.0 17.2 15.53 

Boiling 

point/℃ 
30-220 

180-

370 
-253 25.1 65 78 -162 -35 

Flash point/℃ -43 60 -252.8 -41.4 11 21 -187 -104 

Autoignition 

temperature/

℃ 

350-400 250 570 235 450 423 650 460 

Liquid phase 

density/𝑘𝑔 ∙
𝐿−1 

0.72-0.75 0.84 0.169 0.66 0.79 0.79 0.47 0.52 

Low calorific 

value/𝑀𝐽 ∙
𝑘𝑔−1 

44.5 42.5 10.8 28.8 19.9 27.6 50.1 46.0 

Latent heat of 

vaporization/k
𝐽 ∙ 𝑘𝑔−1 

297 250 305 460 110 904 510 401 

Vapor 

pressure/MPa 
0.45-0.9 <0.01 10.67 0.5 0.2 0.18 - 0.1 

20 ℃ dynamic 

viscosity/Pa∙s 
0.42 2.4 - 0.15 0.6 1.2 - 0.6 

Volume ratio 

of combustible 

range/% 

1.3-7.6 0.6-6.5 4.0-74.5 3.4-17 5.5-26 3.5-1.5 5-15 2.4-9.5 

Mass fraction 

of oxygen 

atom/% 

0% 0% 0% 34.8% 50% 34.8% 0% 0% 

Mass fraction 

of carbon 

atom/% 

85%-88% 86% 0% 52.2% 37.5% 52.2% 75% 82% 

 

5) Dimethyl ether 

In recent years, more and more countries around the world have studied dimethyl 

ether. The main reason is that dimethyl ether has a high cetane number, a low 

autoignition temperature and excellent compression characteristics. So it is suitable to 
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replace diesel in compression ignition engines. Research shows that the thermal 

efficiency of direct injection compression ignition engines using dimethyl ether is the 

same as that of diesel fuel. In addition, the running stability and combustion noise of the 

engine are almost at the same level as those of the gasoline engine [12], and the exhaust 

emissions are clean and clean. No auxiliary ignition device and exhaust catalytic post-

treatment device are required, which greatly reduces NOX emissions and realizes 

smokeless combustion. 

 

Clean Alternative Fuel of Dimethyl Ether 
 In order to change the tense situation of energy supply and demand in China and 

reduce automobile exhaust pollution, an alternative fuel with extensive sources, mature 

production technology, good economy and low pollution emissions is urgently needed. 

Dimethyl ether, as a new alternative fuel for diesel engines in recent years [11-15], has 

aroused great interest, and related research is increasing and deepening. 

 

Preparation of Dimethyl Ether 

 Dimethyl ether fuel comes from a wide range of sources, and can be produced in 

large quantities from coal, natural gas, coalbed methane, biological organics, etc. [15-16]. 

The preparation of dimethyl ether can be divided into direct method and indirect method 

[17]. Direct method refers to the direct preparation of dimethyl ether from synthesis gas. 

The indirect method refers to the synthesis gas, which is first made into methanol, and 

then dehydrated from methanol. China is rich in coal resources, accounting for 11% of 

the world's total reserves, and the price is low, only about 1/3 of the world average price. 

Therefore, burning coal to produce dimethyl ether can not only effectively reduce 

environmental pressure and ease energy security problems, but also promote the 

development of clean coal combustion technology, which is a good way to do more with 

one action. 

 

 

Comparison of Combustion and Emissions between Dimethyl Ether Engine 
and Diesel Engine  
 

Comparison of Combustion Characteristics between Dimethyl Ether Engine and 
Diesel Engine 
 Figure 1 shows the comparison of indicator diagram and heat release rate of 

dimethyl ether engine and diesel engine. It can be seen from the figure that the cetane 

number of dimethyl ether is higher than that of diesel, and the ignition delay period is 

shorter than that of diesel. During the ignition delay period, the diesel engine accumulates 

more fuel in the cylinder and burns together after ignition, resulting in a higher maximum 

explosive pressure than that of the DME engine. The injection delay of dimethyl ether is 

larger than that of diesel. When the fuel injection advance angle is the same, the injection 

advance angle of dimethyl ether is smaller than that of diesel. The position corresponding 

to the maximum cylinder pressure of the dimethyl ether engine is later than that of the 

diesel engine [19]. 
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a) 800 r/min   Pe=0.87 MPa 

 
 

b) 1400 r/min   Pe=1.52 MPa 

 

 

c) 2200 r/min   Pe=1.21 MPa 

Figure 1. Comparison of Cylinder Pressure and Heat Release Rate between DME Engine and 
Diesel Engine [19] 

 

 It can be seen from Figure 1 that the supercharged diesel engine has a high intake 

pressure and temperature, a short ignition delay period, less fuel to participate in 

premixed combustion, less heat released from premixed combustion, low premixed 

combustion heat release peak value, and high diffusion combustion heat release peak 

value. Due to the short ignition delay period of dimethyl ether, the heat released by 

premixed combustion is less, and the peak heat release of premixed combustion is lower 

than that of diesel engine. 

To sum up, the injection delay angle of dimethyl ether is larger than diesel, the 

ignition delay period is shorter than diesel, and the maximum burst pressure, maximum 

pressure rise rate, and combustion noise are lower than diesel. The diffusion combustion 
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speed of dimethyl ether is faster than that of diesel, and the combustion duration is 

shorter than that of diesel. 

 

Emission Comparison between DME engine and Diesel engine 
In 2004, Japan Institute of Industrial Technology (AIST) and Japan National Oil 

Corporation (JNOC) jointly conducted tests with different injection advance angles and 

engine speeds on a tandem pump diesel engine fueled with dimethyl ether [20]. The 

results showed that the maximum power and torque of the engine when fueled with 

dimethyl ether were equal to or greater than the original engine. Under the condition that 

NOx emission is maintained at the same level as that of the original engine, the thermal 

efficiency of DME at low and medium speed is often lower than that of diesel, and the 

thermal efficiency at high speed is equivalent to that of the original diesel. 

 
Table 3.  Emission Test Results of Dimethyl Ether Engine under Japanese 13 mode [21] 

    [g/kWh] 

 CO HC NOx PM 

Japanese 2003 limits 2.22 0.87 3.38 0.18 

Diesel fuel operation 3.17 0.89 4.26 0.17 

DME operation 

(Japanese 2003 regulation) 

0.117 

(-95%) 

0.222 

(-74%) 

4.26 

(-27%) 

0.0102 

(-94%) 

 

In 2004, Shinichi Goto of the Japanese Institute of Industrial Technology and 

Shinichi Suzuk of the Japanese oil company conducted an experimental study on a 

modified naturally aspirated diesel engine [21] using exhaust gas recirculation (EGR) and 

oxidation after treatment (DOC) technologies to burn dimethyl ether. Table 3 shows the 

emission results measured according to the Japanese 13 operating mode. Compared with 

the emission limit of Japanese 2003 regulations, NOx emissions decreased by 27%, CO 

decreased by 95%, HC emissions decreased by 74%, and particles emissions decreased 

by 94%. 

In conclusion, the power performance of DME engine is superior to that of diesel 

engine. Under external characteristics, the fuel consumption rate of DME engine is lower 

than that of diesel engine at medium and low speed, and slightly higher at high speed. 

The NOx emission of DME engine is significantly lower than that of diesel engine, the 

HC emission is also lower than that of diesel engine, and the CO emission is slightly 

higher than that of diesel engine. The HC and CO emissions of DME engine are at a very 

low level. In all operating conditions of the engine, the soot emission of the DME engine 

is zero. Dimethyl ether engine shows good performance and emission characteristics. 

 

 
Advantages and Disadvantages of Dimethyl Ether as Diesel Engine Fuel 
 

Through the research on the physical and chemical properties of dimethyl ether 

and the comparison between dimethyl ether and diesel oil, the following advantages and 

disadvantages are found [22]: 

1) In the molecular formula of dimethyl ether, there are only C – H and C – O 

bonds, but no C – C bonds. The oxygen content is very high. Therefore, compared with 

diesel fuel, combustion will not produce soot, but also has good combustion effect and 

high thermal efficiency. 
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2) The cetane number of fuel is an important indicator of engine efficiency. The 

higher the cetane number, the stronger the ignition of fuel. The good ignition 

performance of dimethyl ether is due to its high cetane number, which ranges from 55 to 

66, while that of diesel is only 40 to 55. 

3) Dimethyl ether is a non petroleum energy and does not exist in nature, but it 

can be prepared from coal, natural gas and various biomass with low difficulty and easy 

preparation. 

4) Dimethyl ether is easy to corrode rubber products during use, so it can only 

contact metal products directly during use and storage. 

5) Under normal temperature and pressure, dimethyl ether is usually kept in a 

gaseous state. Based on this, in order to prevent dimethyl ether from vaporizing during 

combustion and affecting fuel performance, dimethyl ether needs to be pressurized. 

Generally, pressurize to 1.5 to 3 MPa and store dimethyl ether in liquid state. 

6) Dimethyl ether is a colorless, non-toxic, non corrosive, non carcinogenic gas 

fuel. Due to its characteristics, it will not corrode metals, and its physical and chemical 

properties are stable. Even if it is placed in an aerobic environment for a long time, it will 

not produce oxidation reactions, and there will be oxides. Compared with propane and 

butane, dimethyl ether is extremely safe to use. 

7) The calorific value of dimethyl ether is lower than that of diesel fuel, so more 

dimethyl ether is needed to achieve the same heat release as diesel fuel. 

  
 
CONCLUSIONS 
 

 1. Dimethyl ether has high cetane number, low autoignition temperature and 

excellent compression characteristics, so it is suitable to replace diesel in compression 

ignition engines 

2. The injection delay angle of dimethyl ether is larger than that of diesel, the 

ignition delay period is shorter than that of diesel, and the maximum explosion pressure, 

maximum pressure rise rate and combustion noise are lower than that of diesel. The 

diffusion combustion speed of dimethyl ether is faster than that of diesel, and the 

combustion duration is shorter than that of diesel. 

 3. The power performance of DME engine is better than that of diesel engine. 

Under external characteristics, the fuel consumption rate of DME engine is lower than 

that of diesel engine at medium and low speed, and slightly higher at high speed. The 

NOx emission of DME engine is significantly lower than that of diesel engine, the HC 

emission is also lower than that of diesel engine, and the CO emission is slightly higher 

than that of diesel engine. The HC and CO emissions of DME engine are at a very low 

level. In all operating conditions of the engine, the soot emission of the DME engine is 

zero. Dimethyl ether engine shows good performance and emission characteristics. 
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In this paper, the research on biodiesel or blending with other fuels is 
reviewed. Based on the current status of biodiesel research, this paper 
introduces the current research progress, combustion and emission 
characteristics, blending with other fuels, and development direction of 
biodiesel. The combustion, emission, and spray of biodiesel are not 
exactly the same as diesel, so it is not suitable to be used directly in 
diesel engines. Biodiesel can be blended with diesel, ethanol, ammonia 
and other fuels to improve its power performance and reduce harmful 
emissions. This review can serve as an important reference for those 
who want to engage in biodiesel research, and a quick understanding of 
biodiesel research before.  
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Introduction  
  

 With the development of society, the total energy consumption is increasing. At 

present, the primary energy used in the world mainly includes fossil energy such as crude 

oil, coal and natural gas, among which crude oil accounts for more than one-third of the 

total global energy consumption [1] (as shown in Fig.1). China's limited oil reserves and 

heavy reliance on overseas imports have become an important issue affecting China's 

energy security. In the field of transportation, such as automobiles, ships and aviation, oil 

consumption accounts for more than 50% of the total consumption [2]. According to the 

statistical analysis of the China Association of Automobile Manufacturers [3], the 

production and sales of automobiles increased by 4.15~5.57 % year-on-year. Among 

them, commercial vehicles which mainly use diesel engines, increased by 9.41~10.58 % 

year-on-year. With the further improvement of China's economic level, China's fuel 

consumption will continue to grow in the coming period. Figure 1 shows the graph of 

crude oil consumption and crude oil production in China in recent years, which shows 

that China's fuel energy gap is gradually expanding. 

 The internal combustion engine will remain the primary source of power in 

automobiles for the foreseeable future, and the growth in vehicle sales has increased the 

consumption of oil [4]. The huge production of automobiles also increases the burden on 

the environment, which is more obvious in commercial vehicles. Diesel engines have 

high power and durability and are widely used in trucks and medium to large buses. 

However, the diffusion combustion method of diesel as a heavy oil makes the fuel 
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unevenly distributed in space, forming a considerable proportion of combustion-rich 

areas and leading to the generation of large amounts of particulate matter. In addition, the 

uneven distribution of fuel also makes the formation of higher temperature peaks in the 

combustion chamber, generating more NOx, and the combustion emissions of diesel 

engines also generate CO, hydrocarbons (THC), etc. To cope with these problems, 

countries around the world have developed strict emission regulations [5]. For example, 

Europe began to implement Euro V vehicle emission standards in 2009. In 2019, China 

began to implement national V vehicle emission standards nationwide. Technological 

innovations in internal combustion engines also contribute to the reduction of pollutant 

emissions and oil consumption, and are divided into three main categories [6]. The first 

type is to change the internal combustion method of the engine, such as the use of 

exhaust gas recirculation system in diesel engines to re-burn the exhaust gas and thus 

reduce the NOx in the exhaust gas. The second type of pollutant purification technology 

is the addition of catalysts to the exhaust process to achieve the purpose of purification, 

such as the three-way catalytic technology already used in gasoline engines, which 

greatly reduces NOx and THC emissions. The third category is the search for green and 

renewable alternative fuels for internal combustion engine fuel, including ethanol, 

dimethyl ether, biodiesel, etc. The development of alternative fuels for internal 

combustion engines and the establishment of a diversified energy supply system will not 

only help to improve engine emissions, but also further reduce dependence on petroleum. 

 

 

Fig. 1. China's oil consumption and production in recent years [1] 

 

As a renewable green energy, biodiesel is widely valued in all countries around 

the world. Based on the current status of biodiesel research, this paper introduces the 

current research progress, combustion and emission characteristics of biodiesel, blending 

with other fuels, and development direction of biodiesel. This paper is an important 

reference for those who want to engage in biodiesel research and a quick understanding 

of biodiesel research.  

 
 
Physical and Chemical Properties of Biodiesel 
 

 Biodiesel is a methyl ester or ethyl ester fuel made from oilseed crops, wild 

oilseed plants, aquatic plant oils (like engineered microalgae), animal fats and grease, and 

restaurant waste oil, etc. This fuel can be synthesized through an ester exchange process. 
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There are more than 30 kinds of vegetable oil-based biodiesels known to be used in 

internal combustion engines, and their main characteristics are as follows [7].   

(1) The calorific value of biodiesel is lower than diesel. But the density is higher than 

diesel, and the volumetric calorific value is similar to diesel. So, the engine oil supply 

system almost does not need to be changed.  

(2) The viscosity of biodiesel is higher than diesel, which affects the spraying 

characteristics and cold starting performance. But the viscosity of vegetable oil decreases 

faster with the increase of temperature.  

(3) The cetane number of biodiesel is lower than diesel. The flash point and ignition 

temperature of biodiesel are worse than diesel. When used in diesel engine, it generally 

needs to increase the injection advance angle.  

(4) Biodiesel generally contains oxygen, which is good for combustion.  

(5) Biodiesel can be mixed with diesel in any ratio.  

(6) Biodiesel contains small amount of water, ash, carbon residue and impurities.  

(7) The main component of biodiesel is unsaturated fatty acid, which is easy to oxidize 

and deteriorate easily. 

 

 

Combustion, Spraying, Power Economy and Emission Characteristics of 
Biodiesel 
 

Combustion Characteristics 
 The physical parameters of biodiesel are close to those of conventional diesel. 

Biodiesel and diesel have good miscibility, so it can be blended with conventional diesel 

in any ratio and used directly in existing engines. However, the combustion 

characteristics of biodiesel and diesel in engines are very different, which depends on the 

physical and chemical properties of biodiesel and blending concentration. Many scholars 

have conducted a lot of related researches. In terms of the output power, the maximum 

output power of biodiesel is slightly lower than that of diesel, because the calorific value 

of biodiesel is lower than that of diesel. Sinha and Agarwal [8] reported that when using 

lower concentrations of rice bran biodiesel (B5, B10 and B20), the maximum engine 

output was equal to or slightly higher than that of the diesel engine. The evaporative 

characteristics of the fuel, the viscosity, and the oxygen content of the biodiesel all 

affected the exothermic rate of the combustion process, especially at high rpm. The lower 

biodiesel concentration increased the output power of the tested engine, and the degree of 

influence is shown in Figure 2. 

 
Fig. 2. Effect of biodiesel blends on engine output power and torque [8] 
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In terms of engine thermal efficiency, most studies reported that the thermal 

efficiency of biodiesel and its blends is higher than that of diesel, mainly related to the 

blending ratio, fuel oxygen content, fuel viscosity and density. For example, Mahanta et 

al. [9] reported that the thermal efficiency of B20 biodiesel was higher than that of diesel 

fuel due to the oxygen atoms of biodiesel that contributed to more adequate combustion 

of the fuel in the combustion chamber. Agarwal [10] tested the effect of different 

blending ratios of biodiesel relative to diesel fuel on the peak engine thermal efficiency 

(as shown in Figure 3) and found that the B20 blend had the highest thermal efficiency. 

Du et al. [11] pointed out that the thermal efficiency of biodiesel, biodiesel-ethanol and 

biodiesel-methanol blends were higher than that of diesel at all operating conditions. This 

is due to the small amount of ethanol in the fuel blend that improves the combustion 

characteristics of the fuel. In addition, the use of higher injection pressure can improve 

the atomization characteristics of biodiesel droplets and increase the thermal efficiency of 

the fuel.  

 

 

 
Fig. 3. Effect of biodiesel blending ratio on the improvement of peak thermal efficiency [10] 

 

Emission Characteristics 
 China's latest National VI standard makes further restrictions on pollutant 

emissions, in which the emission requirements for CO and THC (Total Hydro Carbons) 

are reduced by one-third compared to National V, and the overall pollutant limits are 40-

50% stricter compared to National V [12]. For biodiesel, the emissions of THC, CO, and 

PM decreased with the increase of blending ratio, while NOx increased slightly [13-16]. 

Grimaldi et al. [17] reported that the CO emissions of biodiesel were similar to those of 

diesel at 2500 rpm of the engine, and the CO emissions of biodiesel decreased 

significantly at 4000 rpm of the engine speed. Gumus et al. [18] observed that CO 

emissions decreased as the biodiesel blend percentage increased, and that CO emissions 

decreased with increasing injection pressure in the engine for all biodiesel blends. THC 

emissions are affected by feedstock and fuel properties such as oxygen content, cetane 

number, engine injection pressure, fuel injection time delay, etc. Su et al. [19] showed 

that biodiesel blends emit significantly lower THC emissions at full load compared to 

diesel. Gumus et al. also [18] studied the THC emissions of biodiesel at different 

blending ratios and injection pressures and found that the THC emissions decreased with 

increasing biodiesel blending ratio and fuel injection pressure (as shown in Figure 4).  
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Fig. 4. Variation of THC emission with injection pressure [18] 

 

 Most relevant studies have shown that biodiesel produces higher NOx than diesel 

in unmodified engines. Gimuis et al. [20] concluded that NOx emissions increase with 

increasing engine load due to higher peak combustion chamber temperatures. Sharp et 

al.[21] investigated the relationship between NOx emissions and fuel performance, 

showing that NOx emissions decreased with increasing fuel oxygen content in the test 

fuel and increased with increasing carbon chain length. Mueller et al. [22] concluded that 

the increase in NOx in biodiesel engines cannot be quantified by changes in a single fuel 

performance. Rather, it is the result of many coupled mechanisms whose effects enhance 

or cancel each other under different conditions.  

 In terms of particulate matter (PM) emissions (e.g., Figure 5), Lapuerta et al. [23] 

tested PM emissions from four biodiesels in a 2.2 L turbo diesel engine and showed that 

all four biodiesels emitted substantially less PM than diesel. The Dhar and Agarwal [24] 

study noted that PM emissions from both B20 and B50 were lower than those from 

diesel, and that as injection pressure increased, particulate matter particle size decreased.  

 
Fig. 5. Variation of the PM emission [23] 

 

Spraying Characteristics 
 The most important factor affecting engine combustion is the quality of the in-

cylinder fuel-air mixture. The formation of the mixture is closely related to the in-

cylinder environment, the spray characteristics of the fuel, and the atomization effect. 

The spray characteristics of biodiesel are an important factor affecting its operation and 

emission in the engine [25]. From the above review, it can be seen that the engine 
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injection pressure, atomization method and the physical parameters of biodiesel itself will 

directly affect the combustion and working characteristics of the fuel in the engine, which 

in turn determines the fuel economy and emission performance of the engine. Therefore, 

the spray characteristics of biodiesel in diesel engines are the key factors affecting the 

efficient and clean combustion of the engine. Compared with diesel fuel, the density, 

viscosity and surface tension of biodiesel are larger, which will directly affect the spray 

characteristics of biodiesel in engines. Among them, the viscosity affects the fuel flow at 

different temperatures and the spray parameters when the fuel is injected into the 

combustion chamber, which may eventually lead to deposits in the engine, especially at 

higher viscosities. Many studies in the literature have shown that the viscosity of 

biodiesel tends to decrease non-linearly with increasing temperature, but remains higher 

than that of diesel [26]. Density is also an important physical parameter of biodiesel and 

has a more significant effect on the macroscopic spray characteristics of the fuel. During 

the spraying process, denser fuels have higher momentum and tend to produce larger 

spray penetration and collision with the piston, so the density of biodiesel needs to be 

controlled in practical use. For example, the density of biodiesel at room temperature is 

limited to the range of 860~900 kg/m
3
 in Europe. Knothe et al. [27] studied the density 

variation trend of biodiesel in the range of 15~40°C and derived the correlation equation. 

In addition, the surface tension of the liquid affects the droplet formation and 

fragmentation during the spraying process, which in turn affects the atomization 

characteristics of the fuel. The surface tension of biodiesel is higher than that of diesel, 

which is not conducive to the breaking into fine droplets during the spraying process and 

affects the atomization characteristics of biodiesel. Lee et al. [28] investigated the spray 

penetration, soot mean diameter (SMD) and mean velocity distribution of biodiesel 

blends. The results showed that the biodiesel blends had similar spray development 

trends as diesel, but were larger due to the higher viscosity and surface tension of 

biodiesel. Han et al. [29] studied the spray characteristics of three components of 

biodiesel, methyl laurate, methyl oleate and ethyl oleate, and the results showed that 

methyl oleate and ethyl oleate produced larger spray penetration distances due to their 

higher viscosity and surface tension (as shown in Figure 6). Cao et al. [30] investigated 

the spray characteristics of biodiesel blends with non-edible oils, and the results showed 

that the spray penetration and spray velocity increased and the spray cone angle 

decreased as the percentage of biodiesel in the blends increased. The macroscopic spray 

characteristics of biodiesel-diesel blends with different blending ratios were investigated 

by Xie et al. [31]. The results indicated that the spray cone angle increased and the spray 

penetration and peak tip velocity decreased with increasing ambient pressure. It was also 

found that the higher viscosity and surface tension of biodiesel inhibited the 

fragmentation of the liquid jet.   
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(a) 

 
(b) 

Fig. 6. Comparison of different biodiesel macro spray parameters with diesel [27] 

 

 

Blending and Combustion of Biodiesel with Other Fuels  
 

 Biodiesel has the characteristics of higher viscosity and lower calorific value [32]. 

This makes the fuel consumption of engines burning biodiesel higher than that of diesel. 

And the thermal efficiency is reduced. Therefore, many researchers have used biodiesel 

blended with other fuels to improve the fuel properties of biodiesel [33].  

 Qiu et al. [34] blended biodiesel with different proportions of ammonia for 

combustion simulation. Their simulation results show that biodiesel blended with a 

certain amount of ammonia can promote combustion, which can improve engine 

performance and reduce harmful emissions. However, the engine power is slightly 

reduced with the addition of ammonia. Zuo et al. [35] conducted experiments on 

biodiesel-diesel blends. They found that the ignition point of biodiesel-diesel blends was 

earlier than diesel at full load. Due to the advanced ignition point, the maximum cylinder 

pressure and peak exothermic rate of biodiesel-diesel blends are lower than that of diesel 
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during the main combustion phase. Geng et al. [36] experimented the addition of 5%, 

10% and 20% ethanol to biodiesel-diesel blends. The results show that the maximum in-

cylinder pressure and the maximum instantaneous heat release rate of the blended fuel are 

higher than those of diesel fuel at small loads. With the increase of ethanol blending ratio, 

the NOx and HC emissions of biodiesel-diesel-ethanol blends increased slightly. But they 

were lower than the emission level of diesel. 

 
 
CONCLUSIONS 
 

 In summary, several conclusions can be drawn as follow:  

1) The combustion, emission, and spray of biodiesel are not exactly the same as diesel, so 

it is not suitable to be used directly on diesel engines. 

2) Biodiesel can be blended with diesel, ethanol, ammonia and other fuels to improve its 

power performance and reduce harmful emissions. 

3) The current studies on biodiesel are mostly based on the external conditions of 

combustion and the blending combustion between different fuels. There is a relative lack 

of studies to describe the combustion process from the chemical reaction kinetics 

perspective. The study of the combustion process of fuels from the chemical reaction 

kinetics point of view allows to obtain the fundamental reactions that play an important 

role in in-cylinder combustion. Therefore, the study of the combustion process from the 

chemical reaction kinetics point of view is a new direction. 
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With the rapid development of China's economy and society, the 
domestic demand for automobiles is growing explosively. At the same 
time, the dependence of China's crude oil on foreign countries exceeds 
65%. This is a great hidden danger to the sustainable development of 
China's economy and energy security. Automobile consumes a large 
amount of petroleum resources, and automobile exhaust is one of the 
main factors causing environmental pollution. In view of the dual 
pressure of energy saving and emission reduction, methanol has been 
favored by many researchers for its many advantages (such as 
cleanliness, environmental protection, renewable and high accessibility). 
In this paper, the resource extensibility of methanol, the physicochemical 
properties of methanol, the application characteristics of methanol in 
internal combustion engine and the comparison of the combustion 
performance of methanol with traditional fuels are summarized and 
analyzed.  
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Introduction  
  

 With the rapid development of China's economy, automobiles and engineering 

and transportation vehicles become explosive growth, which will bring energy crisis and 

environmental pollution and other problems [1-2]. According to the analysis of data 

released by “World Energy Statistical Yearbook 2022”, China's oil production will be 

equal to China's oil consumption in 2022. From Figure 1, it can be seen that China's oil 

production has not changed much, but its oil consumption has been rising [3]. Along with 

the growth of chemical energy consumption, the problem of environmental pollution has 

become more and more serious, according to the data from the Annual Report on 

Environmental Management of Mobile Sources in China in 2021, in 2020, the national 

emissions of carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), and 

particulate matter (PM) from automobiles are 6.938 million tons, 1.724 million tons, 

6.137 million tons, and 6.4 million tons, respectively. It can be seen from Fig. 1 that 

diesel vehicles emit more than 80% of the total vehicle emissions of nitrogen oxides 

(NOx) and more than 90% of the particulate matter (PM), while gasoline vehicles emit 

more than 80% of the total vehicle emissions of carbon monoxide (CO) and more than 

70% of the hydrocarbons (HC) [4].  
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Fig. 1. China's oil production versus consumption [3] 
 

 
Fig. 2. Pollutant emission share of vehicles by fuel types [3] 

 

In order to solve the problems of fossil energy shortage and environmental 

pollution, the search for clean and renewable energy has become an urgent need. 

Methanol, as one of many alternative fuels, has attracted a lot of attention in recent years 

by virtue of its wide source and versatility. Methanol has distinctive characteristics 

compared to traditional fossil fuels [5-6]. For example, it has high octane number and 

good anti-detonation property, which can increase the engine compression ratio to 

improve engine performance and reduce fuel consumption. It has high latent heat of 

vaporization and lower combustion temperature in the engine, which helps to reduce heat 

loss and NOx emission [7-8]. However, the low cetane number of methanol makes it 

difficult for direct compression ignition in compression-ignition engines, and other 

auxiliary means are needed to help its ignition and combustion [9]. The high lower 

ignition concentration limit, low vapor pressure, and high latent heat of vaporization of 

methanol all make cold starting of methanol-fueled engines difficult and prone to 

formaldehyde and unburned methanol emissions. Although there are still many problems 

to be solved in burning methanol in internal combustion engines, methanol is still 

considered as one of the most promising alternative fuels [10-12]. 

