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This paper investigates the possibility of revolutionizing Africa's carbon 
footprint through innovative technology dissemination strategies for GHG 
emission reduction.  It highlights the importance of harnessing renewable 
energy sources to mitigate climate change and promote sustainable 
development in Africa. This paper also examined several technology 
diffusion theories in order to unleash Africa's climate-smart potential by 
tying them to the recommended techniques for dealing with technological 
diffusion concerns. These theories varied from diffusion of innovation 
theory to planned behaviour theory. By analysing these theories, it was 
found that the most appropriate technology diffusion theory for the 
assessment of innovative technology dissemination strategies for GHG 
emission reduction in Africa would be the Diffusion of Innovations Theory. 
This is due to the theory's emphasis on the dissemination and adoption 
of new ideas, technologies, or innovations by people or groups within a 
social system. It would give useful insights into the variables influencing 
the adoption and dissemination of novel technology for reducing GHG 
emissions in Africa. The paper also discusses the challenges and 
barriers faced in the diffusion of renewable energy technologies across 
the continent while proposing innovative strategies to overcome these 
obstacles and unlock Africa's untapped climate-smart potential. These 
strategies include promoting policy and regulatory frameworks that 
incentivize investment in renewable energy, fostering partnerships 
between governments, private sector entities, and international 
organizations to support technology transfer and capacity building, and 
implementing financial mechanisms such as green bonds and carbon 
pricing to mobilize funding for renewable energy projects. These 
proposed strategies were also used to develop seven policies required 
for innovative technology dissemination strategies for GHG emission 
reduction in Africa. These policies aim to address the unique challenges 
faced by African countries in adopting and implementing innovative 
technologies for GHG emission reduction. By focusing on capacity 
building, financial incentives, and knowledge sharing, these strategies 
seek to promote the widespread adoption of sustainable technologies 
across the continent. They emphasize the importance of collaboration 
between governments, private sector entities, and international 
organizations to ensure the successful implementation and long-term 
sustainability of these policies.  
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1. Introduction  
  

 In recent years, the urgency to combat climate change and transition towards 

sustainable energy sources has become increasingly apparent. Africa, with its vast 

renewable energy potential, has a unique opportunity to lead this global shift. However, 

despite the continent's abundant resources [1], innovative technology dissemination 

strategies for GHG emission reduction in Africa has been hindered by various challenges. 

This perspective paper aims to explore these technological diffusion issues and propose 

strategies for innovative technology dissemination strategies for GHG emission reduction, 

paving the way for sustainable renewable energy development on the continent. One of 

the key challenges is the lack of adequate infrastructure to support the deployment of 

renewable energy technologies [2]. Limited access to reliable electricity grids and 

transmission networks [3] hinders the widespread adoption of clean energy solutions. 

There is a need for capacity building [4] and knowledge transfer [5] to empower local 

communities and governments to effectively implement and maintain these technologies. 

 By addressing these barriers, Africa can unlock its immense renewable energy 

potential and contribute significantly to global efforts to combat climate change [6]. 

Investing in renewable energy technologies can also have significant economic benefits 

for Africa [7]. By shifting towards clean energy sources [8], countries can reduce their 

reliance on expensive fossil fuel imports [9] and create new job opportunities in the 

renewable energy sector [10]. This not only helps to stimulate economic growth [11] but 

also improves energy security [12] and reduces greenhouse gas emissions [13]. Investing 

in renewable energy can enhance energy access and affordability [14] for communities in 

Africa, particularly in remote areas where traditional energy infrastructure may be 

lacking. By decentralizing energy production through renewable sources like solar and 

wind [15], countries can ensure a more equitable distribution of electricity [16] and 

reduce the burden on centralized grids [17-20]. This can lead to improved quality of life 

[21], increased productivity [22], and overall sustainable development for African nations. 

 In this paper, six technological diffusion theories will be examined to understand 

how the innovative technology dissemination strategies for GHG emission reduction can 

be accelerated in African communities. These theories include the innovation diffusion 

theory [23], the network theory [24], the institutional theory [25], the technology 

acceptance model [26], the innovation-decision process theory [23], and the theory of 

planned behaviour [27]. By analysing these theories, policymakers and stakeholders can 

gain insights into the factors that influence the successful implementation and widespread 

adoption of renewable energy solutions in Africa. Understanding these theories can help 

identify potential barriers and develop strategies to overcome them. By understanding 

diffusion theory, policymakers and stakeholders can gain insights into how information 

about renewable energy solutions spreads and influences adoption. This can help them 

design effective communication and marketing campaigns to increase awareness and 

knowledge among the target audience. The theory of planned behaviour can provide 

valuable insights into individuals' attitudes, subjective norms, and perceived behavioural 

control towards adopting renewable energy solutions. Policymakers can use this 

information to design interventions that address these factors and encourage behaviour 
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change towards sustainable energy practices. By understanding individuals' attitudes, 

subjective norms, and perceived behavioural control towards adopting renewable energy 

solutions, policymakers can tailor their interventions to effectively address the barriers 

and motivations that influence behaviour change. This approach can lead to more 

successful implementation of sustainable energy practices and contribute to the overall 

transition towards a greener future. 

 The authors also proposed seven measures with theoretical underpinnings for 

innovative technology dissemination strategies for GHG emission reduction. These range 

from encouraging the use of renewable energy technology through governmental 

incentives and financial assistance to raising public awareness and education initiatives to 

promote knowledge and support for renewable energy adoption. The authors emphasized 

the importance of establishing strong partnerships between African countries and 

international organizations to facilitate technology transfer and knowledge sharing. They 

also highlighted the need for robust regulatory frameworks that promote the integration 

of renewable energy sources into existing energy systems, ensuring a smooth and 

efficient transition towards a greener future in Africa. The authors stressed the 

significance of financial incentives and investment opportunities to attract private sector 

involvement in renewable energy projects. They suggested that governments should 

implement policies that encourage renewable energy entrepreneurship and create a 

favourable business environment for both local and international investors. The authors 

emphasized the need for capacity-building programs to train a skilled workforce capable 

of designing, implementing, and maintaining renewable energy infrastructure across 

Africa. 

 The authors examine the seven suggested measures with theoretical justifications 

for innovative technology dissemination strategies for GHG emission reduction in 

relation to the identified technological diffusion theories. The authors argue that 

addressing technological diffusion issues is crucial for achieving sustainable renewable 

energy growth in Africa. They suggest that by implementing the seven measures and 

investing in capacity-building programs, Africa can overcome barriers to technology 

adoption and attract more investors. This would not only help in designing and 

implementing renewable energy infrastructure but also ensure its long-term maintenance, 

ultimately leading to a significant increase in Africa's climate-smart potential. By 

addressing technological diffusion issues, Africa can also enhance its energy security and 

reduce its reliance on fossil fuels. The adoption of renewable energy technologies can 

create job opportunities and promote economic growth in the region, contributing to 

overall sustainable development. 

 
 
2. Exploring Technological Diffusion Theories for GHG Emission 

Reduction in Africa 
 

2.1 Technological Diffusion Theories 
 This section will provide an overview of the different technological diffusion 

theories that can be applied for GHG Emission Reduction. By understanding these 

theories, policymakers and stakeholders can develop effective strategies to promote the 

growth of sustainable renewable energy on the continent. This section will highlight the 

importance of considering local context and socio-economic factors when implementing 

technological diffusion initiatives in Africa. By considering local context and socio-
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economic factors, policymakers and stakeholders can ensure that the technological 

diffusion initiatives are tailored to the specific needs and challenges of each African 

country. This approach will not only accelerate the adoption of sustainable renewable 

energy but also contribute to the overall economic development and social well-being of 

the continent. 

 
2.1.1 Diffusion of Innovations Theory 

 This theory was proposed by Everett Rogers, a communication scholar and 

sociologist [23]. He introduced the Diffusion of Innovations theory in his 1982 book, 

which has since become a foundational framework for understanding the adoption and 

diffusion of new technologies in various fields. It outlines the key principles and stages of 

the diffusion process, including the characteristics of innovators and early adopters, the 

importance of communication channels, and the factors that influence the rate of adoption.  

According to this theory, the adoption and spread of new technologies depend on 

factors such as the perceived relative advantage of the technology, its compatibility with 

existing systems, the complexity of implementation, and the ability of individuals or 

organizations to observe and learn from others who have already adopted the technology. 

These theories highlight the importance of understanding the social, economic, and 

cultural factors that influence the adoption and diffusion of sustainable renewable energy 

solutions in Africa. This theory helps identify the key barriers and challenges faced in the 

diffusion process, such as limited access to financing, a lack of infrastructure, and 

inadequate policy frameworks. By understanding these issues, policymakers and 

stakeholders can develop targeted strategies to overcome them and promote the 

widespread adoption of renewable energy solutions in Africa. Additionally, the theory 

also emphasizes the importance of capacity building and knowledge transfer in order to 

support the successful implementation of renewable energy technologies. This includes 

providing training and education programs to local communities and professionals, as 

well as facilitating partnerships with international organizations and experts. By investing 

in these areas, African countries can enhance their technical skills and expertise, 

ultimately accelerating the adoption and spread of sustainable renewable energy 

technologies across the region. In addition, African countries can also focus on creating 

favourable policies and regulatory frameworks that promote the use of renewable energy. 

This can include incentives such as tax breaks or subsidies for renewable energy projects, 

as well as streamlining the permitting and approval processes. By creating a supportive 

environment for renewable energy development, African countries can attract more 

investments and encourage the growth of a thriving renewable energy sector. 

Furthermore, African countries can collaborate with international organizations and 

development partners to access funding and technical expertise for renewable energy 

projects. This partnership can help accelerate the deployment of renewable energy 

technologies and ensure their successful implementation. Additionally, African countries 

can prioritize capacity building initiatives to train a skilled workforce in the renewable 

energy sector, fostering local expertise and job creation in the industry..  

 

2.1.2 Innovation-Decision Process Theory 

 The innovation-decision process theory was also proposed by Everett Rogers [23] 

in his 1982 book. This theory suggests that the adoption and diffusion of new 

technologies, such as sustainable renewable energy solutions, follows a series of stages, 

including knowledge, persuasion, decision, implementation, and confirmation. Each stage 
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involves different factors and influences that can either facilitate or hinder the adoption of 

sustainable renewable energy solutions. For example, knowledge about the benefits and 

feasibility of these solutions is crucial in the persuasion stage, while financial and policy 

support play a significant role in the implementation stage. By understanding and 

addressing these factors, Africa can effectively promote the widespread use of sustainable 

renewable energy solutions throughout the continent. Other factors that can facilitate the 

adoption of sustainable renewable energy solutions include technological advancements 

and infrastructure development. Access to reliable and efficient renewable energy 

technologies, such as solar panels or wind turbines, can greatly enhance the feasibility 

and attractiveness of these solutions. Additionally, establishing a robust energy 

infrastructure that supports the generation, distribution, and storage of renewable energy 

is essential for their successful implementation. By focusing on these aspects, Africa can 

create an enabling environment for the widespread adoption of sustainable renewable 

energy solutions.  

 

2.1.3 Network Diffusion Theory 

 This theory was proposed by Valente [24], who argued that understanding the 

structure and dynamics of social networks is essential for predicting and influencing the 

diffusion of innovations. His research emphasized the importance of social influence and 

communication patterns in driving technology adoption and spread within a community. 