 

 
Sources and Physicochemical Properties of Methanol 
 

Sources of Methanol 
Methanol feedstock comes from a wide range of sources and mature production 

processes, which is mainly through coal chemical and natural gas synthesis. The main 
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sources include coal, natural gas, coal bed methane, and biomass [13]. Most of the coal 

used for methanol production in China is poor quality coal with high sulfur content, 

which has low production cost. Meanwhile, it can be desulfurized during the production 

process, which is conducive to environmental protection, and can also yield by-products 

such as sulfur and urea [14]. 

 

Physical and Chemical Properties of Methanol 
Table 1 shows a comparison of some physical parameters of methanol with 

gasoline and diesel. It can be found that the latent heat of vaporization of methanol is four 

times higher than that of gasoline and diesel, and the evaporation process will absorb 

more heat and lower the average temperature in the cylinder. Methanol has a high auto-

ignition temperature, so it is difficult to directly compress and ignite, and auxiliary means 

are needed to help methanol ignite. Methanol has a small molecular weight, a simple 

chemical structure, a low carbon to hydrogen ratio, and contains its own oxygen, so it is 

easier to burn completely, which helps to reduce CO and HC emissions. It is theoretically 

possible to burn methanol in diesel engines without generating carbon smoke [15-18].  

 
Table 1. Comparison of the main property parameters of methanol with gasoline and diesel 

Nature/Unit Methanol Petrol Diesel 

Chemical formula CH3OH C16~C23 C16~C23 

Freezing point (°C) -96 -57 -1~-4 

Boiling point (°C) 64.7 27~225 180~370 

Flash point (°C) 12 45 75 

Natural temperature (°C) 500 350~468 270~350 

Latent heat of vaporization 

(kg/kJ) 
1167 310 270 

Low calorific value (kJ/kg) 19930 43030 42500 

Octane number (MON) 94.6 81~84 - 

Cetane number 3 0~10 45~55 

Theoretical mass to air-fuel 

ratio 
6.5 14.8 14.6 

 

From Table 1, it is known that methanol as an alternative fuel for internal 

combustion engines has the following main characteristics. 

(1) Compared with gasoline and diesel, methanol has a lower freezing point and 

can be used in lower climates. 

(2) The high latent heat of vaporization of methanol, the lower vapor pressure and 

boiling point will make the cold start of the engine difficult. On the other hand, it will 

also lower the intake temperature and increase the charge factor of the engine [19]. 

(3) The oxygen content and ignition limit of methanol are higher, and the dilute 

combustion characteristics are better, so that the engine has a larger working condition 

coverage. Especially in gasoline engines, it will reduce the chance of misfire due to 

imprecise control of air-fuel ratio causing too lean combustible mixture. The laminar 

flame speed of methanol is faster, and the combustion rate in engines is higher than that 

of gasoline, which can improve the isotonicity of in-cylinder combustion [20]. 

(4) Methanol has a higher octane number and can be used as an additive and 

alternative fuel to increase the octane number of gasoline. The cetane number of 

methanol is much less than that of diesel, while the natural temperature is higher than that 

of diesel, making its compression ignition difficult. Therefore, to use methanol in 
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compression ignition engines, the spontaneous ignition performance of methanol needs to 

be improved or ignited by spark plugs, electric plugs, and by spraying in diesel fuel [21]. 

(5) Methanol is an oxygenated fuel with an oxygen content of up to 50%, and the 

self-oxygenation effect of the fuel facilitates fuller fuel combustion, high combustion 

efficiency, and no carbon soot generation, as well as reduced HC and CO emissions [22]. 

 

 
Combustion Characteristics of Methanol Internal Combustion Engines 
 

Application of Methanol in Ignition Internal Combustion Engines 
The application of methanol in ignition internal combustion engines can be 

divided into methanol-gasoline blended combustion, pure methanol combustion, and 

indirect utilization of methanol. By indirect utilization, it means that methanol is not 

directly allowed to be burned as a fuel in the engine, but the combustible gases (such as 

H2 and CO), which are generated through the reforming cracking reaction of methanol, 

are fed into the cylinder for combustion [23]. 

 

Methanol Gasoline Blending and Combustion 

Ling et al. [24] from Zhejiang University investigated the emission characteristics 

of methanol gasoline in an MR479q engine. Bench tests showed that adding methanol to 

gasoline reduced conventional emissions (such as NOx, CO, and unburned HC), but 

unconventional emissions (such as formaldehyde and unburned methanol) increased 

significantly. When the proportion of methanol in the fuel was 70%, NOx was reduced by 

29%~54%, CO by 66%~71% and unburned HC by 71%~80% compared with gasoline 

engines. In terms of emission generation mechanism, the 3D simulation results show that 

HC, aromatic hydrocarbons and unburned methanol are mainly generated by factors such 

as in-cylinder gap effect and carbon accumulation, while CO and formaldehyde are 

mainly generated by complex chemical reaction processes. With the increase of 

compression ratio, CO emission decreases and NOx emission increases. 

Wang et al. [25] from the State Key Laboratory of Internal Combustion Engine, 

Tianjin University, investigated the emission characteristics of methanol engine based on 

an electronically controlled M85 methanol engine. The conventional and non-

conventional emissions were investigated by exhaust gas analyzer and gas 

chromatograph, respectively. The test results showed that M85 methanol fuel can 

significantly reduce the conventional emissions, while the non-conventional emissions 

contain almost no methanol but high formaldehyde content, which is due to the fact that 

the three-way catalytic converter does not easily convert formaldehyde and the higher the 

load, the lower the purification efficiency, while the purification efficiency for methanol 

is almost 100%. 

Wu et al. [26]
 
conducted a bench test study on the engine performance of M10, 

M15, M50 methanol gasoline and 93# gasoline and found that compared to 93# gasoline, 

the power change of burning M10, M15 and M50 increased by -2%~6.25%, -2%~9.38% 

and 2%~12.5%, respectively, which shows that in terms of power performance, methanol 

gasoline fuel has little change compared to 93 # gasoline. As the methanol ratio increases, 

the power improvement changes, but in terms of overall operating conditions, the power 

improvement is not significant. Compared to 93# gasoline fuel consumption rate, M10, 

M15, and M50 converted to equivalent fuel consumption rate increased by 1.52%, 

0.37%, and 15%, respectively. This shows that the change in fuel economy of methanol 
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gasoline is not very obvious. The changes in HC emissions for all four fuels decreased 

with increasing speed. Among the three types of methanol gasoline, HC emissions 

decreased gradually with the increase of methanol proportion, and the highest decrease 

was 80%. CO emissions were significantly reduced compared with 93# gasoline, and CO 

emissions also decreased gradually with the increase of methanol content, and the highest 

decrease was 77.78%. With the increase of methanol blending ratio, the NOX emission 

becomes lower and lower, with the highest reduction of 69.23%. 

From the above studies, it can be concluded that methanol and gasoline have 

similar physicochemical properties, and methanol gasoline with low methanol ratio can 

be used directly in gasoline engines, while methanol gasoline with high ratio can also be 

used in ignition engines with simple adjustments. The improvement in economy and 

power over conventional fuels is small, but the emission characteristics are greatly 

improved, while the inherent characteristics of methanol fuels can cause cold start 

difficulties and unconventional pollutant emissions. 

 

Pure Methanol Combustion 

Zhu et al.
 
[27] used a model of turbocharged inline 4-cylinder gasoline engine as a 

prototype to study the effect of methanol combustion on engine performance and 

emissions. Compared to gasoline combustion, the engine showed a significant 

improvement in power after switching to methanol, with a maximum increase of 5.22%. 

From the test results, the equivalent fuel consumption rate can be reduced by 10.53~ 

18.52 % when switching to methanol burning, compared to the original engine burning 

gasoline at low to medium speed. At low and medium loads, CO emissions do not change 

much. But when at high loads, burning methanol can significantly reduce CO emission. 

CO is reduced by 29.6% at the highest load when compared to the original engine when 

burning methanol. At the average effective pressure of 0.4 MPa, 0.8 MPa and maximum 

load, HC emissions were 90.5%, 84.2% and 37.4% lower with methanol than with 

gasoline, respectively. Since the latent heat of vaporization of methanol is much higher 

than that of gasoline, this greatly reduces the mixture temperature and thus the maximum 

combustion temperature. Also, because methanol burns faster than gasoline, the high 

temperature reaction time is shortened, and the combined effect of these two conditions 

results in lower NOX emissions. The test results showed that the NOX in the exhaust gas 

was reduced by 95.6%, 16.4% and 14.8% when methanol was burned compared with 

gasoline at the average effective pressure of 0.2 MPa, 1.2 MPa and maximum load, 

respectively. 

Wang et al. [28]
 
from Jiangsu University conducted an experimental study on a 

four-cylinder EFI gasoline engine with a displacement of 2.0 L using pure methanol as 

fuel. The results showed that the maximum torque of the methanol engine was lower than 

that of the gasoline engine when the speed was below 2500 r/min, and higher than that of 

the original engine when the speed exceeded 2500 r/min. The equivalent fuel 

consumption was reduced by up to about 10% compared with the original engine. If the 

compression ratio increased from 10 to 11.5, the maximum torque of the engine increased 

by 3.4%~6.3%, and the equivalent fuel consumption of the methanol engine decreased by 

2%~5%. For the problem of cold starting of the methanol engine, three additives, 

gasoline, isopentane and petroleum ether were added to the methanol fuel. When the 

ambient temperature was -20℃, the engine could be started smoothly within 4 s with 

these three additives.  
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From the above research analysis, it is concluded that burning pure methanol fuel 

is easier to achieve with less modification to the traditional internal combustion engine, 

and it can significantly improve the power of the engine in terms of combustion 

characteristics, improve the fuel economy of the engine under low load, and significantly 

improve the emission characteristics of the engine under high load. 

 

Indirect Utilization of Methanol 
Yao et al. [29] evaluated the impact of methanol cracked gas application 

technology on an ignition engine by studying the application of methanol cracked gas in a 

477F engine. When methanol cracked gas was burned, the engine dynamics decreased, 

although it still remained above 95% of its original engine. The power performance of the 

methanol cracker engine with a palladium-based catalyst was better than that of the 

methanol cracker gas engine with a copper-based catalyst. Compared with the gasoline 

fuel consumption rate, the methanol-equivalent fuel consumption rate produced with the 

copper-based catalyst decreased by 22% to 26%. The methanol cracking gas-equivalent 

fuel consumption rate produced with the palladium-based catalyst decreased by 24% to 

31%. Overall, the economic advantage of burning methanol cracked gas over gasoline is 

greater.  

The HC emissions from the combustion of methanol cracked gas produced with 

copper-based and palladium-based catalysts, respectively, were relatively similar and 

consistent for the engine application, but the emissions were about 90% lower compared 

to gasoline combustion. The CO emissions from the combustion of methanol cracked gas 

with copper-based and palladium-based catalysts, respectively, are very similar, but the 

CO emissions from methanol cracked gas engines are reduced by about 90% compared to 

gasoline. Similarly, the NOX emission patterns from methanol cracked gas combustion 

with the two different catalyst types are very similar and the NOX emissions are relatively 

similar, but with significant reductions of up to 80% compared to virgin gasoline. From 

this study, it is concluded that methanol cracked gas as an engine fuel can effectively 

improve engine fuel economy and reduce HC, CO and NOX emissions. 

 
Application of Methanol in Compression-Ignition Internal Combustion Engines 

The application of methanol in compression-ignition engines is more difficult 

than in ignition engines because of the large difference between the properties of 

methanol and diesel fuel. However, the diesel engine has the advantages of high thermal 

efficiency and high power compared to the ignition engine, so the research on methanol 

as its alternative fuel is also more valuable. Since it is difficult to achieve direct 

compression ignition of methanol, the application of methanol in compression-ignition 

internal combustion engines is concentrated on diesel ignition, diesel-methanol blended 

combustion and electric heating plug combustion methods. 

 

Diesel Ignition 
Fang et al. [30] from Jilin University conducted an experimental study on the 

performance and emissions of direct injection compression-ignition engines with dual 

injection system when burning diesel methanol, and found that the methanol engine 

showed a maximum decrease in smoke of up to 66% and a decrease in NOx emissions of 

about 60%-70% compared to the original diesel engine, but CO and HC emissions 

increased more. 
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Shi et al.
 
[31] conducted methanol injection tests in diesel engines in the intake 

tract. At low load conditions, injection of methanol reduced the dynamics by a maximum 

of 5%, which was due to the decrease in cylinder temperature caused by its high latent 

heat of vaporization. As the load increases, the engine dynamics increases when methanol 

is injected into the intake tract, and the maximum increase is 2.9%. However, as the 

amount of methanol injected increases, i.e., as the percentage of total fuel increases, the 

power tends to increase and then decrease. 

Zhang et al.
 
[32] converted a supercharged intercooled engine into a diesel pilot-

fired methanol dual-fuel engine by adding a methanol supply system for a bench test 

study. With the increase of methanol blending ratio, the HC emission of the dual-fuel 

engine also increased significantly, with a maximum increase of 2000%. At a certain 

blending ratio, HC emissions decreased as the load increased. The CO emissions of the 

dual-fuel engine increased significantly. The CO emissions of the dual-fuel engine 

increased continuously with the increase of methanol blending ratio. At the same 

blending ratio, the CO emission of dual-fuel engine tends to decrease with the increase of 

load. With the increase of methanol blending ratio, the NOX emission of dual-fuel engine 

combustion decreases. For a certain blending ratio, the higher the load ratio, the more 

NOX emissions. With the increasing of methanol blending ratio, the dual-fuel carbon soot 

emission decreases. 

From the above study, the analysis concluded that the diesel priming method can 

reduce the smoke but the concentration of some pollutant emissions is high, and the 

existing diesel engine on the transformation is difficult and costly, it is difficult to 

implement the promotion. 

 

Diesel-Methanol Blending and Combustion 
Rao et al.

 
[33] burned microemulsified methanol diesel in a D1110 diesel engine 

and found no significant difference in power and fuel consumption rate for burning pure 

diesel without making parameter adjustments to the engine, and NOx, CO and carbon 

soot emissions were significantly reduced. 

Soni et al. [34-35] investigated the effects of methanol blending ratio, swirl ratio, 

exhaust gas recirculation method and water blending method on emissions by numerical 

simulations and found that when the percentage of methanol in diesel fuel was increased 

from 10% to 30%. NO, CO and HC emissions were significantly reduced by 65%, 68% 

and 56%, respectively, and also indicating that blending the right amount of water in the 

fuel was beneficial to reduce NO, carbon soot, CO and HC emissions. 

Duan et al.
 
[36]

 
showed that burning M15 increased the output power by 

1.82%~7.14% compared to burning 0# diesel, but burning M30 decreased the power by 

burning M15 and M30, respectively. Compared to burning 0# diesel, burning M15 

resulted in a 3.85% to 9.36% reduction in equivalent fuel consumption rate, and burning 

M30 resulted in a 5.14% to 15.26% reduction in equivalent fuel consumption rate. This 

shows that burning methanol blended fuel can significantly improve the economy. 

Compared with burning 0# diesel, when burning M15 and M30, CO emissions are 

reduced by 44.74~50 % and 50~68.97 %, HC emissions are reduced by 40.48~48.89 % 

and 48.89~70.59 %, respectively; NOX emissions are reduced by 10.71%~33.33% and 

25~35.71 %, respectively; and particulate matter emissions with smokiness were reduced 

by 57.14% and 64.29%, respectively. 

From the above research analysis, it is concluded that methanol and diesel 

blending forms are methanol diesel and emulsified diesel, and both blended fuels are 
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made of diesel, methanol, and additives in a certain ratio through a strict process of 

blending. Compression-ignition internal combustion engines using diesel-methanol 

blending combustion method can significantly improve the engine economy and can 

significantly improve the emission characteristics of internal combustion engines, but if 

we want to obtain the best power, there is an optimal methanol blending ratio. 

 

Electric Heating Plug to Help Ignite 
Electric thermal plugs can effectively improve the cold startability of the engine. 

Li et al.
 
[37] investigated the reasons for successful diesel fuel ignition when the electric 

thermal plugs assisted combustion through an experimental study of a single-cylinder 

diesel engine with a compression ratio of 15.5 and a static combustion bomb, and 

concluded that the electric thermal plugs ignite the diesel fuel by increasing the local 

temperature to above 413°C. 

Yang et al.
 
[38] investigated the combustion characteristics of pure methanol 

combustion by direct injection compression ignition on a two-cylinder diesel engine. 

According to the characteristics of high latent heat of vaporization and high auto-ignition 

temperature of methanol fuel, measures such as increasing compression ratio and intake 

heating were adopted to successfully obtain stable operation of pure methanol in direct 

injection compression-ignition mode, and it can effectively reduce NOx emission of 

diesel engine with fuel economy comparable to that of the original engine. 

Wang et al.
 
[39] studied a diesel engine burning pure methanol fuel by adding 

electric heating plugs, increasing the compression ratio and injection pump diameter to a 

1115 single-cylinder diesel engine. They found that the power and economy of the 

methanol engine were better than the original diesel engine after the test. The NOx 

emissions were reduced by 45% on average, and the HC and CO emissions were reduced 

by 70% on average at high loads, but higher than the original engine at low and medium 

loads.  

From the above research and analysis, it is concluded that the electric heating plug 

combustion method can effectively improve the cold starting performance of internal 

combustion engines and effectively reduce the emission of NOx, HC, CO and other 

pollutants at high load. But at low and medium loads, its emission performance is worse 

than that of the original engine.  

 
 
Summary and Outlook 
 

 This paper reviews many technical means of methanol fuel combustion for 

internal combustion engines, analyzes its performance and emission characteristics, 

points out the difficulties and development prospects in the application process, and 

provides ideas and methods for the research field of methanol as an alternative fuel for 

internal combustion engines, taking into account the current situation of domestic and 

foreign research. The results show that the power, fuel economy and emission 

characteristics of internal combustion engines can be improved after using methanol. 

For ignition internal combustion engines, the power of methanol can be 

maintained at more than 95% of the original engine, and the engine power can be 

improved under certain operating conditions. In terms of economy, when methanol 

blending technology is used, the improvement of economy is more obvious as the 

proportion of methanol increases, and the economy decreases when the proportion is 
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smaller; when methanol cracking technology is used, the equivalent fuel consumption 

rate is reduced the most and the economy is the best. Especially from the emission 

performance, the emission of CO, HC and CO2 can be significantly reduced. 

  For compression-ignition internal combustion engines, the use of methanol has a 

negative impact on diesel engine dynamics at low load conditions, while the combustion 

of methanol can improve dynamics as the load increases. From the economics point of 

view, all the technologies can improve the economy in general, except for the use of 

electric plug combustion, which can lead to higher equivalent fuel consumption rate 

under certain conditions. In terms of emission characteristics, both Soot and NOx 

emissions are significantly improved by burning methanol. The use of electric plug 

combustion and diesel ignition method will make HC and CO emissions worse, but will 

improve NOx and carbon soot emissions, and the electric plug combustion method will 

improve NOx and carbon soot more significantly, while the use of emulsification method 

can reduce HC, CO, carbon soot and NOx emissions. Therefore, overall, the use of 

emulsification of methanol is the best technology for the application. 

In summary, there are some problems in the current stage of methanol combustion 

in internal combustion engines, including poor cold start, high emission of non-

conventional pollutants such as formaldehyde and methanol under low load, and poor 

fuel economy and power under some working conditions. In view of the various 

problems faced by the current methanol-fired technology for internal combustion 

engines, it is very beneficial to carry out the following researches to further improve the 

existing methanol-fired technology for internal combustion engines and promote the 

practical application of methanol in internal combustion engines: 

(1) Mechanisms of emission generation and control methods. In addition to 

conventional pollutants, the study of non-conventional pollutant emissions such as 

formaldehyde and unburned methanol is also very important. To solve the emission 

problem of internal combustion engine when burning methanol, especially to make the 

high pollutant emission problem during cold start or low load operation. 

(2) Research on the reaction mechanism of methanol, including research on the 

combustion mechanism of methanol mixed with other fuels and pure methanol 

combustion. To clarify the characteristics of methanol combustion to help solve the 

problems of difficult cold start and unstable ignition when internal combustion engines 

are burning methanol. 

 (3) The research of methanol additives, by adding additives to change the 

combustion characteristics and physical properties of methanol, reduce the difficulty of 

burning methanol in internal combustion engines, and improve the applicability of 

methanol alternative fuels.  
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Until now, the neural network identification methodology for the branch 
number identification (NNIM-BNI) has identified the number of branches 
for a given overhead low-voltage broadband over powerlines (OV LV 
BPL) topology channel attenuation behavior [1]. In this extension paper, 
NNIM-BNI is extended so that the lengths of the distribution lines and 
branch lines for a given OV LV BPL topology channel attenuation 
behavior can be approximated; say, the tomography of the OV LV BPL 
topology. NNIM exploits the Deterministic Hybrid Model (DHM) and the 
OV LV BPL topology database of Topology Identification Methodology 
(TIM). By following the same methodology of the original paper, the 
results of the neural network identification methodology for the 
distribution line and branch line length approximation (NNIM-LLA) are 
compared against the ones of the newly proposed TIM-based 
methodology, denoted as TIM-LLA. 
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1. Introduction 
 

The evolution of the today’s traditional power grid to a modern power grid that is 

upgraded with an intelligent IP-based communications network may support a myriad of 

broadband applications [1-5]. Among the communications solutions that may allow this 

smart grid transformation, Broadband over Power Lines (BPL) technology exploits the 

available wired power grid infrastructure while permitting the coexistence with other 

communications solutions through their BPL wireline/wireless interfaces [5-8]. However, 

the wired power grid infrastructure remains a hostile propagation and transmission 
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medium for BPL signals that suffer in these communications channels from high and 

frequency-selective channel attenuation and noise [9-15]. 

Until now, a plethora of channel models has been proposed or properly adjusted 

from other communications technologies in the literature for characterizing  

BPL channels; say, deterministic, statistical, bottom-up, top-down BPL channel models 

or appropriate syntheses of the aforementioned ones [9], [11], [16-28]. Similarly to [1], 

the deterministic hybrid model (DHM) is here applied in the overhead low voltage  

(OV LV) BPL networks for modeling BPL signal propagation and transmission across 

them and thus providing critical broadband performance metrics, which further act as the 

big data feed for the broadband applications. In this extension paper,  

Topology Identification Methodology (TIM), which has been proposed in [29, 30] and is 

one of the broadband applications supported by BPL technology in the smart grid, stores 

in its TIM BPL topology database, analyzes and reports with the DHM the channel 

attenuation measurements of various BPL topologies. In [29, 30], TIM approximates the 

exact topological characteristics (i.e., number of branches, length of branches, length of 

main lines and branch terminations) of an examined BPL topology by comparing its 

channel attenuation measurements with the theoretical channel attenuation results stored 

in the TIM BPL topology database. In [1], TIM has been extended to TIM-based Branch 

Number Identification methodology (TIM-BNI) so that the number of branches of an OV 

LV BPL topology whose theoretical channel attenuation results are known can be 

approximated when this examined OV LV BPL topology is not among the OV LV BPL 

topologies of the TIM BPL topology database. In this extension paper, TIM and TIM-

BNI are further extended to the new TIM-based methodology for approximating the 

distribution line and branch line lengths (TIM-LLA) of an examined OV LV BPL 

topology when the examined topology is not among the OV LV BPL ones of the TIM 

BPL topology database. 

 In [1], the set of the supported broadband applications by the smart grid has been 

enriched by experimenting with artificial intelligence (AI) and machine learning (ML) 

capabilities. By exploiting the available big data of the TIM BPL topology database for 

the OV LV BPL topologies and the neural network architectures / training, the neural 

network identification methodology for the branch number identification (NNIM-BNI) of 

OV LV BPL topologies has been proposed in [1]. Alternatively to TIM-LLA, NNIM-BNI 

is upgraded in this extension paper so as to approximate the distribution line and branch 

line lengths (NNIM-LLA) of an examined OV LV BPL topology when this topology is 

not included in the TIM BPL topology database. By following the same methodology of 

[1] and exploiting its findings and conclusions for better approximation performances of 

the family products of TIM and NNIM, new default operation settings are applied in this 

extension paper. Finally, the performance results of NNIM-LLA are going to be 

compared against the ones of TIM-LLA for different operation scenarios and OV LV 

BPL topologies. 

The rest of this paper is organized as follows: Section 2 briefly presents DHM, 

TIM-BNI and NNIM-BNI. Certain aspects that have been highlighted in the original 

paper and concern the operation of TIM-BNI and NNIM-BNI are demonstrated in this 

Section. Section 3 focuses on the proposal of TIM-LLA and NNIM-LLA as well as the 

corresponding performance metrics. Section 4 introduces the new default operation 

settings while the performance metric results for TIM-LLA and NNIM-LLA are 

presented for the indicative OV LV BPL topologies of the original paper. Section 5 

concludes this extension paper. 
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2. DHM, TIM-BNI and NNIM-BNI 
 

 In this Section, a brief synopsis of the basic elements that have been presented in 

[1] and are going to influence the operation and performance of TIM-LLA and  

NNIM-LLA is given. More specifically, DHM is presented by focusing on its output of 

channel attenuation that is appropriately included into TIM OV LV BPL topology 

database. Then, TIM-BNI and NNIM-BNI, which have been proposed in [1], are briefly 

discussed as well as the corresponding useful conclusions of [1] that are going to be used 

in this extension paper and may further affect the operation and performance of  

TIM-LLA and NNIM-LLA. 

 

2.1 DHM and TIM OV LV BPL Topology Database 
 In accordance with [1], DHM is a synthetic BPL channel model where a  

bottom-up, a top-down, a coupling scheme and other performance metric computation 

modules may be concatenated [9-12], [16], [31], [32]. With reference to eq. (2) of [1], the 

coupling scheme channel transfer function, which is the system output of the first three 

DHM modules, relates the output BPL signals with the input ones through: 

𝐻OVLV,𝐶{∙} = [𝐂out]OVLV,𝐶 ∙ 𝐇OVLV{∙} ∙ [𝐂in]OVLV,𝐶               (1) 

where  C  denotes the applied coupling scheme, 𝐂in  and 𝐂out  are the input and output 

coupling matrices and 𝐇OVLV{∙}  is the channel transfer function matrix. From eq. (1),  

it is clear that the channel attenuation is a frequency dependent DHM output that depends 

on the applied coupling scheme, the OV LV multiconductor transmission line (MTL) 

configuration and the examined OV LV BPL topology [33, 34]. Therefore,  

a correspondence between the topological characteristics of an OV LV BPL topology and 

its channel attenuation is established from eq. (1) when the applied coupling scheme and 

the OV LV MTL configuration are given. When a great number of OV LV BPL 

topologies are assumed, respective topological characteristics and channel attenuation 

data can be available from eq. (1) thus acting as the big data feed of the TIM OV LV BPL 

topology database.  

 TIM OV LV BPL topology database, which acts as the big data pool for both 

TIM- and NNIM-based methodologies of the original paper and this extension one,  

is in fact the core part of TIM [29]. In this extension paper and with reference to  

Figure 1b of [1], the following data are maintained for each OV LV BPL topology of the 

TIM OV LV BPL topology database of this extension paper, namely:  

(i) its ID number p in the TIM OV LV BPL topology database when P is the number of 

all OV LV BPL topologies in the TIM OV LV BPL topology database;  

(ii) the actual number of branches N; (iii) the actual lengths of the distribution lines  

𝐋 = [𝐿1 𝐿2 ⋯ 𝐿𝑁+1]; (iv) the actual lengths of the branch lines 𝐋𝐛 = [𝐿b1 𝐿b2 ⋯ 𝐿b𝑁]; 

and (v) the coupling scheme channel transfer function values with respect to the 

frequency. According to [1], [29], the size of the TIM OV LV BPL topology database 

depends on the TIM OV LV BPL topology database specifications, which are part of the 

default operation settings of this extension paper, havinh to do with the topological 

characteristics of the OV LV BPL topologies stored in the database such as the maximum 

number of branches Nmax, the length spacing Ls for both branch distance and branch 

length, the maximum branch length Lb,max and the operation frequency range.  

Here, it should be reminded that TIM is a BPL broadband application that aims at 

identifying an OV LV BPL topology with respect to its topological characteristics when 



 

Peer-Reviewed Article   Trends in Renewable Energy, 9 

 

Tr Ren Energy, 2023, Vol.9, No.1, 34-77. doi: 10.17737/tre.2023.9.1.00149  37 

 

its theoretical or actual coupling scheme transfer function behavior is known even if 

measurement differences may occur [29], [35], [36]. 

 

2.2 TIM-BNI and NNIM-BNI 
 TIM-BNI has been proposed and assessed in [1]. TIM-BNI has aimed at 

approximating the branch number of an examined OV LV BPL topology by comparing 

its coupling scheme channel transfer function values of eq. (1) against the respective ones 

of all the OV LV BPL topologies of the TIM OV LV BPL topology database. Note that 

the indicative OV LV BPL topologies, which have been reported in Table 1 of [1], have 

not been included in the TIM OV LV BPL topology database except for the OV LV BPL 

Line-of-Sight (LOS) topology case. In order to approximate the branch number, TIM-

BNI has identified the R OV LV BPL topologies of the TIM OV LV BPL topology 

database that have better approximated the channel attenuation behavior of the examined 

indicative OV LV BPL topology. To identify the R closest approximations, TIM-BNI has 

applied the performance metric of the root-mean-square deviation (RMSD) of the 

amplitude of the coupling scheme channel transfer function in dB, as shown in eqs (3) 

and (4) of [1]. The average value of the branch numbers of the R OV LV BPL topologies 

of the TIM OV LV BPL topology database that have presented the R lowest RMSDs 

among the P computed ones has defined the TIM-BNI approximation of the branch 

number of the examined indicative OV LV BPL topology 𝑁TIM−BNI [1]. Factors that affect 

the accuracy performance of the TIM-BNI approximations are the required accuracy 

degree of the TIM OV LV BPL topology database, the number R of the OV LV BPL 

topologies of the TIM OV LV BPL topology database with the lowest RMSDs and the 

representativeness of the TIM OV LV BPL topology database.  

 Similarly to TIM-BNI, NNIM-BNI has been proposed and assessed in [1] while 

its operation philosophy lies in the areas of AI, ML and neural networks [37-40].  

The operation of NNIM-BNI has been based on: (i) the TIM OV LV BPL topology 

database; and (ii) the MATLAB neural network program of [38], [41] that implements 

the fully connected neural network architecture of Figure 2 of [1] through the training, 

validation and testing phases. Since NNIM-BNI may train neural networks of variable 

numbers of hidden layers, NNIM-BNI has exploited the performance metric of RMSD of 

the amplitude of the coupling scheme channel transfer function in dB, as shown in eq (5) 

of [1]. In fact, NNIM-BNI has approximated the branch numbers 𝑁NNIM−BNI  of the 

examined indicative OV LV BPL topology per hl hidden layer but also reports RMSD of 

each approximation. In a similar way, factors that affect the accuracy performance of the 

NNIM-BNI approximations are the required accuracy degree of the TIM OV LV BPL 

topology database, the number HL of the hidden layers assumed, the participation 

percentage of the three phases and the representativeness of the TIM OV LV BPL 

topology database. 

 

 

3. TIM-LLA and NNIM-LLA 
 

 In this Section, TIM-LLA and NNIM-LLA are proposed. Prior to this proposal, 

additional specifications that affect the definition of the TIM OV LV BPL topology 

database for its operation with TIM-LLA and NNIM-LLA are required to be given.  

After the proposal, similarly to [1], suitable performance metrics, which allow the 

approximation assessment of the distribution line and branch line lengths of the examined 



 

Peer-Reviewed Article   Trends in Renewable Energy, 9 

 

Tr Ren Energy, 2023, Vol.9, No.1, 34-77. doi: 10.17737/tre.2023.9.1.00149  38 

 

indicative OV LV BPL topologies in each methodology are reported. Note that the 

number of branches of the examined indicative OV LV BPL topologies is assumed to be 

known prior to apply both methodologies. 

 

3.1 Additional Specifications for TIM OV LV BPL Topology Database 
 With reference to Sec.2.2, the number of OV LV BPL topologies vary in the TIM 

OV LV BPL topology depending on the assumed TIM OV LV BPL topology database 

specifications [1], [29], [30]. By considering the assumption of the known number of 

branches of the examined indicative OV LV BPL topologies and the conclusion of [1] 

regarding the need for database representativeness, only the OV LV BPL topologies of 

the TIM OV LV BPL topology database with the same number of branches with the 

examined indicative OV LV BPL topology are going to be examined during the operation 

of TIM-LLA and NNIM-LLA. In addition, so as not to disrupt the approximations due to 

the symmetry of BPL topologies (e.g., the OV LV BPL topology with lengths of its 

distribution lines 𝐋 = [100𝑚 900𝑚] and of its branch lines 𝐋𝐛 = [20𝑚] is symmetrical to 

the OV LV BPL topology with respective lengths 𝐋 = [900𝑚 100𝑚] and 𝐋𝐛 = [20𝑚]) [42], 

[43], only one of the symmetrical OV LV BPL topologies is stored in the OV LV BPL 

topology database. 

 

3.2 TIM-LLA 
Similarly to [1], each indicative OV LV BPL topology that is going to be 

examined in this extension paper is not included in the TIM OV LV BPL topology 

database by definition. Hence, TIM-LLA is going to approximate the distribution and 

branch line lengths of the examined indicative OV LV BPL topology by comparing its 

coupling scheme channel transfer function values against the respective ones of all the 

OV LV BPL topologies of the TIM OV LV BPL topology database with the same 

number of branches. The performance metric of RMSD of the amplitude of coupling 

scheme transfer functions in dB that is expressed by eqs. (3) and (4) of [1] is also here 

applied in order to identify the OV LV BPL topologies of the TIM OV LV BPL topology 

database that achieve the best approximations of the channel attenuation behavior of the 

examined indicative OV LV BPL topology. The average value for each of the lengths of 

the R OV LV BPL topologies of the TIM OV LV BPL topology database that present the 

R lowest RMSDs among the P computed ones defines the TIM-LLA approximation of 

the respective lengths of the examined indicative OV LV BPL topology  

(i.e., the TIM-LLA approximation lengths of the distribution and branch lines are 

𝐋TIM−LLA = [𝐿1,TIM−LLA 𝐿2,TIM−LLA ⋯ 𝐿𝑁+1,TIM−LLA]  and  

𝐋b,TIM−LLA = [𝐿b1,TIM−LLA 𝐿b2,TIM−LLA ⋯ 𝐿b𝑁,TIM−LLA], respectively). Similarly to TIM-BNI, 

it is clear that TIM-LLA performance towards the distribution and branch line length 

identification of OV LV BPL topologies, that is numerically assessed in Section 4, is 

affected by the required accuracy degree of the TIM OV LV BPL topology database and 

the number R of the lowest RMSDs. 

 

3.3 NNIM-LLA 
 With reference to Figure 2 of [1], NNIM-LLA is going to adopt a similar neural 

network architecture with NNIM-BNI; say, a fully connected neural network with HL 

hidden layers of neurons where its input is P column vectors; the p, p=1,…,P column 

vector consists of the differences between the amplitude of the coupling scheme channel 

transfer functions of the arbitrary p OV LV BPL topology of the TIM OV LV BPL 



 

Peer-Reviewed Article   Trends in Renewable Energy, 9 

 

Tr Ren Energy, 2023, Vol.9, No.1, 34-77. doi: 10.17737/tre.2023.9.1.00149  39 

 

topology database in dB and the amplitude of the coupling scheme channel transfer 

functions of LOS case in dB at each frequency of the operating frequency range.  

After the input layer, HL hidden layers occur; each hl of the HL hidden layers receives as 

input a column vector from the previous one while it gives as output a column vector for 

the following one where the activation function, the array of weights and array of biases 

of the hl hidden layer are taken into consideration. The output of the fully connected 

neural network that coincides with the output of the HL hidden layer defines  

the NNIM-LLA approximation of the respective lengths of the examined indicative OV 

LV BPL topology (i.e., the NNIM-LLA approximation lengths of the distribution and 

branch lines are 𝐋NNIM−LLA = [𝐿1,NNIM−LLA 𝐿2,NNIM−LLA ⋯ 𝐿𝑁+1,NNIM−LLA]  and  

𝐋b,NNIM−LLA = [𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA ⋯ 𝐿b𝑁,NNIM−LLA] , respectively). Similarly to [1], 

NNIM-LLA exploits the MATLAB neural network training program of [38], [41] while 

the big data handling of the TIM OV LV BPL topology database is divided into three 

phases; say, training, validation and testing phase. As in the case of TIM-LLA,  

NNIM-LLA applies the RMSD performance metric of the examined indicative OV LV 

BPL topologies for different numbers of the hidden layers during all its three phases. 

Therefore, TIM-LLA may give as output its approximation for the lengths of the 

distribution and branch lines as well as their approximation RMSDs per hidden layer. 

Similarly to NNIM-BNI, it is clear that NNIM-LLA performance, which is numerically 

assessed in Section 4 in comparison with the TIM-LLA performance, is affected by the 

required accuracy degree of the TIM OV LV BPL topology database and the 

participation percentage of the three phases of the MATLAB neural network training 

program. 

 

 

4. Numerical Results and Discussion 
 

 In this Section, numerical results concerning the performance of TIM-LLA and 

NNIM-LLA are presented as well as their evaluation. Actually, this extension paper 

follows the same structure regarding the demonstration of the numerical results with [1]. 

First, the default operation settings for the base scenario are given in Sec. 4.1 by also 

taking under consideration the findings and conclusions of [1]. Second, the effect of the R 

value of the OV LV BPL topologies of the TIM OV LV BPL topology database with the 

lowest RMSDs that is considered during the computation of the average values of the 

lengths of the distribution and branch lines is examined during the operation of TIM-LLA 

in Sec. 4.2. Third, the role of the participation percentages of the three phases of NNIM-

LLA during its operation is assessed in Sec. 4.3. Finally, an overall numerical 

performance comparison between TIM-LLA and NNIM-LLA is attempted in Sec. 4.4. 

 

4.1 Base Scenario and Default Operation Settings Β 
 As the base scenario of the operation of TIM-LLA and NNIM-LLA is concerned, 

certain default operation settings should be assumed. Actually, the default operation 

settings of [1], denoted as default operation settings A in the rest of this extension paper, 

are here enriched so as to exploit the experience from the operation of TIM-BNI and 

NNIM-BNI, that act as the predecessor family products of the TIM-LLA and NNIM-

LLA, respectively, and boost the accuracy for the challenging issue of OV LV BPL 

topology tomography. More specifically, the following default operation settings Β are 

assumed: 
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 The applied OV LV MTL configuration and the typical OV LV BPL topology 

that are used in this extension paper are shown in Figures 1(a) and 1(b) of [1], 

respectively. With reference to Figure 1(b), three indicative OV LV BPL 

topologies, which are shown in green background color, are reported in terms of 

their topological characteristics in Table 1. The three indicative OV LV BPL 

topologies of interest (i.e., urban case A, suburban case and rural case), which 

have already been used for the evaluation of TIM-BNI and NNIM-BNI, are going 

to be further adopted in this extension paper so that the approximation 

performances of TIM-LLA and NNIM-LLA can also be evaluated. In accordance 

with [1], the branch terminations are assumed to be open-circuit while the 

transmitting and receiving ends are assumed to be matched [9]-[12], [16]. WtG
1
 

coupling scheme is applied across the indicative and TIM OV LV BPL topologies 

of this extension paper. 

 As the preparation of the TIM OV LV BPL topology database is concerned for 

the evaluation of TIM-LLA and NNIM-LLA, the indicative urban case A, 

suburban case and rural case will be excluded from the TIM OV LV BPL 

topology database so that TIM-LLA and NNIM-LLA blindly perform their 

approximations. As already been mentioned, depending on the examined 

indicative OV LV BPL topology, the number of branches is known thus 

influencing the segmentation and the accuracy of the TIM OV LV BPL topology 

database in each case (i.e., only the OV LV BPL topologies with the same number 

of branches with the examined one are considered from the TIM OV LV BPL 

topology database in each approximation execution by TIM-LLA and NNIM-

LLA). 

 During the preparation of the TIM OV LV BPL topology database [29], [30], the 

length spacings for branch distance and branch length are assumed to be equal to 

100m and 100m, respectively, while the branch line length may range from 0m to 

300m. In accordance with [1], the distribution line length and, thus, the length 

between the transmitting and receiving ends of all the OV LV BPL topologies of 

this paper is assumed to be equal to 1000m. Despite the higher maximum branch 

line length of 300m in comparison with the 100m of [1], the high length spacings 

of 100m in comparison with the 25m of [1] imply that: (i) better execution times 

during the TIM OV LV BPL topology database and the simulation process occur; 

and (ii) the branch line lengths of rural OV LV BPL topologies (the maximum 

one is equal to 300m in this extension paper) can range from 0m to 300m. In 

accordance with [1], there is a trade-off relationship between the accuracy of the 

TIM OV LV BPL topology database and the length spacings. Therefore, high 

RMSDs due to high differences between the actual and approximated branch 

lengths are expected in this paper due to the combination of high branch line 

length spacing and maximum branch line length. 
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Table 1 

Indicative OV LV BPL Topologies [1] 

OV LV BPL Topology 

Name 

 

Number of 

Branches 

(N) 

Length of Distribution 

Lines 

Length of Branch Lines 

Urban case A 

(Typical urban case) 

3 L1=500m, L2=200m, 

L3=100m, L4=200m 

Lb1=8m, Lb2=13m, Lb3=10m 

Urban case B 

(Aggravated urban case) 

5 L1=200m, L2=50m, 

L3=100m, L4=200m, 

L5=300m, L6=150m 

Lb1=12m, Lb2=5m, Lb3=28m, 

Lb4=41m, Lb5=17m 

Suburban case  

 

2 L1=500m, L2=400m, 

L3=100m   

Lb1=50m, Lb2=10m 

Rural case  

 

1 L1=600m, L2=400m Lb1=300m 

Line-of-Sight (LOS) case  

 

0 L1=1000m - 

 

 In accordance with Sec. 3.1, symmetrical OV LV BPL topologies are excluded 

from the TIM OV LV BPL topology database. This implies that TIM-LLA and 

NNIM-LLA are going to give as output original approximated OV LV BPL 

topologies that is the first of the two parts of the full answer; the second and last 

part of the full answer is the symmetrical approximated OV LV BPL topology to 

the original one. For example, if NNIM-LLA gives as output the approximation 

lengths of the distribution and branch lines 𝐋NNIM−LLA = [100m 500m 400m] and 

𝐋b,NNIM−LLA = [50m 75m] of the original approximated OV LV BPL topology, the 

symmetrical approximated OV LV BPL topology has lengths of the distribution 

and branch lines that are equal to 𝐋NNIM−LLA = [400m 500m 100m]  and  

𝐋b,NNIM−LLA = [75m 50m], respectively. Similarly to the urban case A, suburban 

case and rural case, it should be noted that the symmetrical OV LV BPL 

topologies of the aforementioned three indicative OV LV BPL topologies are also 

excluded from the TIM OV LV BPL topology database so that TIM-LLA and 

NNIM-LLA blindly perform their approximations. 

 Due to the improved results presented in Sec. 4.2 of [1] concerning the 

assumption of wide and dense frequency ranges, the frequency range and the  

flat-fading subchannel frequency spacing are assumed to be equal to 3-88MHz 

and 1MHz, respectively, in this extension paper. 

 Similarly to [1], the performance metric of RMSD is going to be used by  

TIM-LLA; say, the RMSD of the amplitudes of coupling scheme channel transfer 

functions in dB of the OV LV BPL topologies from the TIM OV LV BPL 

topology database with respect to the ones of each of the indicative OV LV BPL 

topologies of Table 1 as described in eq. (3) of [1]. For the base scenario where 

the default operation settings B are assumed, the average value for each of the 

lengths of the five OV LV BPL topologies of the TIM OV LV BPL topology 

database (i.e., R=5) that present the five lowest RMSDs among the P computed 

ones defines the TIM-LLA approximation of the respective length of each of the 

examined indicative OV LV BPL topologies of Table 1 (i.e., the TIM-LLA 

approximation lengths of the distribution and branch lines are 𝐋TIM−LLA =

[𝐿1,TIM−LLA 𝐿2,TIM−LLA ⋯ 𝐿𝑁+1,TIM−LLA]  and 

𝐋b,TIM−LLA = [𝐿b1,TIM−LLA 𝐿b2,TIM−LLA ⋯ 𝐿b𝑁,TIM−LLA], respectively). The TIM-LLA 
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performance assessment is going to be fulfilled through the comparison between 

the TIM-LLA distribution and branch line lengths and the real ones while the 

performance metric of RMSD again assesses the overall TIM-LLA approximation 

for the three examined indicative OV LV BPL topologies of Table 1. 

 With reference to [1], the default participation percentages of the three phases of 

the MATLAB neural network training program of [38], [41], say, training, 

validation and testing phase, during the operation of NNIM-LLA are assumed to 

be equal to 70%, 15% and 15%, respectively. Similarly to [1], the output of 

NNIM-LLA is going to be the NNIM-LLA approximation lengths of the 

distribution lines 𝐋NNIM−LLA = [𝐿1,NNIM−LLA 𝐿2,NNIM−LLA ⋯ 𝐿𝑁+1,NNIM−LLA] and of the 

branch lines 𝐋b,NNIM−LLA = [𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA ⋯ 𝐿b𝑁,NNIM−LLA]  per hidden 

layer when the maximum number of hidden layers HL is assumed to be equal to 5. 

In addition, three executions of NNIM-LLA are going to be reported in each 

examined case when the participation percentages of the three phases are given. 

The results of NNIM-LLA are going to be compared with the real ones in each 

case while the performance metric of RMSD is going to assess the overall NNIM-

LLA approximation.  

In Table 2, the length approximations of the distribution and branch lines of  

TIM-LLA and NNIM-LLA are reported when the aforementioned default operation 

settings Β are assumed and the urban case A of Table 1 is examined. Apart from the 

original approximations that are given in black font color, the symmetrical 

approximations of TIM-LLA and NNIM-LLA for the urban case A are also given in blue 

font color. In addition, the real lengths of the distribution and branch lines of the urban 

case A are presented for comparison reasons while the RMSDs of TIM-LLA and NNIM-

LLA approximations for the urban case are also computed. Similarly to [1], the three 

executions of NNIM-LLA are reported for the urban case A per hidden layer. Tables 3 

and 4 are same with Table 2 but for the suburban and rural case of Table 1, respectively. 

Note that RMSD is computed in Tables 2-4 when 4 distribution line segments and  

3 branches are assumed for all the three examined indicative OV LV BPL topologies for 

comparison reasons. RMSD is marked with X and is not computed when at least one of 

the approximated distribution and branch line lengths is below zero during the NNIM-

LLA approximations (i.e., unacceptable approximations for the rest of this paper). 

 To permit an easier and graphical comparison of TIM-LLA and NNIM-LLA 

among the three indicative OV LV BPL topologies of Table 1, the RMSD results of 

Table 2 are presented in Figure 1. More specifically, with reference to the RMSD of the 

original and symmetrical approximations, TIM-LLA and NNIM-LLA are plotted with 

respect to the number of hidden layers for the urban case A. The best approximations 

between the original and symmetrical approximations are shown for TIM-LLA and 

NNIM-LLA given the number of the hidden layers. For NNIM-LLA, the RMSD values 

concerning all the 3 executions of NNIM-LLA are separately demonstrated. In Figures 2 

and 3, similar curves are given with Figure 1 but for the suburban and rural case with 

reference to Table 3 and 4, respectively. 
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Table 2 

Distribution and Branch Line Length Approximations of TIM-LLA and NNIM-LLA for the Urban Case A 

and Default Operation Settings B (the symmetrical approximations are reported in blue font color) 

Indicative OV LV BPL Topologies of Table 1 Urban case A  

(Typical urban case) 

RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 𝐿4] 
Branch Line Length Lb =[𝐿b1 𝐿b2 𝐿b3] 

[500m 200m 100m 200m] 

[8m 13m 10m] 

- - 

TIM-LLA 

Approximated Distribution Line Length 

𝐋TIM−LLA = [𝐿1,TIM−LLA 𝐿2,TIM−LLA 𝐿3,TIM−LLA 𝐿4,TIM−LLA] 
(Approximated Branch Line Length) 

𝐋b,TIM−LLA = [𝐿b1,TIM−LLA 𝐿b2,TIM−LLA 𝐿b3,TIM−LLA] 

[200m 80m 80m 640m] 

[80m 0 160m] 

 

[640m 80m 80m 200m] 

[160m 0m 80m] 

215.89m 

 

 

94.55m 

Default 

Operation 

Settings 

B 

NNIM-LLA 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 𝐿4,NNIM−LLA] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 𝐿b3,NNIM−LLA] 
 

1st 

execution 
[115.25m 241.32m 240.29m 403.15m] 

[149.09m 150.59m 151.83m] 

 

[403.14m 240.29m 241.32m 115.25m] 

[151.83m 150.59m 149.09m] 

196.26m 

 

 

117.79m 

Default 

Operation 

Settings 

B 

+ 

1 hidden 

layer 
2nd 

execution 
[57.79m 303.94m 345.78m 292.49m] 

[158.60m 151.65m 157.30m] 

 

[292.49m 345.78m 303.94m 57.79m] 

[157.30m 151.65m 158.60m] 

220.04m 

 

 

164.63m 

3nd 

execution 
[115.94m 241.76m 237.44m 404.86m] 

[149.16m 148.34m 151.15m 

 

[404.86m 237.44m 241.76m 115.94m] 

[151.15m 148.34m 149.16m] 

195.77m 

 

 

116.98m 

1st 

execution 
[159.16m 206.79m 109.35m 524.70m] 

[152.25m 166.69m 155.59m] 

 

[524.70m 109.35m 206.79m 159.61m] 

[155.59m 166.69m 152.25m] 

202.61m 

 

 

111.83m 

Default 

Operation 

Settings 

B 

+ 

2 hidden 

layers 
2nd 

execution 
[117.63m 36.03m 388.25m 458.10m] 

[148.52m 151.64m 143.13m] 

 

[458.10m 388.25m 36.03m 117.63m] 

[143.13m 151.64m 148.52m] 

232.84m 

 

 

122.32m  

3nd 

execution 
[114.03m 254.92m 243.90m 387.73m] 

[148.62m 149.89m 152.30m] 

 

[387.73m 243.90m 254.92m 114.03m] 

[152.30m 149.89m 148.62m] 

195.19m 

 

 

122.30m 

1st 

execution 

[1,138.6m -1,148.3m -1,526.4m 2,467.4m] 

[92.93m 199.43m 33.93m] 

 

[2,467.4m -1,526.4m -1,148.3m 1,138.6m] 

[33.93m 199.43m 92.93m] 

X 

 

 

X 

Default 

Operation 

Settings 

B 

+ 

3 hidden 

layers 

2nd 

execution 
[226.51m 29.39m 184.02m 559.97m] 

[131.44m 137.30m 126.66m] 

 

[559.97m 184.02m 29.39m 226.51m] 

[126.66m 137.30m 131.44m] 

201.72m 

 

 

 

87.68m 

3nd 

execution 

[1,942.86m -4,384.77m -1,045.92m 4,421.53m] 

[198.84m 449.87m 80.76m] 
 

 

[4,421.523m -1045.92m -4384.77m 1942.86m] 

X 

 

 

X 
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[80.76m 449.87m 198.84m] 

1st 

execution 

[2,418.6m -3,347.0m -3,311.1m 5,169.2m] 
[-34.68m 164.43m -245.33m] 

 

[5,169.2m -3,311.1m -3,347.0m 2,418.6m] 
[-245.33m 164.43m -34.68m] 

X 

 

X 

Default 

Operation 

Settings 

B 

+ 

4 hidden 

layers 

2nd 

execution 
[-98.26m 503.72m 473.95m 122.57m] 

[70.64m 83.27m 45.29m] 

 

[122.57m 473.95m 503.72m -98.26m] 

[45.29m 83.27m 70.64m] 

X 

 

 

X 

3nd 

execution 
[-23.78m 636.36m 85.31m 302.10m] 

[163.17m 141.32m 148.92m] 

 

[302.10m 85.31m 636.36m -23.78m] 

[148.92m 141.32m 163.17m] 

X 

 

 

X 

1st 

execution 

[2,147.6m -2,267.3m -2,547.8m 3,359.6m] 
[-572.73m -445.75m -594.49m] 

 

[3,359.6m -2,547.8m -2,267.3m 2,147.6m] 
[-594.49m -445.75m -572.73m] 

X 

 

X 

Default 

Operation 

Settings 

B 

+ 

5 hidden 

layers 

2nd 

execution 
[298.26m -43.39m -95.89m 830.53m] 

[-407.63m -413.91m -464.40m] 

 

[830.53m -95.89m -43.39m 298.26m] 

[-464.40m -413.91m -407.63m] 

X 

 

 

X 

3nd 

execution 

[575.63m -563.26m -771.69m 1,701.78m] 

[-123.70m -172.83m -236.46m] 
 

[1,701.78m -771.69m -563.26m 575.63m] 

[-236.46m -172.83m -123.70m] 

X 

 

X 

 

 
Table 3 

Distribution and Branch Line Length Approximations of TIM-LLA and NNIM-LLA for the Suburban Case 

and Default Operation Settings B (the symmetrical approximations are reported in blue font color) 

Indicative OV LV BPL Topologies of Table 1 Suburban case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 0] 
Branch Line Length Lb =[𝐿b1 𝐿b2 0] 

[500m 400m 100m 0m] 

[50m 10m 0m] 

- - 

TIM-LLA 

Approximated Distribution Line Length 𝐋TIM−LLA =
[𝐿1,TIM−LLA 𝐿2,TIM−LLA 𝐿3,TIM−LLA 0] 
(Approximated Branch Line Length) 

𝐋b,TIM−LLA = [𝐿b1,TIM−LLA 𝐿b2,TIM−LLA 0] 

[120m 100m 780m 0m] 

[160m 140m 0m] 

 

[780m 100m 120m 0m] 

[140m 160m 0m] 

322.00m 

 

 

168.78m 

Default 

Operation 

Settings 

B 

NNIM-LLA 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 0] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 0] 
 

1st 

execution 
[55.07m 711.81m 233.12m 0m] 

[140.71m 159.39m 0m] 

 

[233.12m 711.81m 55.07m 0m] 

[159.39m 140.71m 0m] 

221.51m 

 

 

168.83m 

Default 

Operation 

Settings 

B 

+ 

1 hidden 

layer 
2nd 

execution 
[76.83m 665.77m 257.40m 0m] 

[144.41m 155.37m 0m] 

 

[257.40m 665.77m 76.83m 0m] 

[155.37m 144.41m 0m] 

208.57m 

 

 

150.81m 

3nd 

execution 
[49.86m 714.25m 235.89m 0m] 

[146.61m 163.70m 0m] 

 

[235.89m 714.25m 49.86m 0m] 

224.50m 

 

 

170.13m 
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[163.70m 146.61m 0m] 

1st 

execution 
[203.43m 164.18m 632.36m 0m] 

[57.94m 68.58m 0m] 

 

[632.36m 164.18m 203.43m 0m] 

[68.58m 57.94m 0m] 

247.98m 

 

 

111.14m 

Default 

Operation 

Settings 

B 

+ 

2 hidden 

layers 
2nd 

execution 
[60.75m 734.65m 204.60m 0m] 

[47.50m 71.93m 0m] 

 

[204.60m 734.65m 60.75m 0m] 

[71.93m 47.50m 0m] 

213.71m 

 

 

170.16m 

3nd 

execution 
[37.72m 762.84m 199.44m 0m] 

[134.24m 159.11m 0m] 

 

[199.44m 762.84m 37.72m 0m] 

[159.11m 134.24m 0m] 

234.39m 

 

 

190.19m 

1st 

execution 
[148.53m 385.22m 466.25m 0m] 

[0.04m -2.27m 0m] 

 

[466.25m 385.22m 148.53m 0m] 

[-2.27m 0.04m 0m] 

X 

 

 

X 

Default 

Operation 

Settings 

B 

+ 

3 hidden 

layers 
2nd 

execution 
[843.26m -2,699.02m 2,852.79m 0m] 

[-334.88m -386.90m 0m] 

 

[2,852.79m -2699.02m 843.26m 0m] 

[-386.90m -334.88m 0m] 

X 

 

 

X 

3nd 

execution 
[-48.50m 963.42m 85.48m 0m] 