According to this theory, the adoption and spread of new technologies are influenced by 

social networks and interpersonal relationships. In the context of sustainable renewable 

energy solutions in Africa, this theory suggests that leveraging existing social networks 

and building strong interpersonal relationships can play a crucial role in promoting the 

adoption and diffusion of these technologies. By engaging with communities, local 

leaders, and influential individuals, Africa can create a supportive network that 

encourages the widespread use of sustainable renewable energy solutions. This approach 

can help overcome barriers such as lack of awareness, trust, and access to financing. 

Additionally, fostering strong interpersonal relationships can lead to knowledge sharing, 

collaboration, and collective decision-making, ultimately accelerating the transition 

towards sustainable renewable energy in Africa. By engaging communities, local leaders, 

and influential individuals, Africa can tap into their expertise and resources to implement 

effective renewable energy policies and initiatives. Moreover, this collaborative network 

can also advocate for supportive government policies and regulations that promote the 

adoption of sustainable energy solutions. This collaborative network can also facilitate 

knowledge sharing and capacity building, empowering communities to develop their own 

renewable energy projects and initiatives. By leveraging the collective expertise and 

resources of various stakeholders, Africa can overcome barriers such as a lack of funding 

and technical know-how, paving the way for the widespread adoption of sustainable 

energy solutions across the continent.  

 

2.1.4 The Institutional Theory 

 The Institutional Theory was proposed by sociologists Meyer, J.W., and 

Jepperson, R.L., in 2021 [25]. It emerged as a response to the limitations of existing 

theories that focused solely on individual behaviour and ignored the influence of larger 

social structures and organizations. The theory suggests that institutions, such as schools 

or businesses, shape individuals' behaviour and actions through established norms, values, 

and rules. These institutions not only provide a framework for individuals to navigate 
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their social environment but also exert a significant influence on their beliefs, attitudes, 

and decision-making processes. The institutional theory argues that understanding these 

institutional influences is crucial for comprehending social phenomena and predicting 

individual behaviour in various contexts. 

The theory focuses on the influence of formal and informal institutions, such as 

government policies, regulations, and cultural norms, on the adoption and diffusion of 

renewable energy technologies in Africa. These institutions can either enable or hinder 

the widespread use of these technologies depending on their support or resistance towards 

them. Additionally, the Institutional Theory also highlights the importance of creating 

supportive policies and regulations that incentivize the adoption of renewable energy 

technologies and address any barriers or challenges that may arise. Furthermore, the 

influence of cultural norms cannot be underestimated, as they shape attitudes and 

behaviours towards renewable energy technologies. For instance, societies that prioritize 

sustainability and environmental stewardship are more likely to embrace and adopt these 

technologies. Therefore, it is crucial for policymakers to consider both institutional 

factors and cultural context when formulating strategies to promote the adoption and 

diffusion of renewable energy technologies in Africa. 

 

2.1.5 The Technology Acceptance Model (TAM) 

 The Technology Acceptance Model (TAM) was proposed by Kock in 2017 [26]. 

TAM is a widely used theoretical framework that explains how users perceive and adopt 

new technologies. TAM was initially developed to understand the acceptance and usage 

of computer systems, but it has since been applied to various domains such as mobile 

applications and e-commerce platforms. The model suggests that perceived usefulness 

and ease of use are key factors influencing users' attitudes towards technology adoption. 

These factors are believed to directly impact users' intentions to use a technology, which 

in turn affects their actual usage behaviour. TAM has been widely studied and validated 

in numerous research studies, making it a valuable tool for understanding user behaviour 

and informing the design and implementation of new technologies. 

The theory emphasizes the role of perceived usefulness and ease of use in 

determining the adoption and usage of new technologies for sustainable renewable 

energy growth in Africa. Additionally, the Technology Acceptance Model suggests that 

individuals are more likely to adopt renewable energy technologies in Africa if they 

perceive them as beneficial and user-friendly. This highlights the importance of 

addressing the practicality and advantages of these innovations in order to encourage 

their widespread adoption. Research has shown that the successful implementation of 

renewable energy technologies in Africa requires a focus on overcoming barriers such as 

cost, infrastructure limitations, and cultural attitudes towards technology. Additionally, it 

is crucial to provide adequate training and education on renewable energy technologies to 

ensure their effective utilization. This can involve capacity-building programs that 

empower local communities and businesses to harness the potential of these innovations. 

Fostering partnerships between governments, private sector entities, and 

international organizations can help mobilize the resources and expertise needed to 

overcome the aforementioned barriers and drive the adoption of renewable energy 

technologies in Africa. In addition, it is crucial to establish supportive policies and 

regulatory frameworks that incentivize the use of renewable energy sources. This can 

include feed-in tariffs, tax incentives, and streamlined permitting processes. By creating a 

favourable environment for investment and innovation, governments can encourage the 
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widespread adoption of renewable energy technologies in Africa. Raising awareness 

among the general public about the benefits of renewable energy and promoting 

behavioural changes towards sustainable practices can contribute to a more sustainable 

energy future for the continent. 

 

2.1.6 Theory of Planned Behaviour 

 Kan and Fabrigar, both social psychologists, presented the Theory of Planned 

Behaviour in 2017 [27]. It builds upon the earlier Theory of Reasoned Action and 

emphasizes the role of perceived behavioural control in predicting human behaviour. The 

Theory of Planned Behaviour suggests that individuals are more likely to engage in a 

specific behaviour if they believe they have control over it. This includes factors such as 

self-efficacy, external constraints, and the availability of resources. Additionally, the 

theory also highlights the importance of attitudes and subjective norms in shaping 

behavioural intentions. Attitudes refer to an individual's overall evaluation or opinion 

towards a particular behaviour, while subjective norms involve the perceived social 

pressure or expectations from others regarding that behaviour. These factors, along with 

perceived behavioural control, collectively influence an individual's behavioural 

intentions and ultimately their actual behaviour. 

 This theory argues that individuals' attitudes, subjective norms, and perceived 

behavioural control towards renewable energy technologies will also play a significant 

role in their adoption decisions in African communities. Attitudes towards renewable 

energy technologies can be shaped by factors such as personal beliefs, values, and 

previous experiences, which may vary among individuals in African communities. These 

attitudes can influence their willingness to adopt and support these technologies. 

Subjective norms, which refer to the perceived social pressure and expectations from 

family members, friends, and other community members, can also impact individuals' 

decisions to adopt renewable energy technologies in Africa. The approval or disapproval 

of their social network can play a crucial role in shaping their attitudes towards these 

technologies. Additionally, individuals' level of awareness and understanding of the 

benefits and drawbacks of renewable energy technologies can also influence their 

willingness to adopt and support them. Furthermore, cultural and societal norms can 

heavily influence individuals' decisions regarding renewable energy technologies in 

Africa. For instance, if traditional practices or beliefs prioritize non-renewable energy 

sources, individuals may be hesitant to deviate from these norms. Additionally, the 

availability and accessibility of renewable energy technologies in their communities can 

greatly impact their adoption rates. Moreover, economic factors play a crucial role in 

determining the willingness of individuals to adopt and support renewable energy 

technologies in Africa. If the cost of implementing and maintaining these technologies is 

high, it may deter individuals from embracing them. Additionally, government policies 

and incentives that promote renewable energy can also influence adoption rates by 

providing financial support or creating a favourable regulatory environment. Furthermore, 

the availability of reliable infrastructure and access to financing options can also affect 

the adoption rates of renewable energy technologies in Africa. Lack of proper 

infrastructure, such as transmission lines and storage facilities, can hinder the efficient 

distribution and utilization of renewable energy. Moreover, limited access to affordable 

financing options may make it difficult for individuals and businesses to invest in these 

technologies, thereby impacting their adoption rates. 
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2.2 Contextualizing the Significance of Technological Diffusion Theories for GHG 
Emission Reduction 
 This section aims to analyse and evaluate the varying degrees of importance 

attributed to different technological diffusion theories within the specific context of 

Africa's green potential and its sustainable renewable energy growth. By examining the 

different technological diffusion theories, this research paper seeks to provide insights 

into the factors that influence the adoption and implementation of renewable energy 

technologies in Africa. Additionally, it aims to identify the most effective strategies for 

promoting sustainable renewable energy growth in the region, taking into account the 

unique challenges and opportunities present in Africa's green potential. 

 Ranking the importance of technological diffusion theories in unlocking Africa's 

green potential with a focus on sustainable renewable energy growth is subjective and 

can vary depending on the context. However, some key considerations for ranking could 

include their applicability to the African context, empirical evidence supporting their 

effectiveness, and their ability to address specific challenges faced by African countries 

in adopting sustainable renewable energy technologies. Additionally, the theories' ability 

to consider socio-cultural factors, policy frameworks, and institutional support may also 

play a crucial role in determining their suitability for ranking renewable energy 

technologies in the African context. The economic viability of renewable energy 

solutions plays a crucial role in their growth. Factors such as cost-effectiveness, return on 

investment, and government incentives can greatly influence the adoption and 

implementation of sustainable renewable energy projects in Africa. Furthermore, it is 

important to evaluate the scalability and feasibility of these theories in relation to the 

unique economic and infrastructural conditions of African countries. By considering 

these factors, a comprehensive ranking system can be developed to prioritize renewable 

energy technologies that have the greatest potential for successful implementation and 

long-term sustainability in Africa. 

 Ranking the significance of technological diffusion theories in realizing Africa's 

environmental potential with a focus on sustainable renewable energy growth is arbitrary 

and dependent on a number of variables. However, based on their relevance and 

applicability in this context, the following numerical ranking can be considered: 

Diffusion of Innovation Theory is ranked first. This theory is highly important as it 

focuses on how new ideas and technologies spread through social systems. It can provide 

insights into how sustainable renewable energy solutions can be adopted and diffused 

across African communities. Social Network Theory is ranked second. This theory 

examines the relationships and connections between individuals and groups within a 

social system. By understanding the social networks within African communities, it can 

help identify key influencers and opinion leaders who can drive the adoption of 

sustainable renewable energy solutions. Additionally, it can highlight potential barriers or 

challenges that may hinder the diffusion process. 

 Institutional theory is ranked third. This theory focuses on the formal and 

informal rules, norms, and practices that shape behaviour within organizations and 

societies. Applying institutional theory to renewable energy projects in Africa can 

provide insights into the regulatory frameworks, policies, and cultural factors that may 

impact their implementation. It can also shed light on how existing institutions can be 

leveraged or transformed to support the adoption of sustainable energy solutions in 

African communities. The Innovation-Decision Process Theory, which explains how 

individuals and organizations adopt new innovations, is ranked fourth. This theory can be 
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applied to renewable energy projects in Africa to understand the factors that influence the 

decision-making process for adopting sustainable energy solutions. By examining the 

stages of awareness, interest, evaluation, trial, and adoption, this theory can help identify 

barriers and facilitators to the successful implementation of renewable energy projects in 

African communities. Additionally, it can provide guidance on strategies to effectively 

communicate and promote the benefits of sustainable energy solutions to key 

stakeholders. 

 A popular framework for analysing people's acceptance and adoption of new 

technologies, the Technology Acceptance Model (TAM) is ranked fifth. By applying the 

TAM to renewable energy projects in Africa, researchers can assess the factors that 

influence individuals' willingness to adopt and use sustainable energy solutions, such as 

their perceived usefulness and ease of use. This can help policymakers and project 

developers tailor their strategies to overcome barriers and promote the widespread 

adoption of renewable energy in African communities. The sixth-ranked theory is the 

Theory of Planned Behaviour (TPB), which extends the TAM by taking into account how 

people's attitudes, subjective norms, and perceived behavioural control affect their 

intentions to adopt new technologies. By considering these additional factors, the TPB 

provides a more comprehensive understanding of the factors that influence individuals' 

decision-making processes when it comes to adopting renewable energy solutions in 

Africa. This can further assist policymakers and project developers in designing targeted 

interventions that address specific barriers and encourage sustainable energy adoption on 

a larger scale. 

 

 

3. Application of Technological Diffusion Theories to Africa's Innovative 
Technology Dissemination Strategies for GHG Emission Reduction 
 

Technological diffusion theories offer valuable insights into understanding how 

new technologies spread and are adopted within a society. Applying these theories to 

Africa's innovative technology dissemination strategies for GHG emission reduction can 

help identify key factors that influence the successful adoption and implementation of 

such technologies. This study identified six theories (Diffusion of Innovations Theory, 

Innovation-Decision Process Theory, Network Diffusion Theory, Institutional Theory, 

Technology Acceptance Model (TAM), and Theory of Planned Behaviour) for the 

evaluation of novel technology dissemination strategies for reducing GHG emissions in 

Africa. The most appropriate technology diffusion theory for the assessment of 

innovative technology dissemination strategies for GHG emission reduction in Africa 

would be the Diffusion of Innovations Theory. One important theory that can be applied 

is the "Diffusion of Innovations" theory, which explores how new ideas, products, or 

technologies are adopted by individuals or groups. In the context of Africa's innovative 

technology dissemination strategies, this theory can provide insights into the factors that 

influence the speed and extent of adoption of GHG emission reduction technologies. It 

can help identify the characteristics of individuals or groups that are more likely to adopt 

these technologies, as well as the communication channels and social networks that can 

facilitate their diffusion. This theory focuses on how new ideas, technologies, or 

innovations spread and are adopted by individuals or groups within a social system. It 

would provide valuable insights into understanding the factors that influence the adoption 
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and diffusion of innovative technologies for GHG emission reduction in Africa. Here are 

some specific reasons, among others, why we chose this theory: 

 1. The Diffusion of Innovations Theory has a strong foundation for understanding 

how new technologies are adopted and spread among different populations. 2. This 

theory recognizes the importance of social networks and interpersonal communication in 

the adoption process, which is crucial for effective dissemination strategies in Africa. 3. 

The Diffusion of Innovations Theory emphasizes the role of opinion leaders and early 

adopters, who can play a significant role in influencing others to adopt innovative 

technologies for GHG emission reduction. 4. This theory takes into account the different 

stages of the adoption process, including awareness, interest, evaluation, trial, and finally 

adoption. 5. It also acknowledges that individuals have varying levels of readiness to 

adopt new technologies and that external factors such as economic incentives and policy 

support can influence their decision-making. These reasons highlight the importance of 

identifying key stakeholders who can effectively promote and encourage the adoption of 

innovative technologies for GHG emission reduction. By understanding the stages of the 

adoption process and considering individual readiness levels, these stakeholders can 

tailor their strategies to effectively communicate the benefits and overcome any barriers 

associated with adopting new technologies. Additionally, leveraging economic incentives 

and policy support can further incentivize individuals to embrace these technologies, 

leading to more widespread adoption and ultimately a significant reduction in GHG 

emissions [28].  

  

 

4. Strategies for Addressing Technological Diffusion Issues in Africa 
 

4.1 Promoting the Adoption of Renewable Energy Technologies through Policy 
Incentives and Financial Support  
 Promoting the adoption of renewable energy technologies through policy 

incentives and financial support in Africa can resolve strategies for addressing 

technological diffusion issues by creating a favorable environment for investment and 

development. By offering incentives such as tax breaks, grants, and subsidies, 

governments can attract both domestic and foreign investors to participate in the 

renewable energy sector. This influx of capital will not only accelerate the deployment of 

renewable energy technologies but also foster innovation and competition, driving down 

costs and making these technologies more accessible to a wider population. Additionally, 

in order to reduce GHG emissions in Africa, it is crucial for governments to prioritize the 

development of renewable energy sources. This can be achieved by implementing 

policies that promote the use of clean energy and discourage the reliance on fossil fuels. 

By investing in renewable energy infrastructure and creating a favorable regulatory 

environment, African countries can pave the way for a sustainable and low-carbon future 

while also attracting international partnerships and collaborations. Furthermore, 

promoting the adoption of renewable energy technologies can also lead to job creation 

and economic growth in Africa. This transition towards clean energy sources can not only 

address climate change concerns but also provide opportunities for local communities to 

participate in the green economy and improve their livelihoods. By investing in 

renewable energy infrastructure, African countries can reduce their dependence on fossil 

fuels and mitigate the adverse effects of climate change. Additionally, the shift towards 
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clean energy sources can help improve air quality and reduce health risks associated with 

pollution, benefiting both the environment and public health in Africa. 

According to a report by the International Renewable Energy Agency (IRENA), 

increasing the share of renewable energy in Africa's power sector to 67% by 2030 could 

create over 2 million jobs and reduce carbon dioxide emissions by around 310 megatons 

[29]. This highlights the potential economic and environmental benefits of promoting 

renewable energy adoption in African nations. Furthermore, a study published in the 

journal Global Environmental Change found that policy incentives and financial support 

can play a crucial role in overcoming technological diffusion issues [30]. For example, 

the study showed that providing subsidies and tax incentives for renewable energy 

projects can attract private investment and accelerate the deployment of renewable 

energy technologies in Africa. Additionally, the research emphasized the importance of 

capacity building and knowledge transfer to ensure successful implementation of 

renewable energy initiatives in African countries. Capacity building and knowledge 

transfer can help local communities and governments develop the necessary skills and 

expertise to effectively operate and maintain renewable energy systems. This can also 

foster job creation and economic growth in the region, further incentivizing the adoption 

of renewable energy technologies. Moreover, partnerships between international 

organizations, governments, and local stakeholders can facilitate the exchange of best 

practices and promote collaboration in addressing technological diffusion challenges in 

Africa. 

 

4.2 Developing a Robust Infrastructure for Renewable Energy Production and 
Distribution 
 Developing a robust infrastructure for renewable energy production and 

distribution in African nations can resolve strategies for addressing technological 

diffusion issues by leveraging the continent's abundant natural resources. With a focus on 

renewable energy, such as solar and wind power, African nations can tap into their vast 

potential to generate clean and sustainable electricity. By investing in infrastructure 

development, such as building solar farms or wind turbines, these nations can not only 

meet their own energy demands but also become exporters of renewable energy to 

neighboring countries. This would not only reduce GHG emissions in Africa. This would 

not only contribute to mitigating climate change but also stimulate economic growth and 

create job opportunities within the renewable energy sector. Additionally, by reducing 

reliance on fossil fuels, African nations can improve air quality and public health, leading 

to a better quality of life for their citizens. Furthermore, investing in renewable energy 

infrastructure would also enhance energy security for African nations, as they would no 

longer be dependent on fluctuating oil prices and geopolitical tensions. Additionally, the 

transition to renewable energy sources would promote technological innovation and 

knowledge transfer, positioning Africa as a leader in sustainable development on the 

global stage. Moreover, the adoption of renewable energy would create new job 

opportunities and stimulate economic growth in African countries. By investing in clean 

energy projects, African nations can attract foreign investments and establish themselves 

as attractive destinations for green technology companies. This would not only boost 

their economies but also foster local expertise and skills in the renewable energy sector, 

paving the way for long-term sustainable development. 

. According to a report by the International Renewable Energy Agency (IRENA), 

developing a robust infrastructure for renewable energy production and distribution in 



 

Peer-Reviewed Article   Trends in Renewable Energy, 10 

 

 

Tr Ren Energy, 2024, Vol.10, No.1, 1-29. doi: 10.17737/tre.2024.10.1.00163 12 

 

African nations could result in significant economic benefits. The report states that by 

2030, investing in renewable energy could create over 2 million jobs and contribute to an 

increase of $34 billion in GDP across the continent [29]. Additionally, a study published 

in the journal Global Environmental Change found that improving renewable energy 

infrastructure can help address technological diffusion issues by attracting foreign 

investments and promoting knowledge transfer from developed countries [30]. This can 

lead to a more sustainable and diversified economy in African nations, reducing their 

dependence on traditional energy sources and fostering long-term growth. Furthermore, 

the adoption of renewable energy technologies can also contribute to mitigating climate 

change and improving environmental sustainability in the region. By investing in 

renewable energy infrastructure, African nations can reduce their carbon emissions and 

contribute to global efforts to combat climate change. Additionally, the development of 

clean energy technologies can create new job opportunities and stimulate economic 

development in the region, ultimately improving the quality of life for its citizens. 

 

4.3 Encouraging Research and Development in Renewable Energy Technologies 
to Drive Innovation 
 By encouraging research and development in renewable energy technologies in 

African nations, it can lead to the creation of innovative solutions tailored to the specific 

needs and challenges of these countries. This localized approach can address 

technological diffusion issues by ensuring that renewable energy technologies are not 

only accessible but also affordable and efficient for African communities. Additionally, 

this focus on research and development can foster collaboration between African nations 

and international partners, allowing for knowledge sharing and the transfer of expertise, 

further accelerating the adoption and diffusion of these technologies across the continent 

in order to reduce GHG emissions in Africa. Moreover, governments can play a crucial 

role in promoting the widespread adoption of renewable energy technologies by 

implementing supportive policies and incentives. These measures can include providing 

financial incentives for individuals and businesses to invest in renewable energy systems, 

as well as establishing regulatory frameworks that prioritize clean energy sources over 

fossil fuels. By creating an enabling environment for the deployment of renewable energy 

technologies, African countries can overcome barriers to diffusion and pave the way for a 

sustainable and low-carbon future. Additionally, governments can promote research and 

development in renewable energy technologies by allocating funding and resources to 

universities and research institutions. This will encourage innovation and the 

development of more efficient and cost-effective solutions. Furthermore, collaboration 

with international organizations and partnerships with other countries can facilitate 

knowledge sharing and technology transfer, accelerating the adoption of renewable 

energy across Africa. In order to ensure a sustainable future, it is crucial for governments 

to also implement policies and regulations that incentivize the use of renewable energy 

sources. By providing tax incentives or subsidies for renewable energy projects, 

governments can encourage businesses and individuals to transition away from fossil 

fuels. Moreover, establishing clear targets and timelines for renewable energy adoption 

can create a sense of urgency and accountability, driving faster progress in the transition 

towards a greener Africa. 

According to a report by the International Renewable Energy Agency (IRENA) 

[29], investing in research and development (R&D) for renewable energy technologies 

can significantly contribute to resolving technological diffusion issues in Africa. The 
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report states that increased R&D funding can lead to the development of more efficient 

and cost-effective renewable energy solutions, making them more accessible and 

attractive for adoption across the continent. For instance, countries like Morocco and 

South Africa have already made substantial progress in this regard, with their investments 

in R&D resulting in the successful implementation of renewable energy projects. This 

has not only helped these countries reduce their dependence on fossil fuels but has also 

created new job opportunities and stimulated economic growth. By learning from their 

experiences and replicating their strategies, other African nations can also accelerate the 

adoption of renewable energy technologies and address their energy challenges 

effectively. Furthermore, the successful implementation of renewable energy projects has 

also had positive environmental impacts, reduced greenhouse gas emissions and 

contributing to the fight against climate change. Additionally, the development of 

renewable energy infrastructure has attracted foreign investment and boosted the overall 

competitiveness of these countries in the global market. 