[133.83m 215.75m 0m] 

 

[85.48m 963.42m -48.50m 0m] 

[215.75m 133.83m 0m] 

X 

 

 

X 

1st 

execution 
[1,555.7m -5,874.3m 5,315.6m 0m] 

[-169.42m -186.57m 0m] 

 

[5,315.6m -5,874.3m 1,555.7m 0m] 

[-186.57m -169.42m 0m] 

X 

 

 

X 

Default 

Operation 

Settings 

B 

+ 

4 hidden 

layers 
2nd 

execution 
[-840.97m 4,001.01m -2150.27m 0m] 

[-106.82m 106.07m 0m] 

 

[-2,150.27 4,001.01m -840.97m 0m] 

[106.07m -106.82m 0m] 

X 

 

 

X 

3nd 

execution 
[-2,116.01m 9,237.87m -6,116.30m 0m] 

[-154.24m -2.59m 0m] 

 

[-6,116.30m 9,237.87m -2,116.01m 0m] 

[-2.59m -154.24m 0m] 

X 

 

 

X 

1st 

execution 
[2,288.5m -8,430.0m 7,135.0m 0m] 

[565.12m 578.81m 0m] 

 

[7,135.0m -8,430.0m 2,288.5m 0m] 

[578.81m 565.12m 0m] 

X 

 

 

X 

 

Default 

Operation 

Settings 

B 

+ 

5 hidden 

layers 
2nd 

execution 
[500.56m -774.33m 1,267.43m 0m] 

[130.94m 37.00m 0m] 

 

[1,267.43m -774.33m 500.56m 0m] 

[37.09m 130.94m 0m] 

X 

 

 

X 
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3nd 

execution 
[1,582.31m -5,718.78m 5,131.67m 0m] 

[-770.69m -853.92m 0m] 

 

[5,131.67m -5,718.78m 1,582.31m 0m] 

[-853.92m -770.69m 0m] 

X 

 

 

X 

 

 
Table 4 

Distribution and Branch Line Length Approximations of TIM-LLA and NNIM-LLA for the Rural Case and 

Default Operation Settings B (the symmetrical approximations are reported in blue font color) 

Indicative OV LV BPL Topologies of Table 1 Rural case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 0 0] 
Branch Line Length Lb =[𝐿b1 0 0] 

[600m 400m 0m 0m] 

[300m 0m 0m] 

- - 

TIM-LLA 

Approximated Distribution Line Length 

𝐋TIM−LLA = [𝐿1,TIM−LLA 𝐿2,TIM−LLA 0 0] 
Approximated Branch Line Length 

𝐋b,TIM−LLA = [𝐿b1,TIM−LLA 0 0] 

[220m 780m 0m 0m] 

[300m 0m 0m] 

 

[780m 220m 0m 0m] 

[300m 0m 0m] 

203.12m 

 

 

96.21m 

 

Default 

Operation 

Settings 

B 

NNIM-LLA 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 0 0] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 0 0] 
 

1st 

execution 
[265.66m 866.04m 0m 0m] 

[156.07m 0m 0m] 

 

[866.04m 265.66m 0m 0m] 

[156.07m 0m 0m] 

223.51m 

 

 

125.09m 

Default 

Operation 

Settings 

B 

+ 

1 hidden 

layer 
2nd 

execution 
[266.67m 733.33m 0m 0m] 

[233.33m 0m 0m] 

 

[733.33m 266.67m 0m 0m] 

[233.33m 0m 0m] 

179.94m 

 

 

75.59m 

3nd 

execution 
[264.20m 790.81m 0m 0m] 

[167.59m 0m 0m] 

 

[790.81m 264.20m 0m 0m] 

[167.59m 0m 0m] 

201.08m 

 

 

101.69m 

1st 

execution 
[247.53m 772.84m 0m 0m] 

[215.07m 0m 0m] 

 

[772.84m 247.53m 0m 0m] 

[215.07m 0m 0m] 

196.56m 

 

 

92.84m 

Default 

Operation 

Settings 

B 

+ 

2 hidden 

layers 
2nd 

execution 
[154.74m 839.50m 0m 0m] 

[198.02m 0m 0m] 

 

[839.50m 154.74m 0m 0m] 

[198.02m 0m 0m] 

239.59m 

 

 

135.18m 

3nd 

execution 
[204.86m 789.55m 0m 0m] 

[156.79m 0m 0m] 

 

[789.55m 204.86m 0m 0m] 

[156.79m 0m 0m] 

216.59m 

 

 

116.20m 

1st 

execution 
[216.21m 784.78m 0m 0m] 

[160.92m 0m 0m] 

 

[784.78m 216.21m 0m 0m] 

[160.92m 0m 0m] 

212.03m 

 

 

111.65m 

Default 

Operation 

Settings 

B 

+ 

3 hidden 

layers 
2nd 

execution 
[168.69m 817.75m 0m 0m] 

[159.63m 0m 0m] 

233.07m 

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 9 

 

Tr Ren Energy, 2023, Vol.9, No.1, 34-77. doi: 10.17737/tre.2023.9.1.00149  47 

 

 

[817.75m 168.69m 0m 0m] 

[159.63m 0m 0m] 

 

131.27m 

3nd 

execution 
[200.262m 799.74m 0m 0m] 

[300.01m 0m 0m] 

 

[799.74m 200.26m 0m 0m] 

[300.01m 0m 0m] 

213.67m 

 

 

106.76m 

1st 

execution 
[233.58m 728.75m 0m 0m] 

[274.36m 0m 0m] 

 

[728.75m 233.58m 0m 0m] 

[274.36m 0m 0m] 

186.32m 

 

 

80.11m 

Default 

Operation 

Settings 

B 

+ 

4 hidden 

layers 
2nd 

execution 
[244.33m 781.10m 0m 0m] 

[162.38m 0m 0m] 

 

[781.10m 244.33m 0m 0m] 

[162.38m 0m 0m] 

203.78m 

 

 

104.18m 

3nd 

execution 
[100.00m 900.00m 0m 0m] 

[300m 0m 0m] 

 

[900.00m 100.00m 0m 0m] 

[300.00m 0m 0m] 

267.26m 

 

 

160.36m 

1st 

execution 
[50m 950m 0m 0m] 

[300m 0m 0m] 

 

[950m 50m 0m 0m] 

[300m 0m 0m] 

293.99m 

 

 

187.08m 

Default 

Operation 

Settings 

B 

+ 

5 hidden 

layers 
2nd 

execution 
[209.52m 817.46m 0m 0m] 

[291.02m 0m 0m] 

 

[817.46m 209.52m 0m 0m] 

[291.02m 0m 0m] 

216.08m 

 

 

109.32m 

3nd 

execution 
[220.07m 779.93m 0m 0m] 

[300.00m 0m 0m] 

 

[779.93m 220.07m 0m 0m] 

[300.00m 0m 0m] 

203.08m 

 

 

96.18m 
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Figure 1.  The best approximation RMSD of TIM-LLA and NNIM-LLA for the urban case A for 
different number of hidden layers when the default operation settings B are assumed. 

 

 
Figure 2.  The best approximation RMSD of TIM-LLA and NNIM-LLA for the suburban case for 
different number of hidden layers when the default operation settings B are assumed. 
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Figure 3.  The best approximation RMSD of TIM-LLA and NNIM-LLA for the rural case for 
different number of hidden layers when the default operation settings B are assumed. 

 

 

From Tables 2-4 and Figures 1-3, several interesting observations concerning the 

general approximation performance of TIM-LLA and NNIM-LLA can be discussed 

during the base scenario where the default settings B are applied, namely: 

 With reference to the performance metric of RMSD, TIM-LLA better 

approximates the distribution and branch line lengths when the number of 

branches of the examined OV LV BPL topology remains high (i.e., urban case A). 

For the suburban and rural case, there are at least two executions that  

the NNIM-LLA approximations present lower RMSDs in comparison with the 

TIM-LLA approximation, namely: (i) For the suburban case, the TIM-LLA best 

approximation RMSD is equal to 168.78m whereas the two NNIM-LLA 

approximations that present the lowest RMSD approximations are equal to 

111.14m and 150.81m for 2 hidden layers (1
st
 execution) and 1 hidden layer (2

nd
 

execution), respectively; and (ii) For the rural case, the TIM-LLA best 

approximation RMSD is equal to 96.21m whereas the three NNIM-LLA 

approximations that present the lowest approximation RMSDs are equal to 

75.59m, 80.11m and 92.81m for 1 hidden layer (2
nd

 execution), 4 hidden layers 

(1
st
 execution) and 2 hidden layers (1

st
 execution), respectively.  

 TIM-LLA does not depend on the number of the hidden layers thus presenting a 

stable approximation behavior in Figures 1-3 for given OV LV BPL topology.  

In contrast, NNIM-LLA depends on the number of the hidden layers and the 

execution and it presents fluctuations when different numbers of hidden layers are 

applied for the different executions. In addition, unacceptable NNIM-LLA 

approximations may occur when high numbers of hidden layers are assumed;  

in the urban case A and suburban case, unacceptable approximations occur for 

numbers of hidden layers that are greater than 3 and 2, respectively. Anyway, as 
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the number of hidden layers rises, the differences among the executions of the 

NNIM-LLA approximations become considerable. 

 By assuming up to 5 hidden layers and up to 3 executions per hidden layer,  

stochastic nature of NNIM-LLA is unveiled. In [1], the preparation of  

the TIM OV LV BPL topology database significantly has affected the branch 

number approximations of NNIM-BNI when the default operation settings A had 

been assumed; since the number of OV LV BPL topologies with 3 branches is 

significantly higher than the number of OV LV BPL topologies with 2 branches 

that is again significantly higher than the number of OV LV BPL topologies with 

1 branch, NNIM-BNI seemed to favor approximations close to 3 branches since 

greater number of OV LV BPL topologies of 3 branches are initially present in 

the TIM OV LV BPL topology database due to its preparation process.  

The representative sets of the TIM OV LV BPL topology database improved the 

performance of NNIM-BNI. In this paper, the concept of the representative sets of 

the TIM OV LV BPL topology database of [1] has been adopted by default during 

the preparation of the default operation settings B; only the OV LV BPL 

topologies with the same number of branches with the examined one are 

considered from the TIM OV LV BPL topology database in each approximation 

of the TIM-LLA and NNIM-LLA. Hence, the preparation of the TIM OV LV 

BPL topology database with the default operation settings B appears to equally 

treat with the OV LV BPL topologies in terms of RMSDS and the relative 

position of the TIM-LLA and NNIM-LLA approximations. 

 Although RMSD differences among the different NNIM-LLA executions may 

occur for given number of hidden layer and examined indicative OV LV BPL 

topology, these differences remain relatively small when the number of the hidden 

layers is also low so that only one execution is going to be applied for the 

following NNIM-LLA simulations, as already done in [1]. Numerically, the 

greatest RMSD differences between the best approximations of NNIM-LLA 

executions for given number of hidden layers and indicative OV LV BPL 

topology are: (i) Urban case A: 60.81m and 10.49m for 1 and 2 hidden layers, 

respectively. Note that there is no difference computation for the case of 3 layers 

where only one successful approximation occurs; (ii) Suburban case: 19.32m and 

79.05m for 1 and 2 hidden layers, respectively; and (iii) Rural case: 49.50m, 

42.32m, 24.51m, 80.25m and 90.90m for 1, 2, 3, 4 and 5 hidden layers, 

respectively. 

 High length spacings of the TIM OV LV BPL topology database imply high 

RMSD values both in TIM-LLA and NNIM-LLA approximations. Lower length 

spacings during the preparation of TIM OV LV BPL topology database may 

allow more accurate approximations regarding the approximated branch lengths 

and lower RMSDs for both approximations. 

After the application of the default operation settings B, TIM-LLA and  

NNIM-LLA appear almost equivalent approximation performances for the OV LV BPL 

topologies of 1, 2 and 3 branches. Wanting to further investigate the approximation 

performance and discover possible improvements of the two methods, TIM-LLA 

approximations slightly prevail for the OV LV BPL topologies of 3 branches whereas 

NNIM-LLA approximations are more accurate for the OV LV BPL topologies of 1 and 2 

branches. With reference to Sec. 4.3 and 4.4 of [1], the impact of R on TIM-LLA 

performance and the impact of participation percentages on NNIM-LLA performance are 
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examined in Secs. 4.2 and 4.3, respectively, so as to explore any scope for improving the 

TIM-LLA and NNIM-LLA approximation performances with reference to the base 

scenario of the default operation settings B.  

 

4.2 The Impact of R on TIM-LLA Performance 

 In accordance with [1], the TIM-BNI branch number approximation 𝑁TIM−BNI has 

come from the average value of the branch numbers of the R OV LV BPL topologies of 

the TIM OV LV BPL topology database that present the R lowest RMSDs among the 

computed ones. In the default operation settings A, the default value of R was equal to 5. 

In the default operation settings B of this paper, the same default value of R=5 is assumed 

for the TIM-LLA while the procedure for approximating the distribution and branch line 

lengths remains almost the same; say, for each of the line length approximations,  

the mean value of the R lowest TIM-LLA RMSDs is applied. In Table 5, the distribution 

and branch line length approximations of TIM-LLA are reported for the urban case A 

when the default operation settings B are assumed but for six different values of R  

(i.e., 1, 2, 3, 5, 7 and 10). Apart from the distribution and branch line length 

approximations, the actual distribution and branch line lengths of the urban case A are 

presented. Also, RMSDs of TIM-LLA approximations for the urban case A are reported 

when the previous six different values of R are applied. Tables 6 and 7 are same with 

Table 5 but for the suburban and rural case of Table 1, respectively. Similarly to the 

Tables 2-4, the original approximations are given in black font color whereas the 

symmetrical approximations of TIM-LLA are given in blue font color in Tables 5-7. 

To facilitate the benchmark of TIM-LLA among the three indicative OV LV BPL 

topologies of Table 1 when different values of R are examined, the RMSD results of 

Tables 5-7 are presented in Figure 4. More analytically, with reference to the RMSD of 

the original and symmetrical approximations, best TIM-LLA approximations are plotted 

with respect to the value of R for the urban case A, suburban case and rural case. 

Similarly to Figures 1-3, the best approximation between the original and symmetrical 

approximations are shown for TIM-LLA given the value of R. 
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Table 5 

Distribution and Branch Line Length Approximations of TIM-LLA for the Urban Case A, Default 

Operation Settings B and Different R Values (the symmetrical approximations are reported in blue font 

color) 

Indicative OV LV BPL Topologies of Table 1 

R 

Value 

Urban case A  

(Typical urban case) 

RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 𝐿4] 
Branch Line Length Lb =[𝐿b1 𝐿b2 𝐿b3] 

[500m 200m 100m 200m] 

[8m 13m 10m] 

- - 

TIM-LLA 

Approximated Distribution Line Length 𝐋TIM−LLA =
[𝐿1,TIM−LLA 𝐿2,TIM−LLA 𝐿3,TIM−LLA 𝐿4,TIM−LLA] 
Approximated Branch Line Length 𝐋b,TIM−LLA =
[𝐿b1,TIM−LLA 𝐿b2,TIM−LLA 𝐿b3,TIM−LLA] 

1 [0m 0m 0m 1000m] 

[0m 0m 0m] 

 

[1,000m 0m 0m 0m] 

[0m 0m 0m] 

366.52m 

 

 

220.50m 

Default Operation 

Settings B except 

for R value 

2 [200m 50m 50m 700m] 

[50m 0m 100m] 

 

[700m 50m 50m 200m] 

[100m 0m 50m] 

231.47m 

 

 

103.67m 

Default Operation 

Settings B except 

for R value 

3 [233.33m 66.67m 66.67m 633.33m] 

[66.67 0m 133.33m] 

 

[633.33m 66.67m 66.67m 233.33m] 

[133.33m 0m 66.67m] 

205.84m 

 

 

90.13m 

Default Operation 

Settings B except 

for R value 

5 [200m 80m 80m 640m] 

[80m 0 160m] 

 

[640m 80m 80m 200m] 

[160m 0m 80m] 

215.89m 

 

 

94.55m 

Default Operation 

Settings B 

7 [185.71m 58.71m 58.71m 642.86m] 

[100m 0m 157.14m] 

 

[642.86m 85.71m 85.71m 185.71m] 

[157.14m 0m 100m] 

219.89m 

 

 

 

95.91m 

Default Operation 

Settings B except 

for R value 

10 [160m 180m 90m 570m] 

[100m 0m 170m] 

 

[570m 90m 180m 160m] 

[170m 0m 100m] 

202.57m 

 

 

92.21m 

Default Operation 

Settings B except 

for R value 

 

 

 
Table 6 

Distribution and Branch Line Length Approximations of TIM-LLA for the Suburban Case, Default 

Operation Settings B and Different R Values (the symmetrical approximations are reported in blue font 

color) 

Indicative OV LV BPL Topologies of Table 1 
R 

Value 

Suburban case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 0] 
Branch Line Length Lb =[𝐿b1 𝐿b2 0] 

[500m 400m 100m 0m] 

[50m 10m 0m] 

- - 

TIM-LLA 

Approximated Distribution Line Length 𝐋TIM−LLA =
[𝐿1,TIM−LLA 𝐿2,TIM−LLA 𝐿3,TIM−LLA 0] 
Approximated Branch Line Length 𝐋b,TIM−LLA =
[𝐿b1,TIM−LLA 𝐿b2,TIM−LLA 0] 

1 [0m 100m 900m 0m] 

[100m 200m 0m] 

 

[900m 100m 0m] 

[200m 100m] 

381.46m 

 

 

203.75m 

Default Operation 

Settings B except 

for R value 

2 [0m 100m 900m 0] 

[150m 150m 0m] 

379.77m 

 

Default Operation 

Settings B except 
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[900m 100m 0m 0m] 

[150m 150m 0m] 

 

203.40m 

for R value 

3 [66.67m 100m 833.33m 0m] 

[166.67m 133.33m 0m] 

 

[833.33m 100m 66.67m 0m] 

[133.33m 166.67m] 

347.31m 

 

 

182.72m 

Default Operation 

Settings B except 

for R value 

5 [120m 100m 780m 0m] 

[160m 140m 0m] 

 

[780m 100m 120m] 

[140m 160m 0m] 

322.00m 

 

 

168.78m 

Default Operation 

Settings B 

7 [128.57m 100m 771.43m 0m] 

[157.14m 142.86m 0m] 

 

[771.43m 100m 128.57m 0m] 

[142.86m 157.14m 0m] 

318.01m 

 

 

166.80m 

Default Operation 

Settings B except 

for R value 

10 [200m 100m 700m 0m] 

[150m 150m 0m] 

 

[700m 100m 200m 0m] 

[150m 150m 0m] 

282.26m 

 

 

155.66m 

Default Operation 

Settings B except 

for R value 

 

 
Table 7 

Distribution and Branch Line Length Approximations of TIM-LLA for the Rural Case, Default Operation 

Settings B and Different R Values (the symmetrical approximations are reported in blue font color) 

Indicative OV LV BPL Topologies of Table 1 
R 

Value 

Rural case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 0 0] 
Branch Line Length Lb =[𝐿b1 0 0] 

[600m 400m 0m 0m] 

[300m 0m 0m] 

- - 

TIM-LLA 

Approximated Distribution Line Length 𝐋TIM−LLA =
[𝐿1,TIM−LLA 𝐿2,TIM−LLA 0 0] 
Approximated Branch Line Length 𝐋b,TIM−LLA =
[𝐿b1,TIM−LLA 0 0] 

1 [200m 800m 0m 0m] 

[300m 0m 0m] 

 

[800m 200m 0m 0m] 

[300m] 

213.81m 

 

 

106.90m 

Default 

Operation 

Settings B 

except for R 

value 
2 [150m 850m 0m 0m] 

[300m 0m 0m] 

 

[850m 150m 0m 0m] 

[300m 0m 0m] 

240.54m 

 

 

133.63m 

Default 

Operation 

Settings B 

except for R 

value 
3 [200m 800m 0m 0m] 

[300m 0m 0m] 

 

[800m 200m 0m 0m] 

[300m 0m 0m] 

213.81m 

 

 

106.90m 

Default 

Operation 

Settings B 

except for R 

value 
5 [220m 780m 0m 0m] 

[300m 0m 0m] 

 

[780m 220m 0m 0m] 

[300m 0m 0m] 

203.12m 

 

 

96.21m 

 

Default 

Operation 

Settings B 

7 [171.43m 828.57m 0m 0m] 

[214.29m 0m 0m] 

 

[828.57m 171.43m 0m 0m] 

[214.29m 0m 0m] 

231.36m 

 

 

126.40m 

Default 

Operation 

Settings B 

except for R 

value 
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10 [210m 790m 0m 0m] 

[150m 0m 0m] 

 

[790m 210m 0m 0m] 

[150m 0m 0m] 

216.04m 

 

 

116.31m 

Default 

Operation 

Settings B 

except for R 

value 

 

 

 
Figure 4.  The best approximation RMSD of TIM-LLA for the urban case A, suburban case and 
rural case for different values of R when the default operation settings B are assumed. 

 

 

From Tables 5-7 and Figure 4, the following remarks concerning the RMSD 

dependence on the value of R can be pointed out, namely: 

 When R is equal to 1, only one OV LV BPL topology from the TIM OV LV BPL 

topology database is chosen by the TIM-LLA for approximating each of the 

examined indicative OV LV BPL topologies. More specifically: 

o When the urban case A is examined, TIM-LLA gives as its best 

approximation an OV LV BPL topology where its first distribution line 

length 𝐿1,TIM−LLA is equal to 1000m and the other three ones are equal to 

0m. As the approximated branch line lengths of the best TIM-LLA 

approximation are concerned, these are all equal to 0. Examining the 

aforementioned best OV LV BPL topology approximation of TIM-LLA, 

this approximation seems to the LOS case of Table 1. Actually, the short 

branch line lengths of the urban case A cannot be accurately approximated 

by TIM-LLA due to the assumed high spacing of branch lengths (i.e., 

100m). Hence, the best OV LV BPL topology approximation of TIM-LLA 

is characterized by the shortest possible branch line lengths that are close 

to the actual ones anyway inferring their multipath character (i.e., 0m). 
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Note that the RMSD of this R value is the worst one among the RMSDs of 

all the R values. 

o When the suburban and rural cases are examined, the approximated OV 

LV BPL topologies by the TIM-LLA are characterized by RMSD values 

that are close to their respective best ones thus offering decent 

approximations.  

In total, TIM-LLA approximations of R=1 value are considered to be decent for 

the OV LV BPL topologies of lower number of branches (i.e., 1 or 2 branches) 

whereas they become inaccurate when high number of branches occur (i.e., 3 

branches). 

 When R is greater than 1, mean values among the chosen OV LV BPL topologies 

occur for the approximated distribution and branch line lengths thus allowing 

better approximations of the real distribution and branch line lengths. Indeed,  

the RMSDs of the best and the worst approximations for each of the examined 

indicative OV LV BPL topologies decrease as the value of R increases until  

the R becomes equal to 5 (i.e., default value of the operation settings B).  

For R values that are greater than 5, RMSDs of the TIM-LLA approximations:  

(i) remain stable for the urban case A; (ii) slowly decrease for the suburban case; 

and (iii) increase for the rural case.  

 Strictly numerically and with reference to Figure 4, the best of the best 

approximations of TIM-LLA for the three indicative OV LV BPL topologies are: 

(i) Urban case A: when the R value is equal to 3, its minimum RMSD of  

all TIM-LLA approximations is equal to 90.13m; (ii) Suburban case: when R is 

equal to 10, its minimum RMSD of all TIM-LLA approximations is equal to 

155.66m; and (iii) Rural case: when the R value is equal to 5, its minimum 

RMSD of all TIM-LLA approximations is equal to 96.21m. 

From the previous analysis, the assumption of the R value that is equal to 5 in the 

operation settings B allows TIM-LLA to decently approximate the distribution and 

branch line lengths of all the indicative OV LV BPL topologies of Table 1. Anyway,  

the R value of 5 came from the findings of [1] where this R value also helped towards 

satisfactory approximations concerning the number of branches of the indicative OV LV 

BPL topologies of Table 1. In order to examine whether further performance 

improvement is feasible for NNIM-LLA beyond the operation settings B, the impact of 

participation percentages on NNIM-LLA performance is examined in Sec. 4.3. 

 

4.3 The Impact of Participation Percentages on NNIM-LLA Performance 
 Until now, the R value that affects the operation of TIM-LLA has been studied in 

the case that TIM-LLA performance can further be improved with respect to the 

performance after applying default operation settings B. In this subsection, the factor that 

affects the approximation performance of NNIM-LLA is analyzed; say, the participation 

percentages of the three phases of the NNIM-LLA operation; training, validation and 

testing phases. In Table 8, the distribution and branch line length approximations of 

NNIM-LLA are reported for the urban case A when the default operation settings B are 

assumed but for seven different combinations of the training, validation and  

testing participation percentages – i.e., (10%, 45%, 45%), (30%, 35%, 35%), (50%, 25%, 

25%), (70%, 15%, 15% default), (80%, 10%, 10%), (90%, 5%, 5%) and (98%, 1%, 1%)–

. Apart from the distribution and branch line length approximations, the actual 

distribution and branch line lengths of the urban case A are presented. Also, RMSDs of 
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NNIM-LLA approximations for the urban case A, when the previous seven combinations 

of the training, validation and testing participation percentages are applied, are reported. 

Tables 9 and 10 are same with Table 8 but for the suburban and rural case of Table 1, 

respectively. Similarly to Tables 2-7, the original approximations are given in black font 

color whereas the symmetrical approximations of NNIM-LLA are given in blue font 

color in Tables 8-10. 

 To visualize the information of Tables 8-10, the RMSD results of Table 8 

concerning the different participation percentages of the three phases of NNIM-LLA are 

presented in Figure 5 when the urban case A is approximated. More specifically,  

with reference to the RMSD of the original and symmetrical approximations,  

NNIM-LLA is plotted with respect to the number of hidden layers for the urban case A. 

The best approximations between the original and symmetrical approximations are shown 

for NNIM-LLA given the number of the hidden layers and the participation percentages 

of the three phases. Note that only one execution of NNIM-LLA is here demonstrated for 

each set of the participation percentages of the three phases. In Figures 6 and 7, similar 

curves are given with Figure 8 but for the suburban and rural case with reference to Table 

9 and 10, respectively. 

From Figures 5-7, the significance of the participation percentages of the three 

phases of NNIM-LLA is highlighted. In contrast with [1] where high participation 

percentages of the validation and testing phases favored low RMSDs, a more balanced 

ratio among the participation percentages is here promoted for achieving lower RMSDs. 

Strictly numerically and with reference to Figures 5-7, the best of the best approximations 

of NNIM-LLA for the three indicative OV LV BPL topologies are:  

 Urban case A: when the participation percentages for training, validation and 

testing are equal to 50%, 25% and 25%, respectively, and 3 hidden layers are 

assumed, the minimum RMSD of all NNIM-LLA best approximations is equal to 

103.31m. Anyway, the best RMSDs of all sets of participation percentages except 

for (10%, 45%, 45%) and (30%, 35%, 35%) remain very close to the minimum 

RMSD of 103.31m when hidden layers from 1 to 3 are assumed.  

 Suburban case: when the participation percentages for training, validation and 

testing are equal to 80%, 10% and 10%, respectively, and 2 hidden layers are 

assumed, the minimum RMSD of all NNIM-LLA best approximations is equal to 

72.58m. Anyway, the RMSDs of the sets (90%, 5%, 5%), (10%, 45%, 45%) and 

(98%, 1%, 1%) remain close to the aforementioned minimum one. 

 Rural case: when the participation percentages for training, validation and testing 

are equal to 30%, 35% and 35%, respectively, and 4 hidden layers are assumed, 

the minimum RMSD of all NNIM-LLA best approximations is equal to 68.33m. 

Anyway, the RMSD of the sets (10%, 45%, 45%), (80%, 10%, 10%), (50%, 25%, 

25%) and (70%, 15%, 15%) remain close to the aforementioned minimum one. 