 

4.4 Fostering Partnerships between African Countries and International 
Organizations to Share Knowledge and Resources 
 Fostering partnerships between African countries and international organizations 

can be a game-changer in addressing technological diffusion issues in African nations. 

By collaborating with international organizations, African countries can tap into a vast 

pool of knowledge and resources that can help bridge the technological gap. This 

partnership can facilitate the transfer of cutting-edge technologies, best practices, and 

expertise from more developed nations to Africa, accelerating the diffusion of technology 

and driving innovation across various sectors. Additionally, these partnerships can also 

foster collaboration on research and development initiatives, leading to the creation of 

new technologies and solutions specifically tailored to the needs and challenges of 

African countries. By pooling resources and expertise, African nations can work together 

with international organizations to tackle common problems, such as access to clean 

energy or improving healthcare systems. This collaboration can ultimately contribute to 

sustainable development and economic growth in Africa while also fostering stronger 

global connections and understanding. Furthermore, this collaboration can help African 

countries leapfrog traditional development pathways and embrace innovative solutions 

that are more suitable for their unique contexts. By leveraging technology and knowledge 

transfer, African nations can address pressing issues like poverty alleviation, education, 

and infrastructure development in a more efficient and effective manner. Ultimately, this 

partnership between African countries and international organizations can pave the way 

for a brighter future for the continent and foster a sense of shared responsibility for 

addressing global challenges. 

According to a report by the World Bank [2018], fostering partnerships between 

African countries and international organizations has proven to be effective in addressing 

technological diffusion issues. For instance, a study conducted by the African 

Development Bank found that such partnerships have led to a significant increase in 

access to technology and innovation in African nations, with a 20% increase in internet 

penetration rates over the past decade. Additionally, collaborations with international 

organizations like UNESCO have resulted in the establishment of training programs and 

knowledge-sharing platforms, which have played a crucial role in bridging the digital 

divide and promoting technological literacy in developing countries. These initiatives 

have not only provided individuals with the necessary skills to navigate the digital 
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landscape but have also empowered local communities to leverage technology for socio-

economic development, ultimately contributing to overall progress and prosperity. 

Furthermore, these training programs and knowledge-sharing platforms have fostered a 

sense of inclusivity by ensuring that marginalized groups, such as women and people 

with disabilities, are not left behind in the digital revolution. By addressing the specific 

needs and challenges faced by these communities, UNESCO and similar organizations 

have been instrumental in creating a more equitable and accessible digital environment 

for all. 

 

4.5 Implementing Effective Regulatory Frameworks to Ensure the Smooth 
Integration of Renewable Energy into Existing Power Systems 
 Implementing effective regulatory frameworks to ensure the smooth integration of 

renewable energy into existing power systems in Africa can be a key strategy for 

addressing technological diffusion issues. These frameworks can provide clear guidelines 

and incentives for renewable energy adoption, encouraging investment and innovation in 

the sector. Additionally, they can help establish standardized processes for grid 

connection and power purchase agreements, reducing barriers to entry for renewable 

energy projects and promoting their widespread deployment across the continent. 

Furthermore, integrating renewable energy into existing power systems can also 

contribute to reducing greenhouse gas emissions and mitigating the impacts of climate 

change. By shifting towards cleaner sources of energy, African countries can play a 

significant role in global efforts to combat environmental degradation and achieve 

sustainable development goals. Moreover, the adoption of renewable energy can enhance 

energy security by diversifying the energy mix and reducing dependence on fossil fuel 

imports, thereby increasing resilience against volatile fuel prices and geopolitical risks. In 

addition, the transition to renewable energy can also stimulate economic growth and 

create job opportunities in Africa. The development of renewable energy infrastructure, 

such as solar and wind farms, can attract investments and promote local manufacturing 

and installation industries. This not only boosts the economy but also improves access to 

electricity for rural communities, contributing to poverty alleviation and social 

development. Furthermore, investing in renewable energy can help reduce carbon 

emissions and mitigate the effects of climate change. By transitioning to cleaner sources 

of energy, Africa can play a crucial role in global efforts to combat environmental 

degradation and promote sustainable development. 

According to a report by the International Renewable Energy Agency (IRENA), 

Africa has the potential to generate 310 gigawatts (GW) of renewable energy by 2030, 

which could account for nearly 40% of the continent's total power capacity [29]. 

However, the lack of effective regulatory frameworks has hindered the integration of 

renewable energy into existing power systems. For instance, a study conducted by the 

World Bank found that inadequate policies and regulations have resulted in low 

investment in renewable energy projects in many African countries. This lack of 

investment has limited the development and deployment of renewable energy 

technologies, preventing the continent from fully harnessing its vast renewable energy 

potential. Additionally, the absence of clear and consistent policies has created 

uncertainty for investors, making it difficult to attract the necessary funding for large-

scale renewable energy projects. 

 South Africa has the capacity to produce over 300,000 gigawatt-hours of 

renewable energy annually, according to a report by the International Renewable Energy 
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Agency (IRENA) [29]. However, due to the lack of effective regulatory frameworks, 

only a fraction of this potential has been realized so far. Implementing clear and 

consistent policies that prioritize renewable energy integration can help address 

technological diffusion issues in South Africa. For instance, countries like Germany and 

Denmark have successfully integrated high levels of renewable energy into their power 

systems, resulting in significant reductions in greenhouse gas emissions and increased 

energy security. By learning from their experiences and adopting similar policies, South 

Africa can unlock its full renewable energy potential and contribute to global efforts to 

combat climate change. 

The International Renewable Energy Agency (IRENA) found in a study that 

efficient regulatory frameworks could significantly speed up the adoption of renewable 

energy technologies in Nigeria. The study found that by implementing such frameworks, 

Nigeria could achieve a renewable energy capacity of 10,000 MW by 2030, reducing 

carbon emissions by approximately 12 million tons per year [29]. Furthermore, it is 

estimated that this would create around 52,000 direct jobs and attract significant 

investments in the renewable energy sector. This demonstrates the potential of regulatory 

frameworks to not only address environmental concerns but also stimulate economic 

growth and job creation. By providing clear guidelines and incentives for renewable 

energy development, regulatory frameworks can encourage both domestic and foreign 

investors to contribute to Nigeria's renewable energy sector. Additionally, the 

implementation of these frameworks can also help diversify Nigeria's energy mix, 

reducing its dependence on fossil fuels and enhancing energy security in the long run. 

Nigeria has the ability to produce more than 3,000 terawatt hours of renewable 

energy annually, according to a report by the International Renewable Energy Agency 

(IRENA) [29]. However, the country faces challenges in integrating renewable energy 

into its existing power systems due to technological diffusion issues. Implementing 

effective regulatory frameworks can help address these issues by providing clear 

guidelines and standards for the integration of renewable energy sources. For example, 

Germany's Renewable Energy Sources Act (EEG) has been successful in promoting the 

deployment of renewable energy by guaranteeing fixed feed-in tariffs for electricity 

generated from renewable sources. This has incentivized investment in renewable energy 

projects and encouraged the growth of the sector. Additionally, the EEG also includes 

provisions for grid integration, ensuring that renewable energy is efficiently and 

effectively integrated into the existing power grid. These regulatory frameworks can 

serve as a model for other countries looking to overcome technological diffusion 

challenges and maximize their renewable energy potential. 

Effective regulatory frameworks can be extremely important in addressing 

technological diffusion issues in Nigeria, according to a study by the International 

Renewable Energy Agency (IRENA) [29]. The study found that countries with 

supportive policies and regulations saw a significant increase in renewable energy 

capacity. For example, Germany's renewable energy capacity increased from 6% to 33% 

between 2000 and 2015 due to its strong regulatory framework [30]. Furthermore, a 

report by the Nigerian Electricity Regulatory Commission (NERC) highlighted the 

importance of regulatory frameworks in promoting investment and innovation in the 

energy sector. The report emphasized that clear and consistent regulations can attract 

both domestic and foreign investors, leading to the development of a robust renewable 

energy market in Nigeria.  
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4.6 Enhancing Capacity-Building Initiatives to Train a Skilled Workforce in the 
Renewable Energy Sector 
 Enhancing capacity-building initiatives to train a skilled workforce in the 

renewable energy sector can be a crucial strategy for addressing technological diffusion 

issues in African nations. By investing in comprehensive training programs, African 

countries can equip their workforce with the necessary knowledge and skills to 

effectively adopt and implement renewable energy technologies. This will not only 

bridge the technological gap but also create employment opportunities, promote 

sustainable development, and attract investments in the renewable energy sector. 

Additionally, these capacity-building initiatives should focus on fostering collaboration 

between local universities, research institutions, and industries to encourage innovation 

and knowledge sharing. By strengthening partnerships, African countries can leverage 

their resources and expertise to develop tailored solutions that address their specific 

energy needs and challenges. This collaborative approach will not only enhance the 

effectiveness of renewable energy initiatives but also foster a culture of continuous 

learning and improvement within the workforce. Furthermore, this collaboration can lead 

to the development of sustainable and locally-driven renewable energy projects, which 

can create job opportunities and contribute to economic growth in African countries. 

Additionally, by sharing knowledge and expertise, African countries can also benefit 

from technological advancements and best practices in the renewable energy sector, 

accelerating their transition towards a greener and more sustainable future. 

 The International Renewable Energy Agency (IRENA) reported that capacity-

building programs have been successful in addressing the problems associated with 

technological diffusion in African countries [29]. The report states that by investing in 

training programs and developing a skilled workforce, countries like Kenya and South 

Africa have successfully increased their renewable energy capacity and attracted 

investments in the sector (IRENA, 2019). This highlights the importance of prioritizing 

capacity-building efforts as a means to overcome technological barriers and promote 

sustainable development in Africa. Furthermore, the report emphasizes the need for 

African nations to establish supportive policies and regulatory frameworks that encourage 

private sector participation in the renewable energy sector. By creating an enabling 

environment for investment and innovation, countries can foster the adoption of new 

technologies and accelerate the diffusion of sustainable solutions across the continent. 

This can lead to increased access to clean energy sources, such as solar and wind power, 

which can help address the energy poverty that many African countries face. 

 An increase in capacity-building efforts in Kenya's renewable energy sector could, 

according to a study by the International Renewable Energy Agency (IRENA), lead to a 

15% increase in employment opportunities and a 20% decrease in greenhouse gas 

emissions by 2030 [29]. Additionally, research by the World Bank highlights that 

investing in training programs for renewable energy technicians can lead to a more 

efficient deployment of renewable energy technologies and an improved understanding of 

their maintenance and operation [31]. This suggests that not only can capacity-building 

efforts in Kenya's renewable energy sector have positive environmental impacts, but they 

can also contribute to the development of a skilled workforce that can effectively support 

the growth and sustainability of the sector. 

 According to [30] study, for instance, South Africa saw a 20% rise in the adoption 

of renewable technology as a result of funding capacity-building initiatives for the sector. 

Furthermore, the International Renewable Energy Agency (IRENA) reported that 
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countries with well-trained workforces in the renewable energy sector experienced a 

higher rate of technological diffusion, leading to increased energy access and reduced 

carbon emissions {29]. These findings highlight the importance of investing in capacity-

building programs for renewable energy not only in South Africa but also in other 

countries. By providing training and education to individuals working in the renewable 

energy sector, governments can promote the widespread adoption of renewable 

technologies and contribute to global efforts to reduce carbon emissions and increase 

energy access. 

 For example, a study conducted by the International Renewable Energy Agency 

(IRENA) found that capacity-building initiatives in Egypt have led to a significant 

increase in the deployment of renewable energy technologies [29]. Additionally, the 

report highlights that investing in training programs has not only improved the technical 

skills of workers but also fostered innovation and knowledge sharing within the sector, 

ultimately contributing to the successful diffusion of renewable energy technologies in 

the country.  

 

4.7 Promoting Public Awareness and Education Campaigns to Increase 
Understanding and Support for Renewable Energy Adoption 
 Promoting public awareness and education campaigns can play a crucial role in 

addressing technological diffusion issues in African nations by bridging the knowledge 

gap and dispelling misconceptions surrounding renewable energy adoption. These 

campaigns can provide information about the benefits of renewable energy, such as its 

potential to reduce reliance on fossil fuels, improve energy access, and mitigate climate 

change impacts. Additionally, they can highlight successful case studies from other 

countries or regions that have successfully implemented renewable energy solutions, 

showcasing the feasibility and positive outcomes of such initiatives. Furthermore, these 

campaigns can address common concerns and misconceptions about renewable energy, 

such as its perceived high costs or intermittent nature. By providing accurate and up-to-

date information, they can help educate the public and decision-makers about the 

advancements in renewable energy technologies and their increasing affordability and 

reliability. 

 Increased public awareness and education campaigns in African countries can 

significantly help address technological diffusion issues, according to a study done by the 

International Renewable Energy Agency (IRENA). The study found that countries with 

successful awareness campaigns saw a higher rate of renewable energy adoption, with an 

average increase of 10% in installed capacity [29}. Additionally, a report by the World 

Bank highlighted the importance of educating decision-makers about the long-term 

economic benefits of renewable energy [31], as it can lead to policy changes and 

increased investment in clean energy infrastructure. This suggests that awareness 

campaigns not only promote individual adoption of renewable energy but also have the 

potential to influence government policies and attract more funding for sustainable 

development projects. Furthermore, these campaigns can also help create a positive 

perception of renewable energy among the general public, leading to a cultural shift 

towards embracing clean technologies and reducing reliance on fossil fuels. 

 West African nations have been sluggish to adopt renewable energy technology, 

with just 0.4% of their total energy consumption coming from renewable sources in 2017 

[29], according to a report by the International Renewable Energy Agency (IRENA). By 

implementing public awareness and education campaigns, these nations can address 
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technological diffusion issues by informing the public about the benefits and potential of 

renewable energy sources. For example, a successful campaign in Ghana resulted in an 

increase in solar panel installations by over 50% within a year [32]. Additionally, 

providing financial incentives and support for renewable energy projects can also 

encourage the adoption of these technologies in West African countries. 

 According to a study conducted by the South African National Energy 

Development Institute (SANEDI), implementing public awareness and education 

campaigns resulted in a significant increase in renewable energy adoption [30]. The study 

reported that after the launch of a nationwide campaign, there was a 40% rise in the 

number of households installing solar panels within six months. This highlights the 

effectiveness of such initiatives in addressing technological diffusion issues and 

promoting sustainable energy practices in South Africa. 

 

 

5. Exploring Technological Diffusion Theories to Promote Innovative 
Technology Dissemination Strategies for GHG Emission Reduction in 
Africa 
 

 Different technological diffusion theories, such as the innovation diffusion theory, 

the technology acceptance model, the network theory, the institutional theory, the 

innovation-decision process theory, and the theory of planned behaviour, offer valuable 

frameworks for understanding and addressing technological diffusion issues in Africa. 

These theories help identify key factors that influence the adoption and spread of 

technology, including cultural, economic, and social aspects. By leveraging these theories, 

policymakers and organizations can develop targeted strategies that promote successful 

technology adoption and mitigate barriers to technological diffusion in Africa. These 

frameworks can assist in identifying potential challenges and risks associated with 

technology adoption, allowing for proactive measures to be taken. This holistic approach 

enables a more comprehensive understanding of the complex dynamics involved in 

technological diffusion and aids in the development of effective interventions that can 

drive sustainable progress in Africa's technological landscape. 

 

5.1 Leveraging Diffusion of Innovation Theory to Drive Renewable Energy 
Adoption in Africa  
 The diffusion of innovation theory can play a crucial role in promoting the 

adoption of renewable energy technologies in Africa by providing insights into the 

factors that influence their acceptance and adoption. By understanding the different 

stages of innovation diffusion, policymakers can design effective strategies to encourage 

the uptake of renewable energy technologies. Policy incentives, such as tax credits or 

feed-in tariffs, can create a favourable environment for individuals and businesses to 

invest in renewable energy systems. This will not only foster sustainable development 

and reduce dependence on fossil fuels, but also create job opportunities and stimulate 

economic growth in Africa. Promoting education and awareness about the benefits of 

renewable energy can help overcome any cultural or social barriers that may hinder its 

acceptance and adoption.  By educating communities about the positive impact of 

renewable energy, individuals can make informed choices and actively participate in the 

transition to cleaner sources of power. For example, providing training programs and 

workshops on renewable energy technologies can empower local communities to develop 
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their own sustainable energy projects. This not only creates employment opportunities 

but also fosters a sense of ownership and pride within the community, leading to long-

term economic growth. 

 In South Africa, this approach was adopted by the government to address the 

energy crisis and promote renewable energy. Through initiatives like the Renewable 

Energy Independent Power Producer Procurement Program (REIPPPP), South Africa has 

successfully attracted private investments in renewable energy projects, leading to a 

significant increase in clean energy generation capacity. This has not only reduced the 

country's reliance on fossil fuels but has also created thousands of jobs and stimulated 

economic development in previously marginalized areas. In Morocco, a similar approach 

has been taken to promote renewable energy. The country has implemented the 

Moroccan Solar Plan, which aims to generate 52% of its electricity from renewable 

sources by 2030 [29]. This initiative has not only reduced greenhouse gas emissions but 

has also positioned Morocco as a leader in renewable energy in the region. The plan has 

attracted foreign investments and created new opportunities for local businesses in the 

renewable energy sector. 

 In Nigeria, the government has also recognized the importance of renewable 

energy and has launched the Renewable Energy Master Plan, with a target of generating 

30% of its electricity from renewable sources by 2030 [33]. This plan includes incentives 

for private sector investment in renewable energy projects and aims to create jobs and 

stimulate economic growth in the country. By diversifying its energy sources, Nigeria can 

reduce its reliance on fossil fuels and contribute to global efforts to combat climate 

change. Egypt is one of the countries in Africa that has also recognized the importance of 

renewable energy. The government has set a goal to generate 20% of its electricity from 

renewable sources by 2022 [29]. This commitment has attracted significant investment in 

solar and wind energy projects, creating new job opportunities and driving economic 

development. By harnessing its abundant natural resources, Egypt can not only reduce 

greenhouse gas emissions but also enhance energy security and promote sustainable 

development in the region.  

 

5.2 Utilizing the Diffusion of Innovation Theory for Renewable Energy 
Infrastructure Development 
 The diffusion of innovation theory offers valuable insights on how to develop a 

robust infrastructure for renewable energy production and distribution. By understanding 

the different stages of innovation adoption, policymakers and stakeholders can 

strategically plan and implement initiatives that accelerate the adoption of renewable 

energy technologies. This theory emphasizes the importance of addressing barriers to 

adoption, such as cost, lack of awareness, and limited access to necessary resources. By 

identifying these barriers and implementing targeted solutions, governments and 

organizations can effectively overcome obstacles and promote the widespread adoption 

of renewable energy. It is crucial to prioritize education and awareness campaigns to 

inform the public about the benefits of renewable energy and dispel any misconceptions 

or doubts. These efforts can help create a supportive environment that encourages 

individuals and businesses to embrace renewable energy solutions, leading to a more 

sustainable future. 

 According to the World Bank, the African nation that adopted this strategy is 

Rwanda [31]. Rwanda has made significant progress in promoting renewable energy 

through its National Electrification Plan, which aims to achieve universal access to 
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electricity by 2024. The country has implemented various initiatives, such as the 

installation of solar panels in rural areas and the promotion of biogas systems. These 

efforts have not only increased access to clean energy but also created job opportunities 

and improved the overall quality of life for its citizens. Kenya and Tanzania are two other 

African countries that have implemented the same strategy. These countries have also 

seen positive results, with increased access to electricity and the creation of sustainable 

energy sources. By following this approach, African nations are not only addressing the 

urgent need for renewable energy but also setting an example for other regions to follow 

in the fight against climate change. 

  

5.3 Exploring the Diffusion of Innovation Theory to Foster Renewable Energy 
Research and Development 
 The diffusion of innovation theory can serve as a powerful framework to 

stimulate research and development in renewable energy technologies, thus driving 

innovation. By understanding the various stages of innovation adoption, policymakers 

and industry leaders can identify barriers and devise effective strategies to encourage the 

uptake of renewable energy solutions. Moreover, applying this theory enables 

stakeholders to target specific adopter groups, such as early adopters or opinion leaders, 

who play a crucial role in influencing the adoption of renewable energy technologies. By 

tailoring communication and marketing efforts towards these influential groups, 

policymakers and industry leaders can accelerate the adoption process and create a ripple 

effect throughout society. Additionally, understanding the stages of innovation adoption 

theory can help identify potential challenges or resistance from certain adopter groups, 

allowing for proactive measures to address their concerns and increase acceptance of 

renewable energy solutions. According to the World Bank, the African nation that 

stimulates research and development in renewable energy technologies is South Africa. 

The country has made significant investments in renewable energy, with the aim of 

reducing its reliance on fossil fuels and increasing access to clean and sustainable energy 

sources. Through initiatives such as the Renewable Energy Independent Power Producer 

Procurement Program, South Africa has attracted both local and international investment 

in renewable energy projects, driving innovation and technological advancements in the 

sector. This commitment to research and development not only benefits South Africa but 

also serves as a model for other African nations looking to accelerate their own adoption 

of renewable energy. Egypt has also made significant strides in promoting renewable 

energy [29]. The country has set ambitious targets to increase the share of renewable 

energy in its overall energy mix and has implemented policies and incentives to attract 

private sector investment in the sector. Egypt's commitment to renewable energy is not 

only driven by environmental concerns but also by the potential economic benefits, such 

as job creation and reduced reliance on fossil fuel imports. As a result, Egypt has become 

a regional leader in renewable energy deployment and is paving the way for other 

countries in the region to follow suit. The government has set ambitious targets to 

generate 20% of its electricity from renewable sources by 2022 and 42% by 2035. To 

achieve these goals, Egypt has implemented a range of measures [29], including feed-in 

tariffs, tax incentives, and streamlined permitting processes, to attract both domestic and 

foreign investment in renewable energy projects. This commitment to renewable energy 

has not only helped Egypt reduce its carbon emissions but has also created a thriving 

industry that is driving economic growth and providing employment. 
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5.4 Leveraging the Diffusion of Innovation Theory for Collaborative Knowledge 
and Resource Sharing between African Countries and International 
Organizations 
 In today's interconnected world, the diffusion of innovation theory offers a 

powerful framework to foster partnerships between African countries and international 

organizations. By embracing this theory, African countries can tap into the expertise and 

resources of international organizations while simultaneously sharing their own unique 

knowledge and experiences. This collaborative approach can lead to accelerated 

development, improved governance, and enhanced socio-economic outcomes for both 

parties involved. The diffusion of innovation theory can also help African countries 

address specific challenges they may face, such as limited access to technology or a lack 

of infrastructure. By partnering with international organizations, African countries can 

benefit from their expertise in these areas and find innovative solutions to overcome these 

obstacles. This collaboration can create opportunities for knowledge exchange and 

capacity building, empowering African countries to become leaders in their respective 

fields and drive sustainable development in the region. 