 

  



 

Peer-Reviewed Article   Trends in Renewable Energy, 9 

 

Tr Ren Energy, 2023, Vol.9, No.1, 34-77. doi: 10.17737/tre.2023.9.1.00149  57 

 

Table 8 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Urban Case A, Default 

Operation Settings B and Different Participation Percentage Values and Hidden Layers (the symmetrical 

approximations are reported in blue font color) 

Indicative OV LV BPL Topologies of Table 1 Participation 

Percentages for 

Training, 

Validation and 

Testing 

(%,%,%) 

Urban case A  

(Typical urban case) 

RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 𝐿4] 
Branch Line Length Lb =[𝐿b1 𝐿b2 𝐿b3] 

[500m 200m 100m 200m] 

[8m 13m 10m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 𝐿4,NNIM−LLA] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 𝐿b3,NNIM−LLA] 

 

(10%,45%,45%) [152.03m 75.72m 395.36m 373.71m] 

[150.18m 155.66m 163.99m] 

 

[373.71m 395.33m 75.72m 152.03m] 

[163.99m 155.66m 150.18m] 

213.21m 

 

 

131.65m 

Default 

Operation 

Settings 

B 

+ 

1 hidden 

layer 

(30%,35%,35%) [114.06m 230.89m 251.05m 403.99m] 

[148.62m 150.11m 152.63m] 

 

[403.99m 251.05m 230.89m 114.06m] 

[152.63m 150.11m 148.62m] 

197.57m 

 

 

116.66m 

(50%,25%,25%) [104.83m 239.65m 256.25m 398.64m] 

[146.47m 151.34m 149.72m] 

 

[398.64m 256.25m 239.65m 104.83m] 

[149.72m 151.34m 146.47m] 

199.80m 

 

 

119.43m 

(70%,15%,15%) 

Default 
[115.25m 241.32m 240.29m 403.14m] 

[149.09m 150.59m 151.83m] 

 

[403.14m 240.29m 241.32m 115.25m] 

[151.83m 150.59m 149.09m] 

196.26m 

 

 

117.79m 

(80%,10%,10%) [109.94m 202.13m 271.94m 415.98m] 

[149.63m 150.41m 151.07m] 

 

[415.98m 271.94m 202.13m 109.94m] 

[151.07m 150.41m 149.63m] 

202.56m 

 

 

113.15m 

(90%,5%,5%) [115.50m 240.79m 239.61m 404.10m] 

[149.30m 150.40m 152.04m] 

 

[404.10m 239.61m 240.79m 115.50m] 

[152.04m 150.40m 149.30m] 

196.28m 

 

 

117.57m 

(98%,1%,1%) [128.16m 74.86m 335.59m 461.38m] 

[152.87m 154.03m 153.24m] 

 

[461.38m 335.59m 74.86m 128.16m] 

[153.24m 154.03m 152.87m] 

220.11m 

 

 

111.52m 

(10%,45%,45%) [81.01m 281.34m 362.84m 269.12m] 

[123.07m 118.41m 101.52m] 

 

[269.12m 362.84m 281.34m 81.01m] 

[101.52m 118.41m 123.07m] 

203.10m 

 

 

150.95m 

Default 

Operation 

Settings 

B 

+ 

2 hidden 

layers 

(30%,35%,35%) [110.31m 319.60m 77.59m 494.45m] 

[147.84m 147.20m 158.14m] 

 

[494.45m 77.59m 319.60m 110.31m] 

[158.14m 147.20m 147.84m] 

211.42m 

 

 

136.71m 

(50%,25%,25%) [2,638.42m -3,780.68m -5,118.86m 7,205.92m] 

[-684.51m -723.02m -1,567.15m] 
X 
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[7,205.92 -5,118.86m -3,780.68m 2,638.42m] 

[-1,567.15m -723.02m -684.51m] 

 

X 

(70%,15%,15%) 

Default 
[159.16m 206.79m 109.35m 524.70m] 

[152.25m 166.69m 155.59m] 

 

[524.70m 109.35m 206.79m 159.16m] 

[155.59m 166.69m 152.25m] 

202.61m 

 

 

111.83m 

(80%,10%,10%) [115.07m 232.10m 267.55m 385.28m] 

[151.25m 150.15m 152.05m] 

 

[385.28m 267.55m 232.10m 115.07m] 

[152.05m 150.15m 151.25m] 

196.80m 

 

 

120.65m 

(90%,5%,5%) [111.40m 237.59m 270.54m 380.47m] 

[149.35m 150.32m 151.75m] 

 

[380.47m 270.54m 237.59m 111.40m] 

[151.75m 150.32m 149.35m] 

197.49m 

 

 

122.46m 

(98%,1%,1%) [122.05m 12.36m 365.42m 500.15m] 

[151.15m 151.52m 144.57m] 

 

[500.15m 365.42m 12.36m 122.05m] 

[144.57m 151.52m 151.15m] 

237.96m 

 

 

118.85m 

(10%,45%,45%) [130.75m 35.15m 384.33m 518.12m] 

[155.19m 171.88m 166.20m] 

 

[518.12m 384.33m -35.15m 130.75m] 

[166.20m 171.88m 155.19m] 

252.13m 

 

 

X 

Default 

Operation 

Settings 

B 

+ 

3 hidden 

layers 

(30%,35%,35%) [48.76m 383.16m 313.44m 254.19m] 

[135.21m 151.39m 140.66m] 

 

[254.19m 313.44m 383.16m 48.76m] 

[140.66m 151.39m 135.21m] 

219.76m 

 

 

180.78m 

(50%,25%,25%) [194.67m 51.72m 85.22m 668.38m] 

[111.15m 121.44m 102.01m] 

 

[668.38m 85.22m 51.72m 194.67m] 

[102.01m 121.44m 111.15m] 

228.56m 

 

 

103.31m 

(70%,15%,15%) 

Default 

[1,138.55m -1,148.34m -1,526.45m 2,467.43m] 

[92.93m 199.43m 33.93m] 

 

[2,467.43m -1,526.45m -1,148.34m 1,138.55m] 

[33.93m 199.43m 92.93m] 

X 

 

 

X 

(80%,10%,10%) [139.43m 163.65m 265.94m 430.50m] 

[148.44m 148.81m 150.59m] 

 

[430.50m 265.94m 163.65m 139.43m] 

[150.59m 148.81m 148.44m] 

196.37m 

 

 

103.39m 

(90%,5%,5%) [1,758.12m -1,863.26m -2,534.78m 3,494.16m] 

[-6.63m -66.63m 33.56m] 

 

[3,494.16m -2,534.78m -1,863.26m 1,758.12m] 

[33.56m -66.63m -6.63m] 

X 

 

 

X 

(98%,1%,1%) [1,691.61m -1,781.63m -2,535.55m 3,422.96m] 

[134.46m 70.35m 113.19m] 

 

[3,422.96m -2,535.55m -1,781.63m 1,691.61m] 

[113.19m 70.35m 134.46m] 

X 

 

 

X 

(10%,45%,45%) [59.73m 342.82m 342.04m 279.28m] 224.42m Default 
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[168.37m 175.88m 155.58m] 

 

[279.28m 342.04m 342.82m 59.73m] 

[155.58m 175.88m 168.37m] 

 

 

177.65m 

Operation 

Settings 

B 

+ 

4 hidden 

layers 

(30%,35%,35%) [767.69m -744.19m -1,099.11m 2,058.23m] 

[426.92m 57.38m 131.21m] 

 

[2,058.23m -1,099.11m -744.19m 767.69m] 

[131.21m 57.38m 426.92m] 

X 

 

 

X 

(50%,25%,25%) [1,213.45m -1,805.84m -1,945.48m 3,314.22m] 

[361.26m 53.03m 161.95m] 

 

[3,314.22m -1,945.48m -1,805.84m 1,213.45m] 

[161.95m 53.03m 361.26m] 

X 

 

 

X 

(70%,15%,15%) 

Default 

[2418.57m -3346.98m -3311.13m 5169.19m] 

[-34.68m 164.43m -245.33m] 

 

[5169.19m -3311.13m -3346.98m 2418.57m] 

[-245.33m 164.43m -34.68m] 

X 

 

 

X 

(80%,10%,10%) [1,476.12m -1,638.64m -2,102.72m 3,167.57m] 

[63.59m 156.05m 44.39m] 

 

[3,167.57m -2,102.72m -1,638.64m 1,476.12m] 

[44.39m 156.05m 63.59m] 

X 

 

 

Χ 

(90%,5%,5%) [260.03m 70.47m -37.75m 704.40m] 

[-5.44m 0.78m 33.33m] 

 

[704.40m -37.75m 70.47m 260.03m] 

[33.33m 0.78m -5.44m] 

X 

 

 

X 

(98%,1%,1%) [1,220.62m -1,354.31m -1,636.03m 2,742.52m] 

[-159.19m 2.78m -230.15m] 

 

[2,742.52m -1,636.03m -1,354.31m 1,220.62m] 

[-230.15m 2.78m -159.19m] 

X 

 

 

X 

(10%,45%,45%) [86.68m 223.46m 285.89m 384.12m] 

[151.28m 149.58m 146.44m] 

 

[384.12m 285.89m 223.46m 86.68m] 

[146.44m 149.58m 151.28m] 

206.20m 

 

 

123.44m 

Default 

Operation 

Settings 

B 

+ 

5 hidden 

layers 

(30%,35%,35%) [1,329.10m -1,637.87m -2,422.43m 3,527.58m] 

[-268.04m -189.39m -182.65m] 

 

[3,527.58m -2,422.43m -1,637.87m 1,329.10m] 

[-182.65m -189.39m -268.04m] 

X 

 

 

X 

(50%,25%,25%) [1,229.08m -1,748.39m -1,926.08m 3,299.86m] 

[-98.19m -193.91m -161.55m] 

 

[3,299.86m -1,926.08m -1,748.39m 1,229.08m] 

[-161.55m -193.91m -98.19m] 

X 

 

 

X 

(70%,15%,15%) 

Default 

[2,147.65m -2,267.28m -2,547.68m 3,359.61m] 

[-572.72m -445.75m -594.49m] 

 

[3,359.61m -2,547.68m -2,267.28m 2,147.65m] 

[-594.49m -445.75m -572.72m] 

X 

 

 

X 

(80%,10%,10%) [924.90m -1,041.43m -1,701.15m 2,614.81m] 

[6.23m -130.81m -117.23m] 

 

[2,614.81m -1,701.15m -1,041.43m 924.90m] 

[-117.23m -130.81m 6.23m] 

X 

 

X 

(90%,5%,5%) [-2,978.36m 4,909.27m 6,219.73m -7,120.47m] 

[185.18m -395.09m 1,032.06m] 
X 
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[-7,120.47m 6,219.73m 4,909.27m -2,978.36m] 

[1,032.06m -395.09m 185.18m] 

 

X 

(98%,1%,1%) [-0.29m 435.05m 558.04m 11.29m] 

[164.40m 174.86m 216.50m] 

 

[11.29m 558.04m 435.05m -0.29m] 

[216.50m 174.86m 164.40m] 

X 

 

 

X 

 

 
Table 9 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Suburban Case, Default 

Operation Settings B and Different Participation Percentage Values and Hidden Layers (the symmetrical 

approximations are reported in blue font color) 

Indicative OV LV BPL Topologies of Table 1 Participation 

Percentages for 

Training, 

Validation and 

Testing 

(%,%,%) 

Suburban case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 0] 
Branch Line Length Lb =[𝐿b1 𝐿b2 0] 

[500m 400m 100m 0m] 

[50m 10m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 0] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 0] 

 

(10%,45%,45%) [103.36m 699.47m 197.18m 0m] 

[100.47m 158.92m 0m] 

 

[197.18m 699.47m 103.36m 0m] 

[158.92m 100.47m 0m] 

200.42m 

 

 

169.64m 

Default 

Operation 

Settings 

B 

+ 

1 hidden 

layer 
(30%,35%,35%) [43.07m 755.35m 201.58m 0m] 

[135.74m 158.83m 0m] 

 

[201.58m 755.35m 43.07m 0m] 

[158.83m 135.74m 0m] 

231.42m 

 

 

187.55m 

(50%,25%,25%) [73.90m 691.65m 234.46m 0m] 

[146.66m 151.93m 0m] 

 

[234.46m 691.65m 73.90m 0m] 

[151.93m 146.66m 0m] 

211.86m 

 

 

162.71m 

(70%,15%,15%) 

Default 
[55.07m 711.81m 233.12m 0m] 

[140.71m 159.39m 0m] 

 

[233.12m 711.81m 55.07m 0m] 

[159.39m 140.71m 0m] 

221.51m 

 

 

168.83m 

(80%,10%,10%) [59.01m 711.03m 229.97m 0m] 

[142.19m 162.93m 0m] 

 

[229.97m 711.03m 59.01m 0m] 

[162.93m 142.19m 0m] 

220.39m 

 

 

169.69m 

(90%,5%,5%) [146.19m 325.48m 528.55m 0m] 

[146.03m 156.65m 0m] 

 

[528.55m 325.48m 146.19m 0m] 

[156.65m 146.03m 0m] 

222.04m 

 

 

74.05m 

(98%,1%,1%) [-1,347.51m 5,757.91m -3,349.96m 0m] 

[-79.40m 234.97m 0m] 

 

[-3349.956m 5,757.91m -1,347.51m 0m] 

[234.97m -79.40m 0m] 

X 

 

 

X 

(10%,45%,45%) [-208.09m 1537.21m -369.88m 0m] X Default 
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[-422.42m -344.21m 0m] 

 

[-369.88m 1537.21m -208.09m 0m] 

[-344.21m -422.42m 0m] 

 

 

X 

Operation 

Settings 

B 

+ 

2 hidden 

layers 

(30%,35%,35%) [-931.03m 4272.94m -2333.96m 0m] 

[20.68m 265.88m 0m] 

 

[-2333.96m 4272.94m -931.03m 0m] 

[265.88m 20.68m 0m] 

X 

 

 

X 

(50%,25%,25%) [-49.73m 1,068.10m -18.35m 0m] 

[33.96m 48.92m 0m] 

 

[-18.36m 1,068.10m -49.73m 0m] 

[48.92m 33.96m 0m] 

X 

 

 

X 

(70%,15%,15%) 

Default 
[203.43m 164.18m 632.36m 0m] 

[57.94m 68.56m 0m] 

 

[632.36m 164.18m 203.43m 0m] 

[68.58m 57.94m 0m] 

247.98m 

 

 

111.14m 

(80%,10%,10%) [141.86m 341.28m 516.86m 0m] 

[150.07m 158.49m 0m] 

 

[516.86m 341.28m 141.86m 0m] 

[158.49m 150.07m 0m] 

219.59m 

 

 

72.58m 

(90%,5%,5%) [230.75m -42.17m 811.37m 0m] 

[274.11m 296.98m 0m] 

 

[811.37m 42.17m 230.75m 0m] 

[296.98m 274.11m 0m] 

359.89m 

 

 

250.80m 

(98%,1%,1%) [103.72m 576.04m 320.23m 0m] 

[-5.61m -2.81m 0m] 

 

[320.23m 576.04m 103.72m 0m] 

[-2.81m -5.61m 0m] 

X 

 

 

X 

(10%,45%,45%) [170.90m 236.32m 595.01m 0m] 

[109.46m 66.63m 0m] 

 

[595.01m 236.32m 170.90m 0m] 

[66.63m 109.46m 0m] 

235.09m 

 

 

85.37m 

Default 

Operation 

Settings 

B 

+ 

3 hidden 

layers 

(30%,35%,35%) [139.00m 418.08m 442.87m 0m] 

[249.27m 267.46m 0m] 

 

[442.87m 418.08m 139.00m 0m] 

[267.46m 249.27m 0m] 

224.94m 

 

 

125.16m 

(50%,25%,25%) [158.62m 351.08m 491.39m 0m] 

[2.35m -30.28m 0m] 

 

[491.39m 351.08m 158.62m 0m] 

[-30.28m 2.35m 0m] 

X 

 

 

X 

(70%,15%,15%) 

Default 
[148.53m 385.22m 466.25m 0m] 

[0.04m -2.27m 0m] 

 

[466.25m 385.22m 148.53m 0m] 

[-2.27m 0.04m 0m] 

192.92m 

 

 

X 

(80%,10%,10%) [56.77m 785.41m 198.24m 0m] 

[141.69m 166.25m 0m] 

 

235.27m 
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[198.24m 785.41m 56.77m 0m] 

[166.25m 141.69m 0m] 

197.24m 

(90%,5%,5%) [-166.96m 1,787.74m -620.55m 0m] 

[-45.93m -75.84m 0m] 

 

[-620.55m 1,787.74m -166.96m 0m] 

[-75.84m -45.93m 0m] 

X 

 

 

X 

(98%,1%,1%) [-33.60m 1,048.41m -16.66m 0m] 

[67.84m 120.55m 0m] 

 

[-16.66m 1,048.41m -33.60m 0m] 

[120.55m 67.84m 0m] 

X 

 

 

X 

(10%,45%,45%) [143.64m 1,242.46m 953.47m 0m] 

[409.94m 157.46m 0m] 

 

[953.47m 1,242.46m 143.64m 0m] 

[157.46m 409.94m 0m] 

495.18m 

 

 

394.39m 

Default 

Operation 

Settings 

B 

+ 

4 hidden 

layers 

(30%,35%,35%) [-756.93m 3,263.07m -1,415.99m 0m] 

[191.40m 102.91m 0m] 

 

[-1,415.99m 3,263.07m -756.93m 0m] 

[102.91m 191.40m 0m] 

X 

 

 

X 

(50%,25%,25%) [-219.37m 1,876.11m -564.73m 0m] 

[10.04m 16.53m 0m] 

 

[-564.73m 1,876.11m -219.37m 0m] 

[16.53m 10.04m 0m] 

X 

 

 

X 

(70%,15%,15%) 

Default 
[1,555.73m -5,874.29m 5,315.56m 0m] 

[-169.42m -186.57m 0m] 

 

[5,315.55m 5,874.29m 1,555.73m 0m] 

[-186.57m -169.42m 0m] 

X 

 

 

X 

(80%,10%,10%) [116.03m 580.39m 304.44m 0m] 

[-5.09m -5.56m 0m] 

 

[304.44m 580.39m 116.03m 0m] 

[-5.56m -5.09m 0m] 

Χ 

 

 

Χ 

(90%,5%,5%) [5,533.40m -23,793.42m 19,254.14m 0m] 

[-1,097.74m -1,112.27m 0m] 

 

[19,254.14m -23,793.42m 5,533.40m 0m] 

[-1,112.27m -1,097.74m 0m] 

X 

 

 

X 

(98%,1%,1%) [227.72m 381.73m 409.35m 0m] 

[113.07m 117.73m 0m] 

 

[409.35m 381.73m 227.72m 0m] 

[117.73m 113.07m 0m] 

162.90m 

 

 

75.66m 

(10%,45%,45%) [8.37m 220.28m 400.72m 0m] 

[134.44m 206.89m 0m] 

 

[400.72m 220.28m 8.37m 0m] 

[206.89m 134.44m 0m] 

242.11m 

 

 

113.80m 

Default 

Operation 

Settings 

B 

+ 

5 hidden 

layers 

(30%,35%,35%) [1,126.70m -5,642.68m 5,510.10m 0m] 

[170.50m -282.24m 0m] 

 

[5,510.10m -5,642.68m 1,126.70m 0m] 

[-282.24m 170.50m 0m] 

X 

 

 

X 
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(50%,25%,25%) [418.23m -581.91m 1,160.68m 0m] 

[85.18m 26.28m 0m] 

 

[1,160.68m -581.91m 418.23m 0m] 

[26.28m 85.18m 0m] 

X 

 

 

X 

(70%,15%,15%) 

Default 
[2,288.45m 8,429.98m 7,134.97m 0m] 

[565.12m 578.81m 0m] 

 

[7,134.97m -8,429.98m 2,288.45m 0m] 

[578.81m 565.12m 0m] 

X 

 

 

X 

(80%,10%,10%) [1,469.42m -6,012.17m 5,547.10m 0m] 

[138.33m 269.54m 0m] 

 

[5,547.10m -6,012.17m 1,469.42m 0m] 

[269.54m 138.33m 0m] 

Χ 

 

 

Χ 

(90%,5%,5%) [99.39m 1,255.15m -354.41m 0m] 

[240.46m -91.46m 0m] 

 

[-354.41m 1,255.15m 99.39m 0m] 

[-91.46m 240.46m 0m] 

X 

 

 

X 

(98%,1%,1%) [-560.38m 2,964.91m -1,265.14m 0m] 

[134.73m 358.45m 0m] 

 

[-1,265.14m 2,964.91m -560.38m 0m] 

[358.45m 134.73m 0m] 

X 

 

 

X 

 

 
Table 10 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Rural Case, Default Operation 

Settings B and Different Participation Percentage Values and Hidden Layers (the symmetrical 

approximations are reported in blue font color) 

Indicative OV LV BPL Topologies of Table 1 Participation 

Percentages for 

Training, 

Validation and 

Testing 

(%,%,%) 

Rural case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 0 0] 
Branch Line Length Lb =[𝐿b1 0 0] 

[600m 400m 0m 0m] 

[300m 0m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 0 0] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 0 0] 

 

(10%,45%,45%) [311.08m 696.43m 0m 0m] 

[175.45m 0m 0m] 

 

[696.43m 311.08m 0m 0m] 

[175.45m 0m 0m] 

163.38m 

 

 

68.37m 

Default 

Operation 

Settings 

B 

+ 

1 hidden 

layer 
(30%,35%,35%) [119.77m 904.53m 0m 0m] 

[44.00m 0m 0m] 

 

[904.53m 119.77m 0m 0m] 

[44.00m 0m 0m] 

280.48m 

 

 

183.92m 

(50%,25%,25%) [194.44m 806.07m 0m 0m] 

[93.66m 0m 0m] 

 

[806.07m 194.44m 0m 0m] 

[93.66m 0m 0m] 

230.51m 

 

 

134.85m 

(70%,15%,15%) 

Default 
[265.66m 866.04m 0m 0m] 

[156.07m 0m 0m] 

 

[866.04m 265.66m 0m 0m] 

223.51m 

 

 

125.09m 
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[156.07m 0m 0m] 

(80%,10%,10%) [257.40m 742.60m 0m 0m] 

[200.81m 0m 0m] 

 

[742.60m 257.40m 0m 0m] 

[200.81m 0m 0m] 

186.92m 

 

 

84.94m 

(90%,5%,5%) [220.80m 824.57m 0m 0m] 

[170.62m 0m 0m] 

 

[824.57m 220.80m 0m 0m] 

[170.62m 0m 0m] 

220.65m 

 

 

119.09m 

(98%,1%,1%) [187.47m 812.53m 0m 0m] 

[171.92m 0m 0m] 

 

[812.53m 187.47m 0m 0m] 

[171.92m 0m 0m] 

225.76m 

 

 

123.48m 

(10%,45%,45%) [248.28m 748.62m 0m 0m] 

[183.84m 0m 0m] 

 

[748.62m 248.28m 0m 0m] 

[183.84m 0m 0m] 

192.26m 

 

 

91.50m 

Default 

Operation 

Settings 

B 

+ 

2 hidden 

layers 

(30%,35%,35%) [297.78m 899.66m 0m 0m] 

[81.95m 0m 0m] 

 

[899.66m 297.78m 0m 0m] 

[81.95m 0m 0m] 

235.60m 

 

 

145.30m 

(50%,25%,25%) [252.84m 665.95m 0m 0m] 

[180.89m 0m 0m] 

 

[665.95m 252.84m 0m 0m] 

[180.89m 0m 0m] 

171.31m 

 

 

75.77m 

(70%,15%,15%) 

Default 
[247.53m 772.84m 0m 0m] 

[215.07m 0m 0m] 

 

[772.84m 247.53m 0m 0m] 

[215.07m 0m 0m] 

196.56m 

 

 

92.84m 

(80%,10%,10%) [255.63m 742.63m 0m 0m] 

[302.62m 0m 0m] 

 

[742.63m 255.63m 0m 0m] 

[302.62m 0m 0m] 

183.61m 

 

 

76.71m 

(90%,5%,5%) [215.75m 795.23m 0m 0m] 

[266.35m 0m 0m] 

 

[795.23m 215.75m 0m 0m] 

[266.35m 0m 0m] 

208.73m 

 

 

102.26m 

(98%,1%,1%) [208.65m 791.35m 0m 0m] 

[279.41m 0m 0m] 

 

[791.35m 208.65m 0m 0m] 

[279.41m 0m 0m] 

209.33m 

 

 

102.58m 

(10%,45%,45%) [250.39m 799.33m 0m 0m] 

[172.89m 0m 0m] 

 

[799.33m 250.39m 0m 0m] 

[172.89m 0m 0m] 

206.28m 

 

 

105.74m 

Default 

Operation 

Settings 

B 

+ 
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(30%,35%,35%) [242.37m 714.46m 0m 0m] 

[183.29m 0m 0m] 

 

[714.46m 242.37m 0m 0m] 

[183.29m 0m 0m] 

185.32m 

 

 

85.83m 

3 hidden 

layers 

(50%,25%,25%) [99.70m 900.25m 0m 0m] 

[299.56m 0m 0m] 

 

[900.25m 99.70m 0m 0m] 

[299.56m 0m 0m] 

267.41m 

 

 

160.50m 

(70%,15%,15%) 

Default 
[216.21m 784.78m 0m 0m] 

[160.92m 0m 0m] 

 

[784.78m 216.21m 0m 0m] 

[160.92m 0m 0m] 

212.03m 

 

 

111.65m 

(80%,10%,10%) [220m 780m 0m 0m] 

[300m 0m 0m] 

 

[780m 220m 0m 0m] 

[300m 0m 0m] 

203.12m 

 

 

96.21m 

(90%,5%,5%) [218.74m 767.11m 0m 0m] 

[251.74m 0m 0m] 

 

[767.11m 218.74m 0m 0m] 

[251.74m 0m 0m] 

200.88m 

 

 

94.95m 

(98%,1%,1%) [220m 780m 0m 0m] 

[300m 0m 0m] 

 

[780m 220m 0m om] 

[300m 0m 0m] 

203.12m 

 

 

96.21m 

(10%,45%,45%) [81.83m 869.35m 0m 0m] 

[294.75m 0m 0m] 

 

[869.35m 81.83m 0m 0m] 

[294.75m 0m 0m] 

264.26m 

 

 

157.58m 

Default 

Operation 

Settings 

B 

+ 

4 hidden 

layers 

(30%,35%,35%) [336.45m 745.92m 0m 0m] 

[214.26m 0m 0m] 

 

[745.92m 336.45m 0m 0m] 

[214.26m 0m 0m] 

167.53m 

 

 

68.33m 

(50%,25%,25%) [148.85m 912.52m 0m 0m] 

[36.01m 0m 0m] 

 

[912.52m 148.85m 0m 0m] 

[36.01m 0m 0m] 

276.69m 

 

 

181.44m 

(70%,15%,15%) 

Default 
[233.58m 728.75m 0m 0m] 

[274.36m 0m 0m] 

 

[728.75m 233.58m 0m 0m] 

[274.36m 0m 0m] 

186.32m 

 

 

80.11m 

(80%,10%,10%) [186.30m 827.32m 0m 0m] 

[279.94m 0m 0m] 

 

[827.32m 186.30m 0m 0m] 

[279.94m 0m 0m] 

224.93m 

 

 

118.17m 

(90%,5%,5%) [220m 780m 0m 0m] 

[300m 0m 0m] 

203.12m 
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[780m 220m 0m 0m] 

[300m 0m 0m] 

 

96.21m 

(98%,1%,1%) [220m 780m 0m 0m] 

[300m 0m 0m] 

 

[780m 220m 0m om] 

[300m 0m 0m] 

203.12m 

 

 

96.21m 

(10%,45%,45%) [180.87m 632.44m 0m 0m] 

[88.01m 0m 0m] 

 

[632.44m 180.87m 0m 0m] 

[88.01m 0m 0m] 

198.08m 

 

 

115.89m 

Default 

Operation 

Settings 

B 

+ 

5 hidden 

layers 

(30%,35%,35%) [424.35m 860.32m 0m 0m] 

[268.28m 0m 0m] 

 

[860.32m 424.35m 0m 0m] 

[268.28m 0m 0m] 

186.61m 

 

 

 

99.55m 
(50%,25%,25%) [199.88m 800.01m 0m 0m] 

[300.00m 0m 0m] 

 

[800.01m 199.89m 0m 0m] 

[300.00m 0m 0m] 

213.84m 

 

 

106.94m 

(70%,15%,15%) 

Default 
[50m 950m 0m 0m] 

[300m 0m 0m] 

 

[950m 50m 0m 0m] 

[300m 0m 0m] 

293.99m 

 

 

187.08m 

(80%,10%,10%) [259.42m 753.73m 0m 0m] 

[285.93m 0m 0m] 

 

[753.73 259.42m 0m 0m] 

[285.93m 0m 0m] 

185.67m 

 

 

78.92m 

(90%,5%,5%) [229.20m 935.03m 0m 0m] 

[260.65m 0m 0m] 

 

[935.03m 229.20m 0m 0m] 

[260.65m 0m 0m] 

246.49m 

 

 

142.91m 

(98%,1%,1%) [220m 780m 0m 0m] 

[300m 0m 0m] 

 

[780m 220m 0m om] 

[300m 0m 0m] 

203.12m 

 

 

96.21m 
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Figure 5.  The best approximation RMSDs of NNIM-LLA for the urban case A for different 
participation percentages of training, validation and testing when the remaining default operation 
settings B are assumed. 

 

 
Figure 6.  The best approximation RMSDs of NNIM-LLA for the suburban case for different 
participation percentages for training, validation and testing when the remaining default operation 
settings B are assumed. 
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Figure 7.  The best approximation RMSDs of NNIM-LLA for the rural case for different 
participation percentages for training, validation and testing when the remaining default operation 
settings B are assumed. 

 

 

For the analysis of the NNIM-LLA approximations when different participation 

percentages of the three phases are applied, a balanced ratio among the participation 

percentages is here promoted for achieving lower RMSDs with an emphasis on the 

training participation percentage. In total, the default set (70%, 15%, 15%) of 

participation percentages in the operation settings B allows NNIM-LLA to satisfactorily 

approximate the distribution and branch line lengths of all the indicative OV LV BPL 

topologies of Table 1. Note that the RMSD of the default set of participation percentages 

is almost equal to the minimum RMSD in urban case A and rural case whilst the RMSD 

of the default set of participation percentages remains close to the minimum RMSD in 

suburban case.  

 

4.4 TIM-LLA and NNIM-LLA Performance during the Default Operation Settings 
B and Possible Improvements 
 In this subsection, a briefing of the previous TIM-LLA and NNIM-LLA 

performance results is attempted so that the overall numerical performance comparison 

between these two proposed methods may become easy when the default operation 

settings B are assumed (see Sec. 4.1). In addition, the possible performance 

improvements, which may occur for the various R values of TIM-LLA presented in Sec. 

4.2 and the different participation percentages of the three phases of NNIM-LLA 

presented in Sec. 4.3, are also presented. 

 In Table 11, the minimum RMSDs and the corresponding distribution and branch 

line length approximations of TIM-LLA and NNIM-LLA are reported with reference to 

Table 2 and Figure 1 for the urban case A when the default operation settings B are 

assumed. To examine the possible TIM-LLA performance improvement, the minimum 

RMSD, the difference between the minimum RMSDs of the default operation settings B 

and of the improvement action, the corresponding distribution and branch line length 



 

Peer-Reviewed Article   Trends in Renewable Energy, 9 

 

Tr Ren Energy, 2023, Vol.9, No.1, 34-77. doi: 10.17737/tre.2023.9.1.00149  69 

 

approximation and the corresponding R value of TIM-LLA are also presented in Table 11 

with reference to Table 5 and Figure 4 for the various R values of TIM-LLA of Sec. 4.2. 

To examine the possible NNIM-LLA performance improvement, the minimum RMSD, 

the difference between the minimum RMSDs of the default operation settings B and of 

the improvement action, the corresponding distribution and branch line length 

approximation, the corresponding set of participation percentages of the three phases of 

NNIM-LLA and the corresponding number of hidden layers are also reported in Table 11 

with reference to Table 8 and Figure 5 for the various sets of participation percentages 

and number of hidden layers of NNIM-LLA of Sec. 4.3. Of course, the real distribution 

and branch line lengths of the urban case A of Table 1 are also provided for comparison 

reasons. In Tables 12 and 13, same Tables with Table 11 are demonstrated but for the 

suburban and rural case, respectively. 

 Some final thoughts and observations can be outlined for the performance of 

TIM-LLA and NNIM-LLA by observing Tables 11-13: 

 The difference values between the minimum RMSDs of the default operation 

settings B and of the previous improvement actions reveal the nature of TIM-LLA 

and NNIM-LLA; say: 

o TIM-LLA is a deterministic methodology and for that reason the RMSD 

differences remain marginal ranging from 0 to -13.12m (or -7.77%). Note 

that only negative RMSD differences are expected since the TIM OV LV 

BPL topology database is the operation basis of the deterministic concept 

of TIM-LLA and only improvement may occur. 

o NNIM-LLA is a stochastic methodology where AI, machine learning and 

neural networks coexist and for that reason the RMSD differences remain 

mixed and significant ranging from +15.63m (+17.83%) to -38.56m (-

34.69%). Due to the simulation process of NNIM-LLA, positive RMSD 

differences can be observed and the values of the minimum RMSD 

depend on the simulation process.  

In general, TIM-LLA is a deterministic methodology with a steady and rather 

predictable performance behavior whereas NNIM-LLA is a stochastic 

methodology that may achieve better performances in comparison with the TIM-

LLA one but a lot of settings are required to be further investigated prior to the 

NNIM-LLA operation in each BPL topology (e.g., number of hidden layers, 

number of executions, participation percentages of its three phases). Similarly to 

[1], TIM-LLA and NNIM-LLA present advantages and disadvantages concerning 

their application towards the tomography of the OV LV BPL topologies while 

their performances can be considered to be comparable. 
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Table 11 

Best Distribution and Branch Line Length Approximations of TIM-LLA and NNIM-LLA for the Urban 

Case A (Default Operation Settings B and Possible Improvements) 

Indicative OV LV BPL Topologies of Table 1 Urban case A  

(Typical urban case) 

RMSD  

(m) 

 

RMSD 

Difference 

(m, %) 

Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 𝐿4] 
Branch Line Length Lb =[𝐿b1 𝐿b2 𝐿b3] 

[500m 200m 100m 200m] 

[8m 13m 10m] 

- - 

TIM-LLA (Default) 

Approximated Distribution Line Length 𝐋TIM−LLA =
[𝐿1,TIM−LLA 𝐿2,TIM−LLA 𝐿3,TIM−LLA 𝐿4,TIM−LLA] 
(Approximated Branch Line Length) 𝐋b,TIM−LLA =
[𝐿b1,TIM−LLA 𝐿b2,TIM−LLA 𝐿b3,TIM−LLA] 

[640m 80m 80m 200m] 

[160m 0m 80m] 

94.55m Default 

Operation 

Settings B 

NNIM-LLA (Default) 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 𝐿4,NNIM−LLA] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 𝐿b3,NNIM−LLA] 
 

3 hidden 

layers 

[559.97m 184.02m 29.39m 

226.51m] 

[126.66m 137.30m 

131.44m] 

87.68m Default 

Operation 

Settings B 

TIM-LLA (Improvement Action) 

Approximated Distribution Line Length 𝐋TIM−LLA =
[𝐿1,TIM−LLA 𝐿2,TIM−LLA 𝐿3,TIM−LLA 𝐿4,TIM−LLA] 

(Approximated Branch Line Length) 𝐋b,TIM−LLA =
[𝐿b1,TIM−LLA 𝐿b2,TIM−LLA 𝐿b3,TIM−LLA] 

[633.33m 66.67m 66.67m 233.33m] 

[133.33m 0m 66.67m] 

90.13m 

 

-4.42m  

(-4.67%) 

R=3 

+ 

Default 

Operation 

Settings B 

NNIM-LLA (Improvement Action) 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 𝐿4,NNIM−LLA] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 𝐿b3,NNIM−LLA] 

3 hidden 

layers 

 

 

[668.38m 85.22m 51.72m 

194.67m] 

[102.01m 121.44m 

111.15m] 

103.31m 

 

+15.63m 

(+17.83%) 

(50%,25%,25%) 

+ 

Default 

Operation 

Settings B 

 

 
Table 12 

Best Distribution and Branch Line Length Approximations of TIM-LLA and NNIM-LLA for the Suburban 

Case (Default Operation Settings B and Possible Improvements) 

Indicative OV LV BPL Topologies of Table 1 Suburban case RMSD  

(m) 

 

RMSD 

Difference 

(m, %) 

Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 0] 
Branch Line Length Lb =[𝐿b1 𝐿b2 0] 

[500m 400m 100m 0m] 

[50m 10m 0m] 

- - 

TIM-LLA (Default) 

Approximated Distribution Line Length 𝐋TIM−LLA =
[𝐿1,TIM−LLA 𝐿2,TIM−LLA 𝐿3,TIM−LLA 0] 
(Approximated Branch Line Length) 𝐋b,TIM−LLA =
[𝐿b1,TIM−LLA 𝐿b2,TIM−LLA 0] 

[780m 100m 120m 0m] 

[140m 160m 0m] 

168.78m Default 

Operation 

Settings B 

NNIM-LLA (Default) 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 0] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =

2 hidden 

layers 

[632.36m 164.18m 

203.43m 0m] 

[68.58m 57.94m 0m] 

111.14m Default 

Operation 

Settings B 
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[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 0] 
 

TIM-LLA (Improvement Action) 

Approximated Distribution Line Length 𝐋TIM−LLA =
[𝐿1,TIM−LLA 𝐿2,TIM−LLA 𝐿3,TIM−LLA 𝐿4,TIM−LLA] 

(Approximated Branch Line Length) 𝐋b,TIM−LLA =
[𝐿b1,TIM−LLA 𝐿b2,TIM−LLA 𝐿b3,TIM−LLA] 

[700m 100m 200m 0m] 

[150m 150m 0m] 

155.66m 

 

-13.12m 

(-7.77%) 

R=10 

+ 

Default 

Operation 

Settings B 

NNIM-LLA (Improvement Action) 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 𝐿4,NNIM−LLA] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 𝐿b3,NNIM−LLA] 

2 hidden 

layers 

[516.86m 341.28m 

141.86m 0m] 

[158.49m 150.07m 0m] 

72.58m 

 

-38.56m 

(-34.69%) 

(80%,10%,10%) 

+ 

Default 

Operation 

Settings B 

 

 
Table 13 

Best Distribution and Branch Line Length Approximations of TIM-LLA and NNIM-LLA for the Rural 

Case (Default Operation Settings B and Possible Improvements) 

Indicative OV LV BPL Topologies of Table 1 Rural case RMSD  

(m) 

 

RMSD 

Difference 

(m, %) 

Notes 

Distribution Line Length L =[𝐿1 𝐿2 0 0] 
Branch Line Length Lb =[𝐿b1 0 0] 

[600m 400m 0m 0m] 

[300m 0m 0m] 

- - 

TIM-LLA (Default) 

Approximated Distribution Line Length 𝐋TIM−LLA =
[𝐿1,TIM−LLA 𝐿2,TIM−LLA 0 0] 
(Approximated Branch Line Length) 𝐋b,TIM−LLA =
[𝐿b1,TIM−LLA 0 0] 

[780m 220m 0m 0m] 

[300m 0m 0m] 

96.21m 

 

Default 

Operation 

Settings B 

NNIM-LLA (Default) 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 0 0] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 0 0] 

1 hidden 

layer 

[733.33m 266.67m 0m 0m] 

[233.33m 0m 0m] 

75.59m Default 

Operation 

Settings B 

TIM-LLA (Improvement Action) 

Approximated Distribution Line Length 𝐋TIM−LLA =
[𝐿1,TIM−LLA 𝐿2,TIM−LLA 𝐿3,TIM−LLA 𝐿4,TIM−LLA] 

(Approximated Branch Line Length) 𝐋b,TIM−LLA =
[𝐿b1,TIM−LLA 𝐿b2,TIM−LLA 𝐿b3,TIM−LLA] 

[780m 220m 0m 0m] 

[300m 0m 0m] 

96.21m 

 

0m 

(0%) 

R=5 

+ 

Default 

Operation 

Settings B 

NNIM-LLA (Improvement Action) 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 𝐿4,NNIM−LLA] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 𝐿b3,NNIM−LLA] 

4 hidden 

layers 

[745.92m 336.45m 0m 0m] 

[214.26m 0m 0m] 

68.33m 

 

-7.26m 

(-9.60%) 

(30%,35%,35%) 

+ 

Default 

Operation 

Settings B 

 

  



 

Peer-Reviewed Article   Trends in Renewable Energy, 9 

 

Tr Ren Energy, 2023, Vol.9, No.1, 34-77. doi: 10.17737/tre.2023.9.1.00149  72 

 

 The approximated OV LV BPL topologies by TIM-LLA and NNIM-LLA that 

have been reported in Tables 11-13 are those between the corresponding original 

and symmetrical approximated ones that have the best RMSD in each case. In real 

life, the selection between the original and the symmetrical approximated OV LV 

BPL topologies by TIM-LLA and NNIM-LLA requires any additional topological 

pieces of information or empirical observations so that the distinction between 

these approximated OV LV BPL topologies can be feasible in each case (e.g., any 

distribution or branch line length information can be useful). 

 With reference to [1], the representativeness attribute and the accuracy degree of 

the TIM OV LV BPL topology database had a significant impact on the 

performance of TIM-BNI and NNIM-BNI. In this paper, the representative sets of 

the TIM OV LV BPL topology database have been adopted by default during the 

preparation of the default operation settings B; say, only the OV LV BPL 

topologies with the same number of branches with the examined one are 

considered from the TIM OV LV BPL topology database in each approximation 

of the TIM-LLA and NNIM-LLA. As the accuracy degree of the TIM OV LV 

BPL topology database is concerned, the following modifications have been made 

in default operation settings B in comparison with the default operation settings 

A, namely: 

o The length spacing for branch distance is equal to 100m and remains the 

same between the default operation settings A and B. Also, the length 

between the transmitting and receiving ends of all the OV LV BPL 

topologies remains the same for the default operation settings A and B and 

is assumed to be equal to 1000m; 

o To better approximate OV LV BPL topologies of larger branches (e.g., 

rural case of Table 1), the length spacing for branch length is assumed to 

be equal to 100m while the branch line length may range from 0m to 

300m in default operation settings B. The respective values are equal to 

25m and 0m-100m in default operation settings A and B. However, the 

higher length spacing for branch length has a negative impact on the 

approximation of the short branches thus creating higher RMSDs.  

o In default operation settings B, the frequency range and the flat-fading 

subchannel frequency spacing are assumed to be equal to 3-88MHz and 

1MHz, respectively. During the preparation of the default operation 

settings B, more frequencies are used per coupling scheme channel 

transfer function for the examined OV LV BPL topologies so as to 

facilitate the operation of TIM-LLA and NNIM-LLA. In fact,  

the frequency range had been assumed equal to 3-30MHz while  

the flat-fading subchannel frequency spacing had been equal to 1MHz in 

operation settings A of [1].  

Here, it should be reminded that there is a trade-off relationship between the 

accuracy degree of the TIM OV LV BPL topology database and the execution 

time of TIM-LLA and NNIM-LLA. For the previous reason, a compromise 

between the accuracy and the execution time is made either in this extension 

paper or in [1] during the preparation of the corresponding default operation 

settings. In fact, the aforementioned trade-off relationship is stronger in this 

extension paper since the tomography requirements have been proved to be higher 

in comparison with the ones during the branch number identification of [1]. 



 

Peer-Reviewed Article   Trends in Renewable Energy, 9 

 

Tr Ren Energy, 2023, Vol.9, No.1, 34-77. doi: 10.17737/tre.2023.9.1.00149  73 

 

Already been mentioned in [1], on the basis of the factors that affect the accuracy 

degree of the TIM OV LV BPL topology database, the impact of lower values of 

the length spacing Ls for both branch distance and branch length and of higher 

values of the maximum branch length Lb,max during the preparation of the TIM 

OV LV BPL topology database on the approximation performance of  

TIM-LLA and NNIM-LLA is a subject of future research. 

 

 

5. Conclusions 
 

 In this extension paper, the distribution and branch line length approximation 

methods of TIM-LLA and NNIM-LLA have been proposed as extensions of the 

respective TIM-BNI and NNIM-BNI of [1] while the factors that affect their 

approximation performance have been recognized and benchmarked. Learning from the 

good practices of [1] concerning the factors that affect the preparation of the TIM OV 

LV BPL topology database, the accuracy degree and the representativeness of  

the TIM OV LV BPL topology database have been taken into account during the 

preparation of the default operation settings B of this paper thus having improved RMSD 

values of the distribution and branch line length approximations of both TIM-LLA and 

NNIM-LLA by default. As the operation of TIM-LLA is concerned, it has been revealed 

that TIM-LLA is a deterministic methodology with a steady and rather predictable 

performance behavior in terms of the appeared RMSD differences. TIM-LLA better 

approximates the distribution and branch line lengths when the number of branches of 

the examined OV LV BPL topology remains high (i.e., urban case A). Also, satisfactory 

TIM-LLA approximations may occur when OV LV BPL topologies of 1 branch are 

examined (i.e., rural case). Learning from the good practice of [1] concerning the R value 

factor that affects the operation of the TIM OV LV BPL topology database,  

the assumption of the R value that was equal to 5 in the operation settings B has allowed 

TIM-LLA to decently approximate the distribution and branch line lengths of all the 

indicative OV LV BPL topologies. As the operation of NNIM-LLA is concerned, it has 

been revealed that NNIM-LLA is a stochastic methodology that may achieve better 

performances in comparison with the TIM-LLA one but a lot of settings are required to 

be investigated prior to the NNIM-LLA operation (i.e., number of hidden layers, number 

of executions, participation percentages of its three phases). Conversely to [1], a 

balanced ratio among the NNIM-LLA participation percentages has been highlighted in 

this extension paper for achieving lower RMSDs with a more emphasis on the training 

participation percentage. Anyway, mixed RMSD differences of significant range may 

occur since NNIM-LLA is based on simulations where AI, machine learning and neural 

networks coexist. Similarly to [1], the accuracy degree of the TIM OV LV BPL topology 

database again remains critical for the performance of TIM-LLA and NNIM-LLA thus 

promising significantly lower RMSDs for both approximation methods when higher 

accuracy degree is going to be adopted in exchange with higher execution times due to 

the preparation of the TIM OV LV BPL topology database. Especially, the 

approximation of the branch line length remains a more difficult task and demands 

significantly higher accuracy degrees in comparison with the approximation of the 

distribution line lengths and branch number identification. In the future research steps, 

TIM-LLA and NNIM-LLA are going to be further elaborated, expanded and cooperate in 
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order to cope with the fervent tomography issues of the operation of the smart grid (e.g. 

fault identification, measurement noise mitigation). 
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We evaluated and compared the performance of simulated Angström-
Prescott (AP) and Hargreaves-Samani (HS) models on monthly and 
annual timescales using generalized datasets covering the entire West 
African region. The fitted AP model yielded more efficient parameters of 
a = 0.366 and b = 0.459, whereas the HS model produced a 0.216 
coefficient based on an annual timescale, which is more suitable in the 
region compared to coefficients recommended by the Food and 
Agriculture Organization (FAO) (a = 0.25 and b = 0.5) and HS (0.17), 
respectively. Employing the FAO and HS recommended coefficients will 
introduce a relative percentage error (RPE) of 18.388% and 27.19% 
compared to the RPEs of 0.0014% and 0.1036% obtained in this study, 
respectively. When considering time and resource availability in the 
absence of ground-measured datasets, the coefficients obtained in this 
study can be used for predicting global solar radiation within the region. 
According to the AP and HS coefficients, the polycrystalline module (p-
Si) is more reliable than the monocrystalline module (m-Si) because the 
p-Si module has a higher tendency to withstand the high temperatures 
projected to affect the region due to its higher intrinsic properties based 
on the AP and HS coefficients assessment in the region. 

 
Keywords:  Ångström-Prescott coefficient; Hargreaves-Samani coefficient; Global solar radiation; Solar 

PV technologies; Climate forcing 

 
 

Introduction  
  

It is undeniable that the growth of solar PV installed capacity in the past years has 

outpaced the most optimistic projections, as indicated by global cumulative installed 

capacity at the end of 2013 being only 9.2 MW and worldwide cumulative capacity at 

year-end 2014 being 15.6 GW [1]. The exponential trend of PV installation growth 

started in 2008, and the total capacity has doubled every year, with the longest period of 

increase (since 2009) in 2014, when global installed capacity reached 15.6 GW and year-

end solar power share was estimated at 5% of global electricity generation in just 6 years 
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(period of 2000-2014), which indicates the steep growth rate in global cumulative 

installed capacity [1].  

The reason for this rapid growth is that in just 6 years, the cost of PV electricity 

has gone down significantly, which is phenomenal as it was in the years 2007 to 2009 

and 2012 to 2014, when global cumulative installed capacity grew by 71% (from 2.1 GW 

to 3.4 GW) and 47% (from 586 MW to 1.12 GW), respectively [1]. The global 

cumulative installed capacity of solar power was only 15.6 GW at year-end 2014, and the 

share of solar power in electricity generation was estimated at 5%. Solar power 

penetration grew from 20.9 GW in 2010 to 29.3 GW in 2014, with a CAGR (compound 

annual growth rate) of 60% for the six-year period of 2000-2014. Installed solar capacity 

in France and Germany amounted to 79 GW and 30 GW [1], respectively, due to a high 

construction cost and German government subsidies for PV power plants that are only 

given for the first 15 years of the plants, whereas PV power is available on the 

commercial grid in countries such as Italy, China, and India for a number of years.  

The cost of solar energy is affected by a number of factors. The most important 

factor is the installation costs of PV cells, particularly photovoltaic modules. The issue of 

determining the optimal location for a PV power plant has seen a steady decline as the 

cost of solar cells, per watt, has dropped from $2.96/W in 1979 to $1.61/W in 2013 and is 

expected to drop to about $1/W by 2016. More than 30 countries in the world are 

adopting solar power as a part of their national energy mix. After years of investment and 

research, solar energy has become a reliable source of electricity worldwide, and PV 

modules are becoming more efficient, using less energy and costing less to produce. 

Both of these conditions result in relatively low densities of data regarding 

incoming solar radiation at the ground level for global climatic information activities, 

especially at the local level in countries with a few stations in those countries that have 

started to monitor solar radiation. Satellite observations of solar radiation are more 

accurate and less expensive than terrestrial observations because they can make use of 

remote sensing instruments that determine the spectral composition and geographical 

distribution of incoming solar radiation. Consequently, the density of meteorological 

stations equipped for measuring solar radiation is too low for global coverage. For 

instance, there are over 3,000 stations worldwide measuring solar radiation, and in the 

rest of the world there is a density of about 10 stations per million people [2]. 

Additionally, a number of statistical problems have been identified, mainly in the field of 

quantifying solar radiation; for example, the variability of the measurement technique 

makes it difficult to use solar radiation data for selecting stations to form climatic 

networks. Finally, spectral solar radiation data on the horizontal and vertical distribution 

of solar radiation in space can be obtained with high precision, taking advantage of 

satellite measurements.  

Michael FitzGerald has found an equation from the period between 1781 and 

1860 that plots monthly mean global solar radiation (H) in all sky conditions on the 

horizontal axis versus H in clear skies (Hclear), which is S/So cited in Kimball [3]. 

Throughout the year, some astronomers believe that global solar radiation is closely 

related to or directly proportional to the duration of sunshine. However, others suggest 

that it is not directly related but that it changes in proportion to the strength of 

atmospheric transparency, according to the Global Precipitation Climatology Project 

(GPCP), an assessment of climate change conducted by NASA and other international 

organizations on the time of the Earth’s orbit about the sun.  
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FitzGerald's equation demonstrated that the relationship between monthly mean 

global solar radiation (H) and the duration of sunshine (S) varies from year to year and 

decade to decade between 1781 and 1860. FitzGerald found that there was a stable 

relationship between solar radiation and cloud cover. However, this was not the case in 

other periods during the nineteenth century. During the decade before 1840, there was an 

unstable relationship between solar radiation and cloud cover. The main results for this 

period show an increase in solar radiation because of an increase in global cloud cover 

and a decrease in solar radiation by changing the duration of sunshine from one decade to 

another. Therefore, we can say that FitzGerald’s equation is only accurate for the last part 

of the nineteenth century. 

Kimball [3] was the first to discover that FitzGerald's equation view of solar 

radiation in relation to sunlight is highly correlated with or directly proportional to the 

length of daylight. Angstrom [4] was the first to mathematically represent Kimball's idea. 

This was accomplished by relating the monthly mean global solar radiation (H) in all 

clear sky conditions (Hclear) to the fraction of sunlight duration (S/So). As a result, 

Angstrom [4] claims that the relation can be used to estimate H: 
𝐻

𝐻𝑐𝑙𝑒𝑎𝑟
= 0.25 + 0.75 (

𝑆

𝑆𝑜
)       (1) 

The most recent version of the Angstrom-Prescott model (AP) replaces H with 

daily average extraterrestrial solar radiation parameters (Ho) which Prescott modified [5] 

and is expressed as: 
𝐻

𝐻𝑜
= 0.25 + 0.54 (

𝑆

𝑆𝑜
)       (2) 

Environmental variables such as cloud cover, relative humidity, wind, 

temperature, and precipitation regime can help modify the physical AP model. However, 

these factors vary between physical and environmental parameters, and their effect is 

difficult to quantify numerically. 

The AP model was developed not only to expand energy applications in response 

to the need for adequate knowledge of available solar resources, but also to study 

numerous atmospheric physical parameters in which sunlight scattering, reflections, and 

diffractions influence the variation of AP coefficients in different parts of the world [6]. 

Paulescu et al. [7] identified two categories of algorithms for predicting solar energy 

using AP coefficients: (1) prediction of global solar irradiance under a clear sky; and (2) 

physical fit of clear sky estimates to the current sky state based on sunshine duration 

measurements. 

The authors of this study identified additional aspects that the AP model 

coefficient could help us evaluate. The coefficient can be quantified for various solar PV 

technologies suitable for solar energy harvesting by analyzing the atmospheric dynamics 

of the sum of the AP coefficients (a+b) and taking into account that different solar PV 

modules have different degrees of ability to withstand extreme temperatures due to the 

inherent characteristics of the module's solar cell. Polycrystalline silicon (p-Si), for 

example, is more resistant to high temperatures than monocrystalline silicon (m-Si), 

activating the production of electricity in places with low temperatures induced by a 

higher percentage of diffuse components of solar radiation worldwide. 

Thus, the amplitude of the AP coefficients (a + b) tells us about the transparency 

of the sky. Since different solar PV technologies have different intrinsic module 

characteristics, the conditions of the sky allow us to dictate the type of solar module 

technology suitable for a specific climatic and geographic environment. The p-Si 

technology is expected to be used in desert, arid, or semi-arid regions, where the sum of 
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AP coefficients (a + b) exceeds 0.65, because it has higher intrinsic modulus properties to 

withstand extreme temperatures in such climatic conditions with respect to m-Si. Despite 

the higher energy production, cost-effectiveness, and wider commercialization of m-Si 

technology compared to p-Si technology, p-Si is highly recommended when considering 

the effects of climate change on it. 

Extreme temperatures, inherently, cause high wind speeds due to low vapour 

pressure, resulting in low relative humidity and cloud cover, as well as relatively high 

sunshine duration and fraction in an open savanna [8], suggesting that as the impact of 

climate change intensifies, extreme temperatures combined with high wind speeds in 

such open savanna regions may likely result in damaging the solar cell designed to 

generate voltage for electrification purposes [9]. Extreme wind speed events, on the other 

hand, have the potential to destroy or damage the module due to the lack of sufficient 

wind break in open savanna climate regions. These two factors can cause the modules to 

degrade faster or introduce cracks in the module, potentially reducing the module's 

energy productivity. 

However, m-Si technology is preferred for regions with a low transparency index, 

which can also be calculated using AP (a + b) coefficients. This will essentially lead to a 

sharper reduction in global solar radiation and, in some rare cases, in solar PV generation. 

The longer the PV cells are exposed to low AP (a+b) environments, implying a high 

humidity environment, the steeper the expected performance degradation. This could be 

due to the high concentration of water vapor in the atmosphere, which often leads to the 

disintegration of the cavity [10]. 

Cell interconnect failures or broken cells are often exacerbated in m-Si 

technology compared to p-Si modules, according to Obiwulu et al. [11]. This suggests 

that a local climate and geographic environment with hot and humid weather (as 

determined by AP coefficients) may accelerate these deterioration processes, which are 

common in regions with high relative humidity or a low clarity index (implying a low 

sum of AP coefficients). 