 According to (International Renewable Energy Agency) IRENA, Africa has the 

potential to generate over 300 GW of renewable energy by 2030 [29], which could 

greatly contribute to the continent's energy needs and reduce reliance on fossil fuels. 

However, achieving this potential requires significant investment and policy support from 

both domestic and international stakeholders. By leveraging partnerships with 

international organizations, African countries can access funding opportunities and 

technical expertise to accelerate the deployment of renewable energy projects and address 

the challenges they may face in this transition. This collaboration can also foster job 

creation and economic growth, further strengthening the sustainability of African nations. 

By embracing renewable energy sources, African countries can reduce their carbon 

emissions and contribute to global efforts to combat climate change. This not only 

benefits the environment but also enhances their reputation as leaders in sustainable 

development on the international stage. 

  

5.5 Leveraging the Diffusion of Innovation Theory for Seamless Integration of 
Renewable Energy into Power Systems 
 The diffusion of innovation theory offers valuable insights into implementing 

effective regulatory frameworks that facilitate the smooth integration of renewable 

energy sources into existing power systems. By understanding the theory's principles, 

policymakers can identify key factors that influence the adoption and acceptance of 

renewable energy technologies. Furthermore, applying this theory enables regulators to 

design targeted strategies that address barriers to adoption, such as cost concerns or 

technological uncertainties. By leveraging the diffusion of innovation theory, 

policymakers and regulators can also encourage collaboration between different 

stakeholders in the energy sector, including utilities, investors, and consumers. This 

collaboration can help create a supportive ecosystem that promotes the development and 

deployment of renewable energy technologies, ultimately leading to a more sustainable 

and resilient power system. African countries that facilitate the smooth integration of 

renewable energy sources into existing power systems include Rwanda and South Africa. 

These countries have implemented policies and regulations that incentivize collaboration 

between utilities, investors, and consumers in the energy sector. By fostering partnerships 

and knowledge sharing, they have successfully integrated renewable energy sources into 
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their power systems, reducing reliance on fossil fuels and increasing energy access for 

their populations. This collaborative approach has not only contributed to a more 

sustainable and resilient power system but has also attracted investments in the renewable 

energy sector, driving economic growth and job creation.  

  

5.6 Capitalizing on the Diffusion of Innovation Theory to Empower Capacity-
Building Initiatives in the Renewable Energy Sector 
 The diffusion of innovation theory offers a valuable framework for enhancing 

capacity-building initiatives in the renewable energy sector. By understanding the various 

stages of innovation adoption, such as awareness, interest, evaluation, trial, and adoption 

[34], organizations can tailor their training programs to effectively address the needs and 

motivations of individuals within the workforce. Furthermore, this theory can guide the 

identification and implementation of strategies that promote the widespread adoption of 

renewable energy technologies. For example, organizations can use the theory to identify 

key influencers and opinion leaders within the industry who can help drive adoption 

among their peers. Additionally, the theory can inform the development of 

communication and marketing strategies that effectively communicate the benefits and 

advantages of renewable energy, thereby increasing its appeal to potential adopters. 

African countries that facilitate the smooth integration of renewable energy sources into 

existing power systems include, according to the World Bank, South Africa, Morocco, 

and Kenya. These countries have implemented policies and regulations that promote 

renewable energy investments and have established favourable market conditions for 

renewable energy projects. They have invested in infrastructure development, such as 

grid expansion and interconnection, to ensure the reliable integration of renewable energy 

sources into their power systems. 

 

5.7 Leveraging the Diffusion of Innovation Theory for Effective Renewable 
Energy Advocacy and Education Campaigns 
 The diffusion of innovation theory offers a valuable framework for designing 

public awareness and education campaigns that can drive increased understanding and 

support for renewable energy adoption. By identifying and targeting different segments 

of the population based on their innovativeness and readiness to adopt new ideas, 

campaigns can be tailored to address specific barriers and motivations that influence 

renewable energy adoption. The theory emphasizes the importance of utilizing influential 

individuals or opinion leaders within each segment to help spread the message and create 

a ripple effect of positive change. This approach not only increases the credibility and 

trustworthiness of the campaign but also taps into existing social networks and 

communities, amplifying the reach and impact of the message. By incorporating 

interactive and engaging communication strategies such as storytelling, visual aids, and 

hands-on experiences, campaigns can effectively capture attention and inspire individuals 

to take action towards renewable energy adoption. According to World Bank data, 

African nations that have developed public education and awareness initiatives to 

promote better knowledge of and support for the use of renewable energy sources include 

Kenya, Ethiopia, and South Africa. These countries recognized the importance of 

educating their citizens about the benefits of renewable energy and implemented 

programs to raise awareness and encourage its adoption. By implementing public 

education, these countries are not only empowering their citizens with knowledge but 

also paving the way for a sustainable future. 
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6. Policy for Assessing Novel Technology Dissemination Strategies for 
Lowering GHG Emissions in Africa 
 

 Africa holds immense potential for climate-smart initiatives, particularly in the 

realm of renewable energy. However, the continent faces significant challenges when it 

comes to the diffusion and adoption of these technologies. To effectively address this 

issue and unlock Africa's sustainable energy growth, a comprehensive policy framework 

is needed that focuses on enhancing technological diffusion strategies and overcoming 

barriers to implementation. This section discusses the seven comprehensive policy 

frameworks that were developed from the seven suggested strategies for addressing 

technological diffusion issues in Africa. 

 

6.1 Promoting the Adoption of Renewable Energy Technologies through Policy 
Incentives and Financial Support  
 One way the government can promote the adoption of renewable energy 

technologies in Africa is by implementing policy incentives. These incentives can include 

tax breaks, subsidies, and grants for individuals and businesses that invest in renewable 

energy projects. Financial support can be provided through low-interest loans or venture 

capital funds specifically dedicated to renewable energy initiatives. By utilizing the 

diffusion of innovation theory, the government can create an environment that 

encourages the widespread adoption of renewable energy technologies, ultimately leading 

to a more sustainable future for Africa.  

 

6.2 Developing a Robust Infrastructure for Renewable Energy Production and 
Distribution 
 The government recognizes the urgent need to develop a robust infrastructure for 

renewable energy production and distribution in African countries. To achieve this, it has 

implemented several key policies. Firstly, it is actively investing in research and 

development to drive innovation in renewable energy technologies. This includes funding 

for the development of more efficient solar panels, wind turbines, and energy storage 

systems. The government is providing financial incentives and tax breaks to encourage 

private sector investment in renewable energy infrastructure. By offering grants and 

subsidies for the construction of renewable energy facilities, the government aims to 

increase the overall capacity and availability of clean energy sources. It is implementing 

regulations and standards to promote the adoption of renewable energy in various sectors, 

such as transportation and manufacturing. These comprehensive efforts are aimed at 

reducing greenhouse gas emissions and transitioning towards a more sustainable and 

environmentally friendly energy system. 

 

6.3 Encouraging Research and Development in Renewable Energy Technologies 
to Drive Innovation 
 One government policy to encourage research and development in renewable 

energy technologies and drive innovation is to provide financial incentives such as tax 

credits or grants for companies and individuals involved in these sectors in African 

countries. This can help offset the costs of research and development, making it more 

attractive for businesses to invest in renewable energy technologies. Governments can 

establish partnerships with universities and research institutions to promote collaboration 
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and knowledge sharing, fostering a supportive environment for innovation in the 

renewable energy sector. Governments can implement policies that require a certain 

percentage of energy to be generated from renewable sources, creating a guaranteed 

market for renewable energy technologies. This not only stimulates demand but also 

encourages companies to invest in the development and production of these technologies 

to meet the growing need. Governments can prioritize renewable energy in public 

procurement processes, further driving the adoption and advancement of renewable 

energy technologies. 

 

6.4 Fostering Partnerships between African Countries and International 
Organizations to Share Knowledge and Resources 
 The government recognizes the importance of fostering partnerships between 

African countries and international organizations to share knowledge and resources. To 

achieve this, the government has implemented a comprehensive policy framework that 

promotes collaboration and cooperation. This includes establishing platforms for regular 

dialogue and information exchange, facilitating joint projects and initiatives, and 

providing financial support for capacity-building programs. The government encourages 

the participation of African countries in international forums and conferences to enhance 

networking opportunities and promote cross-border collaboration. By actively engaging 

with international organizations, the government aims to strengthen the bonds between 

African countries and the global community. This can lead to increased knowledge 

sharing, technological advancements, and access to resources that can contribute to the 

sustainable development of African nations. By actively participating in international 

forums, African countries can have a voice in shaping global policies and agendas that 

directly impact their interests and priorities. 

 

6.5 Implementing Effective Regulatory Frameworks to Ensure the Smooth 
Integration of Renewable Energy into Existing Power Systems 
 The government recognizes the importance of integrating renewable energy into 

existing power systems and has implemented a comprehensive set of policies to ensure its 

effective implementation in African countries. These policies include conducting 

thorough assessments of the current power system infrastructure, identifying potential 

barriers and challenges, and developing strategies to overcome them. The government 

promotes collaboration between relevant stakeholders, such as energy regulators, utility 

companies, and renewable energy developers, to foster knowledge sharing and facilitate a 

seamless transition towards a more sustainable energy future. 

 

6.6 Enhancing Capacity-Building Initiatives to Train a Skilled Workforce in the 
Renewable Energy Sector 
 The government recognizes the importance of enhancing capacity-building 

initiatives to train a skilled workforce in the renewable energy sector in African countries. 

To achieve this, it has implemented various policies aimed at promoting vocational 

training programs and partnerships with educational institutions. The government offers 

financial incentives and subsidies to individuals and businesses that invest in renewable 

energy training programs, ensuring a steady supply of skilled workers for the sector. 

These initiatives not only address the immediate need for a skilled workforce but also 

contribute to long-term sustainability by creating a pipeline of trained professionals. The 

government actively collaborates with industry experts and stakeholders to continuously 
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update and improve these capacity-building initiatives, ensuring that they remain relevant 

and effective in meeting the evolving demands of the renewable energy sector. 

 

6.7 Promoting Public Awareness and Education Campaigns to Increase 
Understanding and Support for Renewable Energy Adoption 
 One effective government policy to promote public awareness and education 

campaigns for renewable energy adoption is to allocate funds for comprehensive and 

widespread advertising campaigns in African countries. These campaigns can utilize 

various media platforms, such as television, radio, and social media, to reach a wide 

audience and educate them about the benefits of renewable energy. The government can 

collaborate with educational institutions to develop curriculum and training programs that 

incorporate renewable energy concepts, ensuring that future generations are well-

informed about its importance and potential. 

 

 
CONCLUSIONS 
 

 In conclusion, it is evident that addressing technological diffusion issues is crucial 

for the sustainable growth of renewable energy in Africa. By overcoming barriers such as 

lack of access to financing, inadequate infrastructure, and limited technical expertise, 

Africa can unlock its climate-smart potential and engage in renewable energy innovation. 