AP coefficients (a+b) can also be used to estimate the length of sunlight and 

clarity index, as well as their implications for climate pressure dynamics and air quality 

[12]. The Earth's atmosphere is made up of gases, particles, and clouds that form a thin 

column around the planet. This thin column contains billions of tons of pollutants that 

change the atmosphere unintentionally. These pollutants are produced by the burning of 

fossil fuels for energy needs and domestic and industrial transport, as well as forest fires, 

volcanoes, soil dust, and sea salts. Carbon dioxide, a greenhouse gas, is the final by-

product of all forms of combustion [13]. According to Ramanathan and Feng [14], the 

cumulative effects of these reactions produce ozone, another greenhouse gas that is a 

major contributor to global warming and climate change. 

As a result of the renewable energy and atmospheric benefits of the AP model, 

countless empirical models based on the AP model and other modified models such as 

exponential, logarithmic, quadratic, polynomial, and power law models have been 

introduced worldwide, among others, for the estimation of global solar radiation. This 

pattern is well documented for Nigeria [15], West Africa [16], Africa [17], India [18], 

China [19], and the globe [20]. 

The availability and demand for air temperature input data, which can be easily 

measured globally, are of particular interest in temperature prediction models. Hargreaves 

and Samani [21] developed the first temperature-based model for predicting global solar 

radiation, using maximum and minimum temperatures and extraterrestrial solar radiation 
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as input parameters, and obtained an empirical coefficient of 0.17, as shown in Equation 

3. It has since been recognized as one of the most popular, simple, and accurate 

temperature models for predicting global solar radiation and can be used for short- and 

long-term predictions of global solar radiation expressed as: 
𝐻

𝐻𝑜
= 0.17(∆𝑇)0.5        (3) 

where H is the extraterrestrial solar radiation on a horizontal surface, is the temperature 

gradient depicting the difference between the maximum and minimum temperature? 

This model has been used by numerous researchers to predict global solar 

radiation in various parts of the world. However, because of differences in climatic and 

geographical conditions unique to different locations around the world, the obtained 

coefficients of 0.17 seem to vary considerably. 

When the hours of sunshine datasets needed to evaluate the AP model were not 

available due to cost, the instrumentation network, or the expertise required for ground-

based observations, researchers have often used this approach to primarily generate solar 

energy data. On the other hand, this study suggests that climate and geographic location-

specific Hargreave-Samani adjustment coefficients (AHC) can be used to estimate 

climate pressure dynamics and air quality in inland and coastal regions. Some 

investigators reported that the AHS coefficient ranged from 0.19 to 0.21 in coastal 

regions [22, 23] and fell below this range in inland regions to around 0.17 depending on 

the local climate and geographical conditions of the sites. 

When evaluating their impacts on climate forcing dynamics and air quality in a 

given location, what does a higher AHC value inland or a lower value in the coastal 

region imply? The higher AHC value obtained for coastal regions often indicates high 

cloud cover and relative humidity, which can return additional longwave radiation to the 

ground, reducing the influence of the air temperature gradient on global solar radiation. 

This means that the smaller the air temperature gradient, mainly caused by the influence 

of open water bodies on the atmosphere, the longer the AHC, which can lead to large 

errors in estimating global solar radiation using the Hargreaves-Samani (HS), and vice 

versa. 

According to atmospheric research, increased or greater values of cloud cover and 

relative humidity increase diffuse solar radiation and decrease the normal direct radiation 

available through scattering; at the same time, global solar radiation remains undisturbed. 

This reduces the amount of conventional direct radiation available that is needed to 

generate more solar energy for concentrated solar power (CSP). Normal direct solar 

radiation must be equal to or slightly higher than global solar radiation for concentrated 

solar power to work effectively [24]. Solar PV technologies, on the other hand, can still 

be used in this climate. Basically, m-Si technology is recommended for the maximum use 

of solar energy because its inherent properties favour scattered light over p-Si in places 

with higher levels of global solar radiation than with normal direct irradiation. 

Therefore, the first objective of this paper was to provide AP and HS coefficients 

in West Africa using generalized datasets that have not been used in the literature since 

the beginning of solar radiation prediction. In addition, the study proposes a qualitative 

approach to the analysis of the implications of the AP and HS coefficients for predicting 

global solar radiation and potential evapotranspiration on climate pressure dynamics, as 

well as suitable solar PV technology and solar energy concentration in West Africa, 

which have not been previously implemented in the literature using generalized data sets 

for the region. Third, the authors proposed an analytical approach based on a rigorous 
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error metric analysis to determine the predictability of the APC (a = 0.25 and b = 0.5) 

recommended by the Food and Agriculture Organization (FAO) to estimate potential 

evapotranspiration when no ground observations are available, as well as validation of 

the AHC's performance for the prediction of global solar radiation in West Africa in this 

era of climate change and global sustainability, which has been studied in the literature 

using generalized regression. 

 
 
Materials and Methods 
 

Data Description, Quality and Modeling 
Surface downwelling shortwave radiation (hereafter, global solar radiation, 

W/m
2
), incident shortwave radiation in the upper atmosphere (hereafter, extraterrestrial, 

W/m
2
), total fraction of clouds (%), relative humidity (%), minimum surface air 

temperature (Tmin) at 2 m height (
o
C), maximum cloud air temperature surface (Tmax) at 2 

m height (
o
C), with monthly spatial resolution were used in this study. These datasets 

were generated from two different Global Climate Model (GCM) outputs participating in 

Coupled Model Intercomparison Project Phase 6 (CMIP6). The datasets were 

downloaded using the latitudes cutting across North (28
o
) and South (30

o
), as well as the 

longitudes cutting across the west (-28
o
) and east (15

o
) of West Africa as a sub-region on 

the Africa continent under monthly time resolution as shown in Fig. 1. Using a 

conversion factor of 11.6, the obtained datasets for global solar radiation and 

extraterrestrial solar radiation in W/m
2
 were converted to MJ/m

2
/d. Meteo-solar 

parameters were used to fit the Anstrom-Prescott [5] and Hargreaves-Samani [21] 

coefficients to global solar radiation prediction models, as well as to assess the 

implications of the coefficients on climate forcing dynamics and technology selection for 

solar photovoltaic in the West African Region. 

The two GCMs (National Oceanic and Atmospheric Administration, Geophysical 

Fluid Dynamics Laboratory, USA (GFDL-ESM4), and National Centre for 

Meteorological Research, France (HadGEM3-GC31) are chosen based on the availability 

of relevant energy variables for all selected SSPs developed by the European Centre for 

Medium Weather Forecasts (ECMWF) 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). Table 1 presents a 

summary of the GCMs along with their spatiotemporal resolution. 

 
 

Table 1. Summary of two Global Climate Models (GCMs) from Coupled Model Intercomparison 
Project Phase 6 (CMIP6) 
  Grid size (long × 

lat) 

/Spatial resolution  

Model Centre Historical Future Temporal 
resolution 

GFDL-ESM4 National Oceanic and Atmospheric 

Administration, Geophysical Fluid 
Dynamics Laboratory 

288 × 180 (1.25o × 

1.00o) 

288 × 180 (1.25o × 

1.00o) 

Monthly  

HadGEM3-GC31 National Centre for Meteorological 

Research, France 

1024 × 768 (0.35o 

× 0.23o) 

432 × 324 (0.83o × 

0.55o) 

Monthly 

 

 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Fig. 1. Descriptive statistics of input and output parameters 
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Since these two GCM model outputs have different spatial resolutions, they were 

averaged to reduce the margin of error. The total cloud fraction parameter was used to 

evaluate the fraction of sunlight in addition to the above parameters, which are used 

directly to predict global solar radiation. Equation (4) describes the fit of the conventional 

numerical model using the high-resolution sunshine fraction (S/So) and total cloud 

fraction (𝑐𝑙𝑡) parameters obtained from Zhu et al. [25]: 

𝑆/𝑆𝑜 = 0.946 − 0.6355(𝑐𝑙𝑡/100) − 0.4173(𝑐𝑙𝑡/100)2   (4) 

Khorasanizadeh et al. [26] developed a scattering technique to independently 

confirm the quality of the clearness index and sunshine fraction datasets, respectively, as 

they were important components of the input settings. The Khorasanizadeh et al. [26] 

method was also used to ensure that the quality of the sunshine fraction was checked. The 

HadGEM3-GC31 datasets were used to test the developed models using historical data 

from 1984 to 2014. The GFDL-ESM4 climate datasets were used to simulate global solar 

radiation models for West Africa. Table 2 displays the descriptive statistics for the input 

and output parameters. 

 
Table 2. Descriptive statistics of the input and output parameters 

 Parameter N Range Minimum Maximum Mean Std. Deviation 

H 372 7.520 17.470 24.980 20.996 1.662 

Ho 372 9.690 28.320 38.010 34.497 3.477 

kt 372 0.211 0.518 0.730 0.613 0.057 

S/So 372 0.507 0.322 0.829 0.538 0.117 

∆T 372 11.200 4.500 15.700 8.139 1.643 

∆T0.5 372 1.840 2.120 3.960 2.839 0.283 

Tave 372 10.400 18.600 29.000 24.997 2.949 

clt 372 51.300 16.600 67.900 48.122 11.546 

RHave 372 36.600 35.400 72.000 49.008 8.621 

Tmin 372 12.100 13.750 25.850 20.927 3.590 

Tmax 372 9.100 23.350 32.450 29.067 2.419 

 Where H is the global solar radiation (MJ/m
2
/d), Ho stands for extraterrestrial solar radiation (MJ/m

2
/d), kt 

represents clearness index, S/So represents sunshine fraction, ∆T stands for temperature gradient (
o
C), Tave 

represents average ambient temperature (
o
C), clt represents total cloud percent (%), RHave represents 

average relative humidity (%), Tmin and Tmax represent minimum and maximum temperature respectively 

in degrees Celsius  

 

On both the monthly and annual timescales for West Africa, the statistically 

validated clearness index and sunshine fraction were used to fit the Angstrom-Prescott [5] 

adjusted model (AP). The temperature gradient and the clearness index parameter were 

used in West Africa to fit the Hargreaves-Samani [21] adjusted model (AHS) on monthly 

and annual timescales. Table 3 shows the coefficients of the Angstrom-Prescott [5] 

adjusted model (AP) and the Hargreaves-Samani [21] adjusted model (AHS). 
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Table 3. The coefficients of the Angstrom-Prescott (AP) and Hargreaves-Samani (HS) and their 
respective adjusted coefficients in West Africa 

Resolution Angstrom-Prescott (AP) type model Hargreaves-Samani type model 

 Original AP model Present study Original HS model Present study 

January 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟗𝟔 + 𝟎. 𝟐𝟕𝟑 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟖(∆𝑻)𝟎.𝟓 

February  𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟕𝟓 + 𝟎. 𝟑𝟎𝟒 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟒(∆𝑻)𝟎.𝟓 

March  𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟓𝟎𝟔 + 𝟎. 𝟐𝟒𝟗 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟑(∆𝑻)𝟎.𝟓 

April  𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟗𝟏 + 𝟎. 𝟐𝟔𝟑 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟓(∆𝑻)𝟎.𝟓 

May 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟑𝟔 + 𝟎. 𝟑𝟒𝟑 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟒(∆𝑻)𝟎.𝟓 

June 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟏𝟏 + 𝟎. 𝟑𝟔𝟕 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟓(∆𝑻)𝟎.𝟓 

July 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟑𝟓𝟖 + 𝟎. 𝟒𝟐𝟐 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟐(∆𝑻)𝟎.𝟓 

August 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟑𝟒𝟔 + 𝟎. 𝟒𝟑𝟕 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟓(∆𝑻)𝟎.𝟓 

September 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟎𝟑 + 𝟎. 𝟑𝟓𝟏 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟓(∆𝑻)𝟎.𝟓 

October  𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟐𝟔 + 𝟎. 𝟑𝟒𝟎 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟕(∆𝑻)𝟎.𝟓 

November  𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟒𝟑𝟕 + 𝟎. 𝟑𝟒𝟐 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟐𝟑(∆𝑻)𝟎.𝟓 

December 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟓𝟐𝟕 + 𝟎. 𝟐𝟐𝟏 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟐𝟓(∆𝑻)𝟎.𝟓 

Annual 𝑯

𝑯𝒐
= 𝟎. 𝟐𝟓 + 𝟎. 𝟓𝟎 (

𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐

= 𝟎. 𝟑𝟔𝟔 + 𝟎. 𝟒𝟓𝟗 (
𝑺

𝑺𝒐
) 

𝑯

𝑯𝒐
= 𝟎. 𝟏𝟕(∆𝑻)𝟎.𝟓 

𝑯

𝑯𝒐
= 𝟎. 𝟐𝟏𝟔(∆𝑻)𝟎.𝟓 

 

 

Analytical Tools and Performance Evaluation 
The coefficient of determination (R2), root mean square error (RMSE), 

normalized root mean square error (nRMSE), relative percentage error (RPE), skill score 

(SS), and mean absolute percentage error (MAPE) were the evaluation metrics used in 

this study, as shown in Table 4. 
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Table 4. Details of the statistical indicators 
S/N Abbreviation Statistical test Expression Idea value 

1. R2 Coefficient of determination 
𝑹𝟐 = 𝟏 − [

∑ (𝑶𝒊 − 𝑷𝒊)
𝟐𝒏

𝒊=𝟏

∑ (𝑶𝒊 − 𝑶𝒂𝒗𝒆)𝟐𝒏
𝒊=𝟏

] 
One 

2. RMSE Root mean square error 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑(𝑶𝒊 − 𝑷𝒊)

𝟐

𝒏

𝒊=𝟏

 

Zero 

3. nRMSE Normalized root mean square error 
𝒏𝑹𝑴𝑺𝑬 =

𝑹𝑴𝑺𝑬

∑ (𝑯)𝒏
𝒊=𝟏

 
Zero 

4. RPE Relative percentage error 
𝑹𝑷𝑬 = ∑ (

𝑶𝒊 − 𝑷𝒊

𝑷𝒊

) × 𝟏𝟎𝟎

𝒏

𝒊=𝟏

 
Zero 

5. SS Skill score 
𝑺𝑺 = 𝟏 −

𝒏𝑹𝑴𝑺𝑬𝒑𝒓𝒆𝒔𝒆𝒏𝒕 𝒔𝒕𝒖𝒅𝒚

𝒏𝑹𝑴𝑺𝑬𝒍𝒊𝒕𝒆𝒓𝒂𝒕𝒖𝒓𝒆

 
One 

6. MAPE Mean absolute percentage error 
𝑴𝑨𝑷𝑬 =

𝟏

𝒏
∑|𝑶𝒊 − 𝑷𝒊| × 𝟏𝟎𝟎

𝒏

𝒊=𝟏

 
Zero 

 

 
Results and Discussion 
 

Performance of AP Parameters in West Africa 
According to the statistics of the AP parameter in the different months and 

according to the annual time scale (Table 3), the parameter a had a higher value in West 

Africa. The parameter reported a monthly value of 0.346 in August and a monthly value 

of 0.527 in December, with a corresponding annual value of 0.366. The monthly 

variability of parameter b was the inverse of that of parameter a, with a maximum value 

of 0.437 in August and a minimum value of 0.221 in December, and a corresponding 

annual value of 0.459, which is the maximum value for parameter b. Figure 2 shows that 

the trend between the AP parameters (a and b) is inverse for daily, monthly, and annual 

time scale fluctuations. For example, in August, both parameters a and b produced 

maximum and minimum values. Consequently, the two parameters converge between 

June and July, August and September, and December and the annual value. Figure 2 

shows that the AP parameter gradually increases from January to August and then begins 

to decrease from September to December, with an accelerated value of 0.459 representing 

the maximum during the entire monthly period. In contrast, the AP metric decreased 

gradually from January to August before starting to accelerate from September to 

December, with a corresponding decrease in value on the annual time scale. Figure 3 

shows that the AP a+b parameter produced somewhat uniform values from May to 

August, with a minimum value in January and a maximum value of 0.783 in August, 

while the annual time scale value accelerated over the range 0.733–0.779 between 

January and December to 0.825. 
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Table 5. Variation of AP parameters in West Africa 

Month Present study AP parameters FAO recommended AP parameters 

 

a b a+b a b a+b 

JAN 0.496 0.237 0.733 0.25 0.5 0.75 

FEB 0.475 0.304 0.779 0.25 0.5 0.75 

MAR 0.506 0.249 0.755 0.25 0.5 0.75 

APR 0.491 0.263 0.754 0.25 0.5 0.75 

MAY 0.436 0.343 0.779 0.25 0.5 0.75 

JUN 0.411 0.367 0.778 0.25 0.5 0.75 

JUL 0.358 0.422 0.78 0.25 0.5 0.75 

AUG 0.346 0.437 0.783 0.25 0.5 0.75 

SEP 0.403 0.351 0.754 0.25 0.5 0.75 

OCT 0.426 0.34 0.766 0.25 0.5 0.75 

NOV 0.437 0.342 0.779 0.25 0.5 0.75 

DEC 0.527 0.221 0.748 0.25 0.5 0.75 

ANN 0.366 0.459 0.825 0.25 0.5 0.75 

 

 

 

Fig. 2. Variation of AP parameters in West Africa 
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Fig. 3. Variation of a+b AP parameter in West Africa 

 

Compared to the FAO parameter values (a = 0.25 and b = 0.50), the average 

parameter "a" in each month as well as the annual value were higher, and the monthly 

value and the annual value of the "b" parameter were lower. If the recommended FAO 

values of a = 0.25 and b = 0.50 are used to estimate global solar radiation or potential 

evaporation, the system will have an additional margin of error of 46.4% and a relative 

percentage error of -8.2%, according to Table 6. Since the annual value is the lowest, a 

higher margin of error is introduced on a monthly basis, as shown in Table 6. However, 

in this era of climate change and global warming, it is clear that the AP parameters 

proposed by the FAO are not suitable for West Africa, as it will be necessary to estimate 

the impacts of climate change on solar PV generation, net radiation, net primary 

productivity, and potential evaporation. these solar flux parameters, introducing an 

additional margin of error due to the sensitivity of climate change to input and output. 

 

Table 6. Error metrics between observed and FAO AP parameters in West Africa 

 

 

a b 

Month/Annual RMSE MAPE nRMSE RPE RMSE MAPE nRMSE RPE 

JAN 0.0071 0.0413 0.0143 98.4 0.0076 0.0925 0.0320 -52.6 

FEB 0.0065 0.0395 0.0137 90.0 0.0057 0.0537 0.0186 -39.2 

MAR 0.0074 0.0422 0.0146 102.4 0.0072 0.0840 0.0291 -50.2 

APR 0.0070 0.0409 0.0142 96.4 0.0068 0.0751 0.0260 -47.4 

MAY 0.0054 0.0356 0.0123 74.4 0.0045 0.0381 0.0132 -31.4 

JUN 0.0046 0.0326 0.0113 64.4 0.0038 0.0302 0.0105 -26.6 

JUL 0.0031 0.0251 0.0087 43.2 0.0023 0.0154 0.0053 -15.6 

AUG 0.0028 0.0231 0.0080 38.4 0.0018 0.0120 0.0042 -12.6 

SEP 0.0044 0.0316 0.0110 61.2 0.0043 0.0354 0.0123 -29.8 

OCT 0.0051 0.0344 0.0119 70.4 0.0046 0.0392 0.0136 -32.0 

NOV 0.0054 0.0357 0.0124 74.8 0.0046 0.0385 0.0133 -31.6 

DEC 0.0080 0.0438 0.0152 110.8 0.0081 0.1052 0.0364 -55.8 

ANN 0.0033 0.0264 0.0091 46.4 0.0012 0.0074 0.0026 -8.2 
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Compared to the parameter values (a + b = 0.75) provided by FAO, the average 

parameter a + b in all months as well as the annual value was higher than expected, with 

the exception of January and December, which recorded lower values. as shown in Table 

5. Using the recommended FAO value of a+b = 0.75 to estimate global solar radiation or 

potential evaporation will introduce an additional 10.0% margin of error on the annual 

mean values of the relative percentage error in the system, according to Table 5. The 

recommended FAO value is overestimated by -2.3% in January and -0.3% in December, 

according to Table 7, while other parameters introduce marginal errors between 0.5 and 

4.5% for the months that are left. Since this annual value is the lowest, a larger margin of 

error is introduced on a monthly basis, as shown in Table 7. However, in this era of 

climate change and global warming, it is clear that the AP parameters recommended by 

FAO56 (the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper No. 

56) are inadequate. suitable for West Africa, as these solar flux parameters will be needed 

to account for the impact of climate change on solar PV generation, net radiation, net 

primary production, and potential evaporation, which will introduce an additional margin 

of error due to input and output sensitivity to changing climate. 

Multiple results were obtained from adjusting the AP equation coefficient 

between the adjusted and recommended values. Most of these studies are based on single 

or multiple stations [27, 28], and provincial or global study regions, as well as uniform 

coefficient values, are commonly used in regional studies [29, 30, 31]. Although some 

regional coefficients were interpolated, they were not optimized. Liu et al. [32] show that 

the coefficient "a" ranges from 0.139 to 0.270, with an average of 0.205 in China. 

 
Table 7. Error metrics between observed and FAO AP a+b parameter in West Africa 

 

 

a+b 

Month/Annual RMSE MAPE nRMSE RPE 

JAN 0.0005 0.0019 0.0007 -2.3 

FEB 0.0008 0.0031 0.0011 3.9 

MAR 0.0001 0.0006 0.0002 0.7 

APR 0.0001 0.0004 0.0002 0.5 

MAY 0.0008 0.0031 0.0011 3.9 

JUN 0.0008 0.0030 0.0010 3.7 

JUL 0.0009 0.0032 0.0011 4.0 

AUG 0.0010 0.0035 0.0012 4.4 

SEP 0.0001 0.0004 0.0002 0.5 

OCT 0.0005 0.0017 0.0006 2.1 

NOV 0.0008 0.0031 0.0011 3.9 

DEC 0.0001 0.0002 0.0001 -0.3 

ANN 0.0022 0.0076 0.0026 10.0 

 

Performance of A-P Model for Predicting Global Solar Radiation in West Africa 
Table 8 summarizes the performance of global solar radiation prediction on 

monthly and yearly timescales, as well as training and testing timelines, using FAO-

recommended AP parameters and those obtained in this study. The statistical error metric 

obtained using both approaches revealed that the FAO-recommended AP parameters are 

ineffective for predicting global solar radiation, whereas those fitted using the parameters 

in this manner performed significantly better for both the training and training categories. 

For example, for all 13 models developed between January and December on an annual 
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time scale, the AP parameters developed in this study yielded upper R2 error metrics 

ranging from 0.451 to 0.929 and lower R2 error metrics ranging from 0.0011 to 0.0022 

for MAPE, between 0.0003 and 0.0008 for nRMSE, 0.0095 and 0.4501 for RPE, and 

0.8182 and 0.9167 for skill score values. The skill score error metric is used because the 

higher the R2 values, the closer they are to one, and the lower the nRMSE values, and the 

RPE may not fully reveal how accurately predictive performance differs between the 

FAO-recommended approach and the models adapted in this study.  

A skill score error metric indicator was used to compare the performance of the 

approach used in this study with the one recommended by the FAO. A skill score closes 

to one (between 0.5 and 1) indicates better performance accuracy, while skill scores close 

to zero and negative values indicate moderate and poor benchmarking results, 

respectively. Table 8 shows that on an annual time scale, the ability score for all 13 

models developed between January and December was between 0.8182 and 0.9167, 

indicating a lack of predictive ability for the parameters recommended by FAO to assess 

the potential global solar radiation in West Africa using the AP parameters obtained 

using the datasets of this study. This may be because the models were built using 

historical datasets from when global warming had not exceeded 1.0 degree Celsius, 

compared to the 1.4 degree Celsius reported by the European Center for Medium-Term 

Weather Forecasts database. beam (ECMWF) in April 2022. 

Paulescu et al. [33] recently compared the performance of developed AP 

parameters derived from ground-based data from WRDC and BSRN with four online 

platforms. The authors found that the performance of platforms using the AP equation is 

broadly comparable, with ability scores ranging from 6.1% to 40%. They also stated that 

both platforms and AP parameters are climate-sensitive; however, AP parameters 

outperformed platforms in tropical and continental climates. The authors also found that 

no AP equations outperformed the platforms in all seasons and that no platforms 

outperformed the AP equations in all seasons. According to Paulescu et al. [33], there is 

no recommendation for using a platform or empirical equation. The models developed by 

the online platform exceeded FAO parameters in this study. Thorough testing of 

radiometric sources (satellites, reanalyses, empirical equations) against reliable data 

measured from the ground, as well as dissemination of results, are general requirements 

for scientific progress in solar radiation modeling and selection of the appropriate model 

in solar engineering. This would make it easier to compare the results of different 

scientific studies. 
 

Table 8. Performance of Angstrom-Prescott model for estimating global solar radiation in West 
Africa 

 

Model 
# 

 

 

Training Model Fit statistics Testing Model Fit statistics 

   

R2 MAPE nRMSE RPE 

Skill 

Score 

 

R2 MAPE nRMSE RPE Skill Score 

JAN 
Present 
study 0.729 0.0010 0.0003 0.0095 

0.9167 
0.663 0.0009 0.0003 0.0086 0.8334 

 FAO 0.699 0.0104 0.0036 14.3714 0.0000 0.635 0.0095 0.0033 13.0649 0.0000 

FEB Present 
study 

0.710 
0.0013 0.0005 0.4501 0.8718 0.645 0.0012 0.0005 0.4092 0.7925 

 FAO 0.709 0.0113 0.0039 15.7238 0.0000 0.645 0.0103 0.0035 14.2944 0.0000 

MAR 

Present 

study 

0.451 

0.0017 0.0006 0.4182 0.8667 0.410 0.0015 0.0005 0.3802 0.7879 

 FAO 0.391 0.0131 0.0045 18.7053 0.0000 0.355 0.0119 0.0041 17.0048 0.0000 

APR 

Present 

study 

0.714 

0.0014 0.0005 0.4023 0.9020 0.649 0.0013 0.0005 0.3657 0.8200 
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 FAO 0.700 0.0147 0.0051 21.5031 0.0000 0.636 0.0134 0.0046 19.5483 0.0000 

MAY Present 

study 

0.851 

0.0014 0.0005 0.4015 0.9074 0.774 0.0013 0.0005 0.3650 0.8249 

 FAO 0.829 0.0156 0.0054 23.1318 0.0000 0.754 0.0142 0.0049 21.0289 0.0000 

JUN Present 

study 

0.851 

0.0015 0.0005 0.3421 0.9074 0.774 0.0014 0.0005 0.3110 0.8249 

 FAO 0.562 0.0156 0.0054 23.1274 0.0000 0.511 0.0142 0.0049 21.0249 0.0000 

JUL Present 

study 

0.800 

0.0018 0.0006 0.3187 0.8462 0.727 0.0016 0.0005 0.2897 0.7693 

 FAO 0.478 0.0112 0.0039 15.6581 0.0000 0.435 0.0102 0.0035 14.2346 0.0000 

AUG Present 

study 

0.792 

0.0017 0.0006 0.2955 0.8333 0.720 0.0015 0.0005 0.2686 0.7575 

 FAO 0.614 0.0104 0.0036 14.2686 0.0000 0.558 0.0095 0.0033 12.9715 0.0000 

SEP Present 
study 

0.817 
0.0017 0.0006 0.2701 0.8696 0.743 0.0015 0.0005 0.2455 0.7905 

 FAO 0.726 0.0133 0.0046 19.2397 0.0000 0.660 0.0121 0.0042 17.4906 0.0000 

OCT Present 
study 

0.861 
0.0014 0.0005 0.3313 0.9038 0.783 0.0013 0.0005 0.3012 0.8216 

 FAO 0.815 0.0149 0.0052 21.9478 0.0000 0.741 0.0135 0.0047 19.9525 0.0000 

NOV Present 

study 

0.929 

0.0013 0.0005 0.3886 0.8750 0.845 0.0012 0.0005 0.3533 0.7955 

 FAO 0.781 0.0117 0.0040 16.3367 0.0000 0.710 0.0106 0.0036 14.8515 0.0000 

DEC Present 

study 

0.537 

0.0013 0.0004 0.4348 0.8919 0.488 0.0012 0.0004 0.3953 0.8108 

 FAO 0.509 0.0108 0.0037 15.0118 0.0000 0.463 0.0098 0.0034 13.6471 0.0000 

ANN Present 

study 

0.882 

0.0022 0.0008 0.0014 

0.8182 

 0.802 0.0020 0.0007 0.0013 0.7438 

 FAO 0.674 0.0128 0.0044 18.3808 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 

 

Performance of Hargreaves-Samani Model for Predicting Global Solar Radiation  
Table 9 summarizes the performance of global solar radiation prediction on 

monthly and yearly timescales, as well as training and testing timelines, using 

Hargreaves-Samani (HS) parameter and those obtained in this study. The statistical error 

metric obtained using both approaches revealed that the HS coefficient is ineffective for 

predicting global solar radiation, whereas those fitted using the coefficient in this study 

performed significantly better for both the training and training categories. 

A skill score error metric indicator was used to compare the performance of the 

approach used in this study with the HS. A skill score close to one (between 0.5 and 1) 

indicates better performance accuracy, while skill scores close to zero and negative 

values indicate moderate and poor benchmarking results, respectively. Table 9 shows that 

on an annual time scale, the ability score for all 13 models developed between January 

and December was between 0.800 to 0.937, indicating a lack of predictive ability for the 

parameters HS model to assess the potential global solar radiation in West Africa using 

the datasets of this study. This may be because the models were built using historical 

datasets from when global warming had not exceeded 1.0 degree Celsius, compared to 

the 1.4 degree Celsius reported by the European Center for Medium-Term Weather 

Forecasts database. beam (ECMWF) in April 2022. 
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Table 9. Performance of Hargreaves-Samani model for estimating global solar radiation in West 
Africa 

 
Model 

# 

 

 

Training Model Fit statistics Testing Model Fit statistics 

   

R2 MAPE nRMSE RPE 

Skill 

Score 

 

R2 MAPE nRMSE RPE 

Skill 

Score 

JAN 

Present 

study 0.598 0.0012 0.0004 0.0064 

0.937 

0.556 0.0011 0.0004 0.0060 0.872 

 HS 0.598 0.0183 0.0063 28.2435 0.000 0.556 0.0170 0.0059 26.2730 0.000 

FEB Present 
study 

0.790 
0.0016 0.0006 0.8938 0.898 0.735 0.0015 0.0006 0.8314 0.835 

 HS 0.800 0.0172 0.0059 25.9703 0.000 0.744 0.0160 0.0055 24.1584 0.000 

MAR 
Present 
study 

0.917 
0.0013 0.0005 0.7001 0.914 0.853 0.0012 0.0005 0.6513 0.850 

 HS 0.911 0.0167 0.0058 25.1577 0.000 0.847 0.0155 0.0054 23.4025 0.000 

APR 

Present 

study 

0.873 

0.0018 0.0006 0.7123 0.900 0.812 0.0017 0.0006 0.6626 0.837 

 HS 0.877 0.0173 0.0060 26.3106 0.000 0.816 0.0161 0.0056 24.4750 0.000 

MAY Present 

study 

0.799 

0.0017 0.0006 0.7975 0.898 0.743 0.0016 0.0006 0.7419 0.835 

 HS 0.815 0.0171 0.0059 25.8491 0.000 0.758 0.0159 0.0055 24.0457 0.000 

JUN Present 

study 

0.014 

0.0032 0.0011 0.8735 0.825 0.013 0.0030 0.0010 0.8126 0.767 

 HS 0.012 0.0182 0.0063 26.5145 0.000 0.011 0.0169 0.0059 24.6647 0.000 

JUL Present 

study 

0.031 

0.0034 0.0012 0.7851 0.800 0.029 0.0032 0.0011 0.7303 0.744 

 HS 0.030 0.0173 0.0060 24.6948 0.000 0.028 0.0161 0.0056 22.9719 0.000 

AUG Present 
study 

0.203 
0.0017 0.0006 0.6952 0.900 0.189 0.0016 0.0006 0.6467 0.837 

 HS 0.207 0.0173 0.0060 26.2890 0.000 0.193 0.0161 0.0056 24.4549 0.000 

SEP Present 
study 

0.242 
0.0025 0.0009 0.8635 0.852 0.225 0.0023 0.0008 0.8033 0.793 

 HS 0.246 0.0175 0.0061 26.5019 0.000 0.229 0.0163 0.0057 24.6529 0.000 

OCT Present 

study 

0.105 

0.0032 0.0011 1.0038 0.828 0.098 0.0030 0.0010 0.9338 0.770 

 HS 0.108 0.0184 0.0064 27.8204 0.000 0.100 0.0171 0.0060 25.8794 0.000 

NOV Present 

study 

0.358 

0.0033 0.0011 0.7425 0.836 0.333 0.0031 0.0010 0.6907 0.778 

 HS 0.354 0.0194 0.0067 30.9011 0.000 0.329 0.0180 0.0062 28.7452 0.000 

DEC Present 

study 

0.007 

0.0030 0.0010 1.0837 0.857 0.007 0.0028 0.0009 1.0081 0.797 

 HS 0.001 0.0202 0.0070 32.4908 0.000 0.001 0.0188 0.0065 30.2240 0.000 

ANN Present 
study 

0.959 
0.0020 0.0007 0.1036 0.887 0.892 0.0019 0.0007 0.0964 0.825 

 HS 0.959 0.0179 0.0062 27.1905 0.000 0.892 0.0167 0.0058 25.2935 0.000 

 

Atmospheric Factors Militating the A‐P Parameters 
The values of parameters a and b, however, can vary from one station to another 

due to differences in geographical conditions. Therefore, a comprehensive understanding 

of these parameters is important for accurate estimates of global solar radiation. 

Therefore, it is crucial to accurately measure parameters a and b in order to properly 

estimate global solar radiation and further our understanding of regional climatic 

variations. In particular, the parameter a measures the fraction of radiation reflected by 

clouds, while the parameter b measures the fraction of radiation transmitted through 

clouds. This is an important factor because it allows us to determine how much radiation 

reaches the surface of the Earth and thus affects its climate. By accurately measuring 

parameters a and b, scientists can better understand how clouds affect the Earth's 
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radiation budget and how this in turn impacts regional climates. Furthermore, it is also 

important to understand the effect of aerosols on global solar radiation, as these particles 

can both absorb and reflect incoming radiation. This can have a significant influence on 

the Earth's energy balance, and therefore it is essential to take aerosols into account when 

measuring parameters of a and b.  

These longwave emissions can interact with other atmospheric gases, such as 

water vapor and carbon dioxide, creating a complex web of interactions that must be 

considered when measuring parameters, a and b. Thus, a thorough understanding of the 

interaction between aerosols and radiation is necessary to accurately measure parameters 

a and b. Furthermore, aerosols also influence the albedo of the Earth's surface by 

increasing its reflectivity. This increased reflectivity reduces the amount of incoming 

solar radiation, thus affecting the overall climate of a region. Additionally, aerosols can 

also affect the Earth's radiative budget by absorbing and scattering incoming longwave 

radiation. This absorption and scattering of longwave radiation can increase or decrease 

the amount of radiation emitted into space, further contributing to regional climate 

change.  

This leads to a decrease in the amount of solar radiation that is received by the 

Earth's surface, further altering regional climate. Additionally, the presence of aerosols 

can also affect precipitation patterns due to their effects on cloud formation and 

dynamics. By acting as a cloud condensation nucleus, aerosols can result in larger 

droplets in clouds and increased rain or snowfall. In extreme cases, aerosols can also lead 

to decreased visibility in the atmosphere, causing reduced levels of photosynthesis and 

reducing the health of terrestrial ecosystems. 

From the experimental results, geographic location, meteorological systems, and 

atmospheric conditions influenced the parameter values [6, 34, 35]. The astronomical 

radiant fraction that reaches the Earth's surface on a cloudy day is, according to the 

literature, influenced by atmospheric conditions such as humidity, dust content, cloud 

type and thickness, and pollutant concentration [36]. It varies with station altitude 

[37] and is determined primarily by cloud type and thickness, increasing as cloudiness 

increases [38]. When the sky is clear, the sum (a + b) equals the clarity index, which rises 

slightly with altitude [39]. The parameter b represents the transport properties (aerosol 

density) of a cloudless atmosphere under the influence of altitude and is primarily 

determined by the atmosphere's total water content and turbidity [40]. 

Liu et al. [31] calibrated AP parameters in China using six classification zones. A 

partial correlation analysis of the calibration parameters and variables showed that the 

main influences on the calibration parameters were sunlight duration, temperature, 

altitude, and precipitation. The authors also found that prediction models accounting for 

changes in altitude performed better in most regions, suggesting that altitude is the main 

determinant of AP parameters in most regions of China. The results of Liu et al. [31] 

agree with those of Paulescu et al. [33], who showed that height is a necessary input 

variable for the AP model. According to Liu et al. [31], only models of the altitude and 

precipitation parameters could reliably predict the parameters. 

Paulescu et al. [7] found that altitude influences a, and both latitude and altitude 

influence b. They demonstrated that the dependence of parameters a and b on latitude and 

longitude was critical to their fit; however, Liu et al. [31] unearthed that predictive model 

6 did not outperform Chinese predictive models based on altitude. Furthermore, the 

researchers found no significant correlations between the parameters and latitude or 

longitude in different parts of China. 
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Effects of Angstrom-Prescott Coefficients on Climate Forcing and Solar PV 
Technology Selection 
 Solar energy estimators have used the A-P model coefficient "a" to empirically 

determine the proportion of extraterrestrial solar radiation (Ho) in all sky conditions. 

Under clear sky conditions, the AP model coefficients (a + b) were used to calculate the 

proportion of Ho. The AP model based on an annual timescale was applied as an example 

using generalized datasets, that is, 
𝐻

𝐻𝑜
= 0.366 + 0.459 (

𝑆

𝑆𝑜
)        (5) 

where a=0.366 and b=0.459 

On sunny or clear days, solve equation (5) using the methodology of theoretical 

physics, where S = So, i.e., S/So = 1. The model parameters are changed to a+b=0.825. 

This means that under clear sky conditions, approximately 82.5% of extraterrestrial solar 

radiation (Ho) reaches the horizontal surface, while the remaining percentage is absorbed 

by clouds. On non-sunny days, however, S = 0, i.e., S/So = 0, and model (5) reduces to a 

coefficient of 0.366. This means that the clouds absorbed 36.6% of the total available 

sunlight.  

Despite the fact that global solar radiation has three components (namely direct 

solar radiation, diffuse solar radiation, and reflected solar radiation), the reflected 

component is often ignored because of its small proportion to the total radiation and the 

diffuse component. Therefore, most solar meteorological studies consider global solar 

radiation as a mixture of direct and diffuse components. This means that a greater 

percentage of the global solar radiation available on the horizontal surface can be 

attributed to normal direct irradiation on sunny days in West Africa. 

According to atmospheric studies, diffuse or diffuse radiation components 

dominate the available percentage of global solar radiation on non-sunny days 

(approximately 36.6% according to equation 5). Diffuse light accounts for about 36.6% 

of global solar radiation on non-sunny days. This means that, compared to a conventional 

solar module, the use of a monocrystalline (m-Si) solar module with the module's 

inherent characteristics of trapping and using a higher percentage of available stray light 

in temperate and humid climates can ensure significantly efficient performance during 

non-sunny days in the region. 

During sunny days, however, a larger percentage of the available global solar 

radiation (about 82.5% of the total) may be stimulated or produced in a tropical region by 

normal direct irradiation. This means that the region can experience extreme temperatures 

due to excess heat being trapped on the horizontal surface for months and days of the 

year. This could be attributed to clear skies, which allow direct radiation to penetrate 

easily due to low cloud cover and particulate matter in open savannah, enabling 

crosswind assessment and purifying air quality. As a result, the weather pressure 

parameters of clouds and aerosols that attenuate direct solar radiation through scattering 

and conversion of beam radiation are reduced. As a result, the region is likely to receive 

high solar fluxes throughout the year except for June-July-August, when the region 

suffers from a high precipitation regime in most of its southern parts due to open water 

bodies where increased pressure encourages steam, resulting in high rainfall in those 

regions. On the other hand, locations in north western Africa will have fewer rainy days 

and months, as well as longer dry seasons, than locations in the south of the region. 
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Extreme temperature events, according to the explanation, may be caused by 

higher tendencies to receive more direct radiation due to the atmosphere opening up as an 

open savanna region. As a result, the region may require solar PV modules resistant to 

extreme temperatures to harness the region's abundance of solar radiation, especially in 

this era of rising global temperatures that are causing climate change and devastating the 

global environment and economy. This suggests that polycrystalline (p-Si) solar 

photovoltaic modules suitable for harnessing solar radiation with high-performance 

capabilities and module resistance to extreme temperatures could be found in the region. 

According to several literary works, arid, semi-arid and desert locations should use p-Si 

to harness solar energy fluxes, while humid regions should use m-Si [37, 41, 42]. 

However, in this era of climate change, the opening up of the atmosphere caused by high 

clarity index, direct normal irradiance, and low diffuse light, as well as shared 

socioeconomic pathways caused by low anthropological activity, may not result in 

increased solar radiation global and ambient temperature. Climate change is caused by a 

variety of atmospheric forcing factors. Consequently, it is recommended to establish a 

global climate model in the region accessible through several databases to determine the 

impacts of climate change on global solar radiation and ambient temperature. 

 

Effects of Hargreaves-Samani (HS) Coefficient on Climate Forcing and Solar PV 
Technology Selection  
 In West Africa, the values of the adjusted coefficient of the Hargreaves-Samani 

model (HS) are generated using the retrieved datasets described in Section 2. 

𝐻 𝐻𝑜 = 0.216(∆𝑇)0.5⁄         (1) 

𝐻 𝐻𝑜 = 0.17(∆𝑇)0.5⁄         (2) 

where equation (1) represents adjusted coefficient of Hargreaves-Samani coefficient 

obtained for West Africa, whereas, equation (2) stands for original coefficient of 

Hargreaves-Samani model simulated in North America.  

This shows that the adjusted Hargreaves-Samani coefficients (AHC) for West 

Africa is given as 0.216. The value generated in this study is greater than the results 

reported by other researchers around the world. Allen et al. [22] used the ratio of site 

atmospheric pressure to sea level to estimate the empirical coefficient of the Hargreaves-

Samani (HS) model. Allen reported values of 0.17 for inland regions and 0.20 for coastal 

regions. Hargreaves et al. [23] calibrated the HS model and obtained an AHC of 0.16 for 

inland regions and 0.19 for coastal regions. Adaramola [43] estimated AHC at 0.1945 for 

the inland region of Akure, Nigeria. For Osogbo, Nigeria, Ohunakin et al. [40] found 

0.1141. Nwokolo and Ogbulezie [15] found the following values for different parts of 

Nigeria: Calabar reported an AHC of 0.27, Port Harcourt 0.25, Uyo 0.25, Yenagoa 0.25, 

Warri 0.25, Asaba 0.23, and Benin City was 0.20, Ikeja was 0.20, and Enugu, Akure, 

Ilorin, Ibadan, Lokoja, Jos, Bauchi, Gusau, Yola, Kaduna, Maiduguri, and Sokoto were 

all 0.20. The authors also performed simulations for Kano and Nigeria as a whole. 

Overall, the authors obtained values of 0.22 and 0.20 for the coastal and interior regions 

of Nigeria, respectively. 

The AHC coefficient obtained in this study is consistent with those reported 

globally. However, the differences in values from one site to another could be attributed 

to the fact that global solar radiation is entirely dependent on the local climate and 

regional geography of the site. However, this high value of 0.216 corresponds to the high 

values found mainly in coastal regions around the world. Nwokolo and Ogbulezie [15] 
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reported 0.22 for the coastal region of Nigeria; Allen [22] reported 0.20; and Hargreaves 

et al. [23] reported 0.19 for the coastal region. AHC values should be higher in coastal 

regions than inland regions, according to numerous experimental results from different 

parts of the world. This also implies that the smaller the air temperature gradient 

(difference between maximum and minimum temperature), mainly due to the influence of 

open bodies of water on the atmosphere, the greater the AHC, which may result in a 

larger error in estimating global solar radiation (H) from the HS model found in West 

Africa. 

In contrast, the lower AHC obtained in the literature for the interior region is due 

to a decrease in humidity and cloud cover, which reduces long-wave radiation to the 

ground, thereby enhancing the effect of air temperature range on global solar radiation, 

which may cause a lower AHC in the region. This means that the higher the air 

temperature range, which is primarily caused by decreased humidity, cloud cover, diffuse 

solar radiation, and so on in the atmosphere, the smaller the AHC, which could improve 

the HS model's estimation of global solar radiation. For annual values, the AHC value 

reported in this study is higher than that of the original HS model (0.17).  

According to the results, using the original HS model value of 0.17 is grossly 

inadequate for estimating global solar radiation in West Africa. Rather, a value of 0.216 

can improve model performance. However, since the obtained value corresponds to the 

values of the coastal region as indicated by numerous literature sources [22, 15, 21, 43], 

an increase in cloudiness, diffuse solar radiation, and humidity, which mainly return 

additional long-wave radiation to the ground, thus reducing the influence of the air 

temperature gradient on global solar radiation, is thus expected in the region. This is 

obvious because the increase in cloud cover, humidity, and diffuse solar radiation, 

according to various atmospheric researchers, results in a decrease in the direct solar 

radiation available through the diffusion component of the solar radiation beam, while the 

solar radiation overall remains constant. However, as global temperatures rise and 

anthropological activities increase, which is inevitable in a developing region, and more 

and more additional longwave radiation is added to the ground, global solar radiation is 

expected to begin to decline rapidly in the near future. while the ambient temperature in 

the region will rise rapidly. This could lead to a warmer environment, a decrease in 

global solar radiation potential and normal direct radiation, and an increase in diffuse 

light. This means that as the global effects of climate change increase, West Africa will 

become warmer, with a corresponding decrease in global solar and normal direct 

radiation and an increase in diffuse solar radiation. 

In this case, p-Si technology will be the best choice to take advantage of the 

region's abundant solar energy. This is because, compared to other solar PV modules, the 

solar technology has higher module intrinsic characteristics to withstand the extreme 

temperatures of the region. According to Dutta et al. [41], solar PV generation will 

decline in Africa, including North Africa, West Africa, Cameroon, the Republic of the 

Congo, and the Democratic Republic of the Congo. Photovoltaic and concentrated solar 

power generation in Africa, North Africa, and West Africa is likely to decline, according 

to Crook et al. [42]. Gaetani et al. [44] reduced near-future PV energy availability in 

Europe and Africa in aerosol-climate modeling experiments. Huber et al. [45] 

investigated the impact of long-term changes in solar radiation projections based on 

CMIP5 climate models on PV energy yields in Africa and parts of West Africa. 

According to Zou et al. [46], Phase 5 models of a combined intercomparison project in 

Africa and West Africa showed a reduction in global surface solar radiation and 
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photovoltaic power. Bazyomo et al. [47] showed a decline in PV generation in West 

Africa, with the exception of Sierra Leone. Fant et al. [48] projected small changes in 

solar PV generation in 2050, with an increase in the winter and a decrease in the summer 

in most regions of Southern Africa. Patchali et al. [49] also reported reductions in global 

solar radiation at several locations in Togo, West Africa. Ohunakin et al. [50] showed a 

decrease in global solar radiation in Nigeria, with the largest possible decrease in 

southern Nigeria. 

 

Effects of Aerosol and Cloud on Climate Forcing  
In general, atmospheric aerosols enhance the scattering of radiation from the sun 

to the ground. Variations in atmospheric properties such as humidity and aerosol 

concentrations can significantly modify the spectrum of radiation passing through the 

atmosphere, both by scattering radiation and by absorbing radiation at specific 

frequencies. This can counteract the greenhouse effect by reflecting back incoming solar 

radiation, thus cooling the planet. These solar-radiation management techniques have 

been discussed in the recent literature in connection with a limitation of aerosol efficacy 

on regional climate [51]. Some earth science programs have begun to study the effects of 

indirect aerosolization. Aerosol particles play a role in snow formation and the Arctic Sea 

ice melt. Indirect aerosol effects enhance satellite views of Earth. They could also modify 

cloud lifetime and cover ocean surfaces, but there is not enough evidence to say that they 

have that much effect. CO2 emissions in the atmosphere are a major cause of global 

warming and have been estimated to have increased over 30% per year on average 

between 1973 and 2000. Indeed, as the figures show there have been large reductions in 

sunshine duration during the 20th century. In the light of this, Pope et al. [51] observes 

that the solar radiation does not reach all places on Earth at the same time; atmospheric 

particulate matter is a key culprit. The dimming or brightening of the atmosphere is 

caused by air pollution and can be mitigated. The transmittivity of the atmosphere plays a 

key role in explaining some of the observed changes in global dimming and brightening. 

Here, the change in the transmittivity of the atmosphere must come from some causes 

other than climate change, so "changes in the concentration and optical properties of 

aerosols" will not suffice. Moderate increases in surface cooling, slow surface heating, 

drying of air and soil, damage to regional circulation systems, reduced removal of 

pollutants from the atmosphere and the hydrological cycle are all consequences of light 

pollution. At present, Earth climate is generally warmer than it was over the last two 

millennia. While current climate models include both effects, they do not include the 

feedbacks caused by changes in cloud cover. Solar dimming is a form of cloud 

interference. The most dramatic solar dimming effects, such as those on the African 

continent, result from volcanic eruptions and fireballs. Solar dimming results from 

surface cooling, an increase in atmospheric solar heating, a disruption of regional 

circulation systems, changes in atmospheric thermal structure, suppression of evaporation 

and precipitation, a slowing down of the hydrological cycle. Depending on the extent of 

the alterations, there may be changes in ocean circulation and weather patterns that could 

cause major alterations in the hydrological cycle. Another consequence of changing 

oceanic currents might be the shifting of continental glaciers, thereby increasing the 

Earth's albedo. The anticipated changes to the hydrological cycle could be disastrous. Yet 

existing estimates show that these effects, even if substantial, cannot be the sole cause of 

climate change at present. The practical implication is that global dimming results in 

significantly reduced plant growth [52]. Slight and apparently easily resolved, global 
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dimming may instead have far-reaching effect. Additionally, they play an important role 

in socialization processes: For instance, they influence the infant's ability to make direct 

contact with others and its early attachment to the parent. We anticipate that aerosols will 

pose more hazards as the planet becomes warmer. Salby [53] observes that atmospheric 

pressure can decrease over a volcanic plume by several millibars. The author, however, 

concluded the main threat to the earth's climate is the release of sulfuric acid aerosols by 

volcanoes. He also argues that when volcanic eruptions release particles into the 

atmosphere, they cool down the troposphere and thus slow global warming. In the mid-

nineteenth century, dust particles originating in Asian deserts accumulated over Europe 

and Northern America, causing violent storms that produced both summer and winter 

droughts. Contrary to Salby's assertions, it is well known that volcanic eruptions affect 

climate change. These aerosols serve as scavengers, with the effect of allowing a residual 

layer to exist at the interface between air and water. For example, large volcanic 

eruptions and such fluctuations in the content of atmospheric aerosols affect how aerosols 

are transported to different regions of the atmosphere [54]. The increasing frequency of 

ash emissions observed since the start of the twentieth century coincides with a 

significant cooling of the Earth's climate. Over time, aerosols (large particles and droplets 

in the atmosphere) play an important role in climate fluctuations. Scientists have studied 

the albedo effect and aerosols for centuries, but this novel provides a very human look at 

the result of increased emissions. Earth's climate fluctuates rapidly, because the net 

radiation to Earth is altered by the sun's light and heat output. One of the most important 

roles that aerosols play in climate change is to scatter sunlight, which is an essential 

aspect of the general circulation process. Besides also reflecting the influences of global 

climate change, volcanic eruptions may lead to an increase in ozone depletion [55] and an 

overall decrease in cloudiness and dimming of sunshine at earth's surface. Thus, the 

anthropogenic emissions of aerosols impact climate changes [56]. The variable 

equilibrium constants (K) of some phase changes tend to decrease with increased 

concentrations of aerosols [57]. The moisture content, cloud liquid water content, and 

latent heat storage characteristics of the atmosphere show a consistent response to aerosol 

increases [58]. When the albedo effect is balanced by aerosol absorption of incoming 

radiation, this causes the net cooling effect in polar areas. 

 

Effects of Cloud and Aerosols on Air Quality 
One interpretation of this plot idea is that the climate forcing effects of aerosols 

and clouds influence air quality through the following processes and mechanisms: 

causing small but significant changes in ventilation rates; precipitation scavenging; 

changes in chemical production and loss rates; and dry deposition. In the earlier studies, 

the ozone concentration had a low sensitivity to temperature (2 to 3.7 times less) than had 

been observed for PM10 [non-particulate matter] and black carbon. The researchers 

found that ozone is strongly associated with temperature, as ozone concentrations in both 

warm and cold years decrease and increase, respectively. Since the date at which the 

temperature of the Earth's atmosphere began to rise, it has increased annually by 0.85 K. 

The warming that results from the burning of fossil fuels has major implications for the 

chemical composition of ozone, a pollutant of considerable concern for public health. 

Although it was previously known that ozone was dependent on temperature and altitude, 

the findings from this study were remarkable. Ozone is a reactive, unstable chemical 

formed from oxygen molecules when ultraviolet light from the sun hits ground level 

pollutants. Ozone is a molecule that consists of three oxygen atoms bound together in a 
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molecule that resembles an H. A new study [60] published recently showed that 

temperature correlated with ozone and water vapor in the atmosphere over land. An 

increasing number of studies suggest that an increase in temperature is the main cause of 

this ozone depletion. From 1940 to 1976, the earth was cooler, and during this time there 

were three times as many days when the minimum overlying ozone concentration fell 

below 0.12 parts per billion (ppb). The best correlation, from which the present-day 

figure of 0.84 is derived, occurs between ozone and temperature in the lower atmosphere. 

Therefore, according to the authors, ozone forms when warmer air near the surface 

moves upward toward cooler layers of air. Today, this knowledge has helped us make 

considerable progress in reducing stratospheric ozone depletion, which would eventually 

lead to a significant reduction of ultraviolet radiation reaching the Earth's surface. Ozone 

and high temperatures are examples of a positive autocorrelation because ozone is 

sensitive to changing temperature and higher temperatures lead to more ozone, in spite of 

the fact that these variables have no direct causal relationship. Ozone is a poisonous gas, 

found in the atmosphere and emitted by some industrial emissions and forest fires. Large 

numbers of ozone molecules can be created when sunlight breaks apart ozone molecules 

with oxygen atoms (ozone is comprised of two oxygen atoms). Ozone affects 

temperatures through absorption of infrared radiation by liquid water, which returns the 

energy to space as long as it remains liquid.  

Ozone production occurs in the stratosphere as well, where the ionization of water 

molecules by solar ultraviolet radiation (UV) reduces the reactive hydroxyl radical. Most 

of these NMVOCs are harmful to the ozone layer and produce secondary organic 

aerosols (SOAs) [59]. As the concentrations of NMVOCs and NOx in the atmosphere rise 

due to anthropogenic climate change, ozone levels are expected to increase [60]. Ozone is 

produced in the troposphere by the photochemical oxidation of carbon monoxide (CO), 

methane and non-methane volatile organic compounds (NMVOCs), and the hydroxyl 

radical in the presence of reactive nitrogen oxides. 

 
 
CONCLUSIONS 
 The effects of the Angstrom-Prescott [5] and Hargreaves-Samani [21] coefficients 

on climate forcing and solar PV technology selection in West Africa were studied using 

monthly averaging datasets. The main finding was that the Angstrom-Prescott and 

Hargreaves-Samani coefficients are ineffective for assessing global solar radiation over 

West Africa. On the other hand, coefficients fitted in this study were more efficient for 

calculating the Angstrom-Prescott and Hargreaves-Samani coefficients in the region. 

Consequently, if global solar radiation ground measurement datasets were not available 

in West Africa, the following models based on sunlight and temperature could be used: 
𝐻

𝐻𝑜
= 0.366 + 0.459 (

𝑆

𝑆𝑜
)       (6) 

𝐻

𝐻𝑜
= 0.216(∆𝑇)0.5        (7) 

According to the above equation, AP parameters obtained on an annual basis 

include a = 0.366 and b = 0.459, whereas the Hargreaves-Samani coefficient of 0.216 can 

be used as more accurate parameters than the FAO-recommended a = 0.25 and b = 0.5, as 

well as the 0.17 recommended by Hargreaves and Samani [21]. The effects of the 

Angstrom-Prescott and Hargreaves-Samani coefficients were also examined to determine 

the best solar PV model for West Africa. According to the parameters of the Angstrom-

Prescott and Hargreaves-Samani coefficients, the p-Si module is more reliable than the 
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m-Si module, because the p-Si module has a higher tendency to withstand the high 

temperatures projected to affect the region due to its higher module intrinsic properties 

[61]. 
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