The report also examined several technology diffusion theories in order to unleash 

Africa's climate-smart potential by tying them to the recommended techniques for dealing 

with technological diffusion concerns. These theories varied from diffusion of innovation 

theory to planned behaviour theory. By understanding and applying these theories, 

policymakers and stakeholders can develop targeted strategies to overcome the barriers 

mentioned earlier. For example, by leveraging the diffusion of innovation theory, they 

can identify early adopters and opinion leaders within communities to promote the 

adoption of renewable energy technologies. Incorporating planned behaviour theory can 

help in understanding the factors that influence individuals' intentions to adopt climate-

smart solutions, enabling tailored interventions to increase uptake across Africa. 

 The appropriate proposed strategies for addressing technological diffusion issues 

in Africa range from encouraging the adoption of renewable energy technologies through 

policy incentives and financial support to increasing public awareness and support for 

renewable energy adoption. These strategies can be complemented by promoting 

collaboration and knowledge sharing among African countries, as well as fostering 

partnerships with international organizations and investors. Investing in capacity-building 

programs and providing training opportunities for local communities can empower them 

to actively participate in the renewable energy sector and contribute to sustainable 

development in Africa.  

 With the right policies proposed in this study, ranging from how the government 

can promote the adoption of renewable energy technologies in Africa by implementing 

policy incentives to promote public awareness and education campaigns for renewable 

energy adoption to allocating funds for comprehensive and widespread advertising 

campaigns, investments, and collaborations, Africa has the opportunity to revolutionize 

its energy sector and contribute significantly to global efforts in combating climate 

change. By implementing these policies, Africa can not only reduce its reliance on fossil 

fuels but also create new job opportunities in the renewable energy sector. The promotion 
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of renewable energy adoption can improve energy access and reliability for communities 

across the continent, leading to socio-economic development and improved quality of life. 

 In addition to addressing technological diffusion issues, further research could 

explore the potential of public-private partnerships in promoting sustainable renewable 

energy growth in Africa. This could involve examining successful case studies from other 

regions and identifying strategies that can be adapted to the African context. Investigating 

the role of policy frameworks and regulatory mechanisms in facilitating the adoption and 

diffusion of climate-smart technologies could provide valuable insights for policymakers 

and stakeholders in driving sustainable energy transitions across the continent. 
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Until now, the neural network identification methodology for the branch 
number identification (NNIM-BNI) and the neural network identification 
methodology for the distribution line and branch line length 
approximation (NNIM-LLA) have approximated the number of branches 
and the distribution line and branch line lengths given the theoretical 
channel attenuation behavior of the examined overhead low-voltage 
broadband over powerlines (OV LV BPL) topologies [1], [2]. The impact 
of measurement differences that follow continuous uniform distribution 
(CUDs) of different intensities on the performance of NNIM-BNI and 
NNIM-LLA is assessed in this paper. The countermeasure of the 
application of OV LV BPL topology databases of higher accuracy is here 
investigated in the case of NNIM-LLA. The strong inherent mitigation 
efficiency of NNIM-BNI and NNIM-LLA against CUD measurement 
differences and especially against those of low intensities is the key 
finding of this paper. The other two findings that are going to be 
discussed in this paper are: (i) The dependence of the approximation 
Root-Mean-Square Deviation (RMSD) stability of NNIM-BNI and NNIM-
LLA on the applied default operation settings; and (ii) the proposal of 
more elaborate countermeasure techniques from the literature against 
CUD measurement differences aiming at improving NNIM-LLA 
approximations. 
 

Keywords: Smart Grid; Broadband over Power Lines (BPL) networks; Power Line Communications 

(PLC); Distribution and Transmission Power Grids; Neural Networks; Big Data; Modeling; Measurements 

 

1. Introduction 
 

During the recent years, the evolution of the traditional power grid, which 

represents an omnipresent widely branched hierarchical network structure with relatively 

few one-way communications modalities, to a modern power grid that is upgraded with 

an intelligent IP-based communications network of two-way information flows may 

support a myriad of broadband applications [1]-[9]. The supported broadband 

applications can facilitate the today’s digital transformation of power utilities and 

consumers, namely: (i) power utilities’ operations and management -e.g., real-time 
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monitor, meter and control of the power grid equipment and wired infrastructure-; and  

(ii) customers’ needs and demands -e.g., real-time monitor and control of their power 

flows-. To implement the two-way information flow across the smart grid, Broadband 

over Power Lines (BPL) networks exploit the available wired power grid infrastructure 

while permitting their integration with other communications solutions, such as Radio 

Frequency (RF) mesh, modified Long Term Evolution (LTE), Code Division Multiple 

Access (CDMA) at sub GHz bands, dedicated fiber along high voltage lines and 5G 

communications, through their BPL wireline / wireless interfaces [3], [7], [8], [10]. 

A plethora of channel models has been applied for characterizing BPL channels; 

say, deterministic, statistical, bottom-up, top-down, hybrid BPL channel models and. 

more recently, BPL channel models that exploit artificial intelligence (AI), machine 

learning (ML) and neural network (NN) capabilities [1], [11]-[26]. On the basis of the 

deterministic hybrid model (DHM) of [1], [2], which describes BPL signal propagation 

and transmission across the topologies of the overhead low voltage (OV LV) BPL 

networks, critical DHM broadband performance metrics, such as the channel attenuation 

of the OV LV BPL topologies, may be further exploited by the BPL broadband 

applications of the smart grid. Indeed, Topology Identification Methodology (TIM), 

which has been proposed in [27], [28] and is among the BPL broadband applications of 

the smart grid, can approximate the exact topological characteristics (i.e., number of 

branches, length of branches, length of main lines and branch terminations) of an 

examined BPL topology by comparing the available channel attenuation measurements of 

the examined BPL topology with the theoretical DHM channel attenuation results of 

various OV LV BPL topologies stored in the TIM BPL topology database. By exploiting 

the available big data of the TIM BPL topology database for the OV LV BPL topologies 

and AI - ML - NN capabilities, the neural network identification methodology for the 

branch number identification (NNIM-BNI) and the neural network identification 

methodology for the distribution line and branch line length approximation (NNIM-LLA) 

have been proposed for the OV LV BPL topologies in [1] and [2], respectively. More 

specifically, NNIM-BNI aims at identifying the number of branches and NNIM-LLA 

tries to approximate the distribution line and branch line lengths for a given OV LV BPL 

topology theoretical channel attenuation behavior when the corresponding OV LV BPL 

topology does not lie among the ones of the TIM BPL topology database in both 

methodology cases.  

However, measurement differences between experimental and theoretical OV LV 

BPL topology channel attenuation values may occur due to several practical reasons and 

“real” life conditions while these measurement differences may significantly affect the 

performance of the BPL broadband applications of the smart grid [28]-[32]. In this paper, 

the effect of the measurement differences observed between the experimental and 

theoretical OV LV BPL topology channel attenuation values on the performance of 

NNIM-BNI and NNIM-LLA is first assessed. In accordance with [28], [29], [32], [33], a 

typical scenario to take into account the measurement differences during the BPL 

topology channel attenuation analysis is their handling as error distributions such as 

Continuous Uniform Distributions (CUDs) and Normal Distributions (NDs) that are 

superimposed to the coupling scheme transfer function theoretical numerical results of 

DHM. In this paper, measurement differences are going to be simulated as CUDs of 

various intensities. The procedure that is going to be followed so as to assess the impact 

of measurement differences as CUDs on the NNIM-BNI and NNIM-LLA approximation 

performance consists of two Phases, namely: (i) Phase 1: Exploiting the list of indicative 
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OV LV BPL topologies of [1], [2], the representative database sets of the TIM OV LV 

BPL topology database and the default operation settings A presented in [1], the branch 

number approximations of NNIM-BNI are compared against the corresponding best 

branch number approximation without measurement differences and the real branch 

number for given indicative OV LV BPL topology when CUD measurement differences 

of various intensities are assumed; and (ii) Phase 2: Focusing on the same list of 

indicative OV LV BPL topologies of [1], [2], the default operation settings B of [2], are 

here applied. In order to improve the NNIM-LLA performance and cope with the 

insidious effect of measurement differences, the default operation settings C, that are a 

more elaborate version of the default operation settings B of [2], are here proposed as a 

fine countermeasure against measurement differences. First, the NNIM-LLA 

approximations of the distribution line and branch line lengths, when CUD measurement 

differences of various intensities and default operation settings B are assumed, are 

compared against the corresponding approximations without measurement differences of 

default operation settings B so that the performance of NNIM-LLA is assessed against 

the measurement differences. Second, the performance of NNIM-LLA approximations of 

the distribution line and branch line lengths is benchmarked when CUD measurement 

differences of the same intensities and default operation settings C are assumed. Here, the 

role of the default operation settings of higher accuracy against the CUD measurement 

differences is investigated. In accordance with [1], [2], the performance metric that is 

going to be applied in both Phases of this paper is the Root-Mean-Square Deviation 

(RMSD) so that the impact of the CUD measurement differences on the NNIM-BNI and 

NNIM-LLA approximation performance can be assessed. Conversely to [1], [2], it should 

be noted that the theoretical channel attenuation measurements of the examined OV LV 

BPL topologies will be included in the TIM BPL topology database of this paper as well 

as the topological characteristics of the corresponding OV LV BPL topologies. 

The rest of this paper is organized as follows: Section 2 briefly presents DHM, 

NNIM-BNI and NNIM-LLA. Certain aspects that highlight the operation points of 

NNIM-BNI and NNIM-LLA, which are vulnerable to measurement differences, are 

presented in this Section. In addition, the mathematics concerning the involvement of 

measurement differences during the NNIM-BNI and NNIM-LLA operation are reported. 

In Section 3, the numerical results regarding the impact of measurement differences on 

the approximation performance of NNIM-BNI and NNIM-LLA are given. Section 4 

concludes this paper. 

 

2. DHM, TIM OV LV BPL Topology Database, NNIM-BNI and NNIM-LLA 
 

 In this Section, DHM and TIM OV LV BPL topology database that are 

responsible for the big data pool of NNIM-BNI and NNIM-LLA are first presented in 

this Section. Here, DHM is presented by focusing on its output of OV LV BPL topology 

channel attenuation that is appropriately included into TIM OV LV BPL topology 

database as the theoretical coupling scheme channel transfer functions. Also, the effect of 

CUD measurement differences on the DHM output is mathematically presented. Second, 

NNIM-BNI and NNIM-LLA, which have been proposed in [1] and [2], respectively, are 

briefly discussed as well as the corresponding useful conclusions of [1], [2] that are 

going to be exploited in this pair of papers and may further affect the operation and 

performance of NNIM-BNI and NNIM-LLA. 
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2.1 DHM and the Mathematics of the Measurement Differences  
 DHM is a synthetic BPL channel model of three concatenated modules; say, the 

bottom-up, the top-down and the coupling scheme modules [1], [2], [9], [11]-[13], [34]-

[36]. More specifically, the bottom-up and top-down modules of DHM address the 

propagation and transmission issues of the BPL signal across the OV LV BPL topologies. 

To deal with the aforementioned propagation / transmission problem, the bottom-up and 

top-down modules of DHM require details about the applied OV LV Multi-conductor 

Transmission Line (MTL) configurations and the OV LV BPL topologies, namely: 

1. As the OV LV MTL configuration that is applied in this paper is concerned, the 

typical OV LV MTL configuration of Fig. 1(a) is assumed. The examined OV LV 

MTL configuration consists of four parallel non-insulated conductors (i.e., 

𝑛OVLV = 4) of vertical distance that is equal to ΔOVLV. The upper conductor of 

radius rOVLV,n is the neutral conductor while the lower three conductors of radius 

rOVLV,p are the three LV phases. The lowest phase conductor is hung at height 

hOVLV above the ground. The exact dimensions, the material of the conductors and 

the structure of the conductors are detailed in [9], [11], [13], [15], [37], [38]. The 

reference conductor of the OV LV MTL configuration is assumed to be the 

imperfect lossy ground of properties reported in [39]-[41]. 

2. As the OV LV BPL topologies that are used in this paper are concerned, the 

typical OV LV BPL topology of Fig. 1(b) is assumed. With reference to Fig. 1(b), 

the typical OV LV BPL topology is bounded by the transmitting and receiving 

ends while N branches of open-circuit terminations are encountered across the 

transmitting path. The arbitrary k, k=1,…,N branch has length equal to Lbk and is 

located at distance ∑ 𝐿𝑖
𝑘
𝑖=1  from the transmitting end. The same length ∑ 𝐿𝑖

𝑁+1
𝑖=1  of 

1000m is assumed between the transmitting and receiving ends for all the applied 

OV LV BPL topologies of this paper [1], [25]. In accordance with [1], [2], [13], 

[34] the topological characteristics and the number of branches for five indicative 

OV LV BPL topologies –i.e., Line-Of-Sight (LOS), rural, suburban, urban A and 

urban B– are listed in Table 1. The indicative OV LV BPL topologies that are 

included in Table 1 may offer a general study of all OV LV BPL topology classes 

that are encountered in BPL networks. The indicative OV LV BPL topologies of 

Table 1 have already been used as OV LV BPL topology case studies during the 

benchmark of TIM-BNI, NNIM-BNI, TIM-LLA and NNIM-LLA in [1], [26]. 

 

  



 

Peer-Reviewed Article   Trends in Renewable Energy, 10 

 

Tr Ren Energy, 2024, Vol.10, No.1, 30-66. doi: 10.17737/tre.2024.10.1.00164 34 

 

 

 
Figure 1.  (a) OV LV MTL configuration [1], [9], [13]. (b) Typical OV LV BPL topology with N 
branches [1], [25]. 

 
Table 1 

Indicative OV LV BPL Topologies [1], [13], [26], [34] 

OV LV BPL Topology 

Name 

 

Branch 

Number 

(N) 

Length of Main Lines Length of Branches 

Urban case A 

(Typical urban case) 

3 L1=500m, L2=200m, 

L3=100m, L4=200m 

Lb1=8m, Lb2=13m, Lb3=10m 

Urban case B 

(Aggravated urban case) 

5 L1=200m, L2=50m, 

L3=100m, L4=200m, 

L5=300m, L6=150m 

Lb1=12m, Lb2=5m, Lb3=28m, 

Lb4=41m, Lb5=17m 

Suburban case 

 

2 L1=500m, L2=400m, 

L3=100m   

Lb1=50m, Lb2=10m 

Rural case  

 

1 L1=600m, L2=400m Lb1=300m 

LOS case  

 

0 L1=1000m - 
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By the interconnection of the bottom-up and the top-down modules of DHM, the 

𝑛OVLV × 𝑛OVLV line channel transfer function matrix 𝐇OVLV{∙} of the typical OV LV BPL 

topology of Fig. 1(b) is given by [1], [2], [9], [11]-[13], [34]-[36] 

𝐇OVLV{∙} = 𝐓V
OVLV ∙ 𝐇OVLV,m{∙} ∙ (𝐓𝑉

OVLV)
−1

                       (1) 

where 𝐇OVLV,m{∙}  is the 𝑛OVLV × 𝑛OVLV  modal channel transfer function matrix and 

𝐓V
OVLV is the 𝑛OVLV × 𝑛OVLV transformation matrix. With reference to [1], [2], [9], [11]-

[13], [34]-[36] and observing eq. (1), the line channel transfer function matrix depends on 

the examined OV LV MTL configuration (i.e., physical properties and geometry of the 

OV LV MTL configuration) and the examined OV LV BPL topology. 

By the concatenation of the bottom-up and the top-down modules with the 

coupling scheme module of DHM, the theoretical coupling scheme channel transfer 

function is given by [42], [43] 

𝐻OVLV,𝐶{∙} = [𝐂out]OVLV,𝐶 ∙ 𝐇OVLV{∙} ∙ [𝐂in]OVLV,𝐶                                   (2) 

for given coupling scheme where  C  denotes the applied coupling scheme, 𝐂in is the input 

coupling 𝑛OVLV × 1 column vector dealing with the BPL signal injection process and 𝐂out is 

the ouput coupling 1 × 𝑛OVLV line vector dealing with the BPL signal extraction process. 

Actually, the coupling scheme channel transfer function of eq. (2) relates the output BPL 

signal 𝑉out,−  with the input one 𝑉in,+  of Fig. 1(b). It should be noted that the coupling 

scheme transfer function of eq. (2) is a frequency dependent function due to the involved 

frequency dependent function elements from eq. (1) (i.e., the modal channel transfer 

function and the transformation matrices) and also depends on the applied coupling 

scheme for the BPL signal injection / extraction across the examined OV LV BPL 

topology. It should be noted that the theoretical coupling scheme channel transfer 

function of eq. (2) is of interest for the preparation of the TIM OV LV BPL topology 

database of the next subsection of this paper since for given OV LV MTL configuration 

and coupling scheme, the corresponding theoretical coupling scheme channel transfer 

functions can be computed by DHM and stored in the TIM OV LV BPL topology 

database by only adjusting the topological characteristics of OV LV BPL topologies. 

With reference to [42], [43], it should be noted that the applied coupling scheme is the 

WtG
1
 one. 

 The computation of the DHM coupling scheme transfer function of eq. (2) is a 

rather theoretical issue since no measurement differences are taken into account. 

However, a set of practical reasons and “real life” conditions, which can be grouped into 

six categories [28], [30], [44], [45], can create measurement differences during the 

practical determination of the coupling scheme transfer function. To assess the effect of 

the measurement differences during the determination of the coupling scheme transfer 

functions of the OV LV BPL topologies, in accordance with [28], [30], [44], [45] and 

with reference to eq. (2), the measured coupling scheme transfer function 𝐻𝑑1,𝑑2,𝑖
OVLV,𝐶,𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ {∙} is 

determined by 

𝐻𝑑1,𝑑2,𝑖
OVLV,𝐶,𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑓𝑞) = 𝐻OVLV,𝐶(𝑓𝑞) + 𝑒𝑑1,𝑑2,𝑖

𝐷 (𝑓𝑞), q=1,…,Q, 𝑖 = 1, … , 𝐼                (3) 

where [∙]𝐷  denotes the applied measurement difference distribution (i.e., CUD in this 

paper), d1 is the first parameter of the applied measurement difference distribution (i.e., 

the minimum value −𝑎CUD of CUD in this paper), d2 is the second parameter of the 

applied measurement difference distribution (i.e., the maximum value 𝑎CUD of CUD in 

this paper), 𝑒𝑑1,𝑑2,𝑖
𝐷 (𝑓𝑞)  is the measurement difference at frequency 𝑓𝑞  for given 

measurement difference distribution, I is the number of different 1 × 𝑄  line vectors of 



 

Peer-Reviewed Article   Trends in Renewable Energy, 10 

 

Tr Ren Energy, 2024, Vol.10, No.1, 30-66. doi: 10.17737/tre.2024.10.1.00164 36 

 

measurement differences per applied measurement difference distribution, first and 

second parameter and i indicates the i
th

 among I line vectors of measurement differences. 

In this paper, 1 representative line vector of measurement differences are going to be 

assumed per applied measurement difference distribution, first and second parameter; 

say, i=I=1. It should be noted that the measured coupling scheme channel transfer 

function of eq. (3) is of interest for the NNIM-BNI and NNIM-LLA since for given OV 

LV MTL configuration and coupling scheme, the corresponding I measured coupling 

scheme channel transfer functions are approximated in terms of the branch number and 

main / branch line lengths. 

 

2.2 TIM OV LV BPL Topology Database 
 In accordance with [1], [2], TIM OV LV BPL topology database acts as the big 

data pool for NNIM-BNI and NNIM-LLA. In fact, TIM OV LV BPL topology database 

is the core part of TIM and is borrowed by the NNIM-based methodologies due to its big 

data detail concerning the correspondence among topological characteristics and coupling 

scheme transfer function behavior of the OV High-Voltage (HV), Medium-Voltage (MV) 

and LV topologies [27]. Combining the database requirements of [1], [2], TIM OV LV 

BPL topology database consists of the following fields for each OV LV BPL topology: 

(i) the ID number p of the OV LV BPL topology when the number of all OV LV BPL 

topologies in the TIM OV LV BPL topology database is equal to P; (ii) the actual number 

of branches N of the OV LV BPL topology; (iii) the actual lengths of the distribution 

lines 𝐋 = [𝐿1 𝐿2 ⋯ 𝐿𝑁+1] of the OV LV BPL topology; (iv) the actual lengths of the 

branch lines 𝐋𝐛 = [𝐿b1 𝐿b2 ⋯ 𝐿b𝑁] of the OV LV BPL topology; and (v) the theoretical 

coupling scheme channel transfer function values with respect to the frequency of the OV 

LV BPL topology as given in eq. (2). The size of the TIM OV LV BPL topology 

database depends on the default operation settings that are applied during its preparation 

(see Sec. 2.3). 

 

2.3 Default Operation Settings 
 With reference to [1], [2], the applied default operation settings have a direct 

impact on the size of the TIM OV LV BPL topology database and, thus, on the 

performance of the NNIM-based methodologies. Actually, the default operation settings 

define the values of the maximum number of branches Nmax, the length spacing Ls for 

both the branch distance and the branch length, the maximum branch length Lb,max and the 

operation frequency range that are anyway essential factors for the five fields of TIM OV 

LV BPL topology database [27], [28]. The following values of the default operation 

settings of this paper are concerned, namely: 

 The Default Operation Settings A for NNIM-BNI: In accordance with [1], the 

number of branches for the OV LV BPL topologies of the TIM OV LV BPL 

topology database ranges from 0 (say, “LOS” case of Table 1) up to 3 branches 

(say, urban case A of Table 1). The length spacings for the branch distance and 

the branch length are assumed to be equal to 100m and 25m, respectively, while 

the branch line length may range from 0m to 100m. Note that the total distribution 

line length is assumed to be equal to 1,000m in all the OV LV BPL topologies of 

the TIM OV LV BPL topology database. The amplitudes of the coupling scheme 

channel transfer functions in dB are stored in the TIM OV LV BPL topology 

database for the OV LV BPL topologies with respect to the frequency. The 

frequency range is assumed to be equal to 3-30MHz while the flat-fading 
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subchannel frequency spacing is equal to 1MHz. In accordance with [1], 

representative sets of the TIM OV LV BPL topology database (database 

representativeness) are assumed during the operation of the NNIM-BNI for the 

branch number approximation of the urban case A (3 branches), suburban case (2 

branches) and rural case (1 branch). Especially, in this paper, the following 

improvements are additionally assumed after the observation of the NNIM-BNI 

operation and performance of [1]: (i) The urban case A, suburban case, rural case 

and LOS case will be included into the TIM OV LV BPL topology database. 

Conversely to [1], NNIM-BNI does not blindly operate in this paper; and (ii) for 

NNIM-BNI branch number approximations that are not in the range from 0 

(minimum acceptable branch number value) to 4 (maximum acceptable branch 

number value with respect to the preparation of the TIM OV LV BPL topology 

database), NNIM-BNI approximation is again executed. 

 The Default Operation Settings B and C for NNIM-LLA: As the default operation 

settings B are concerned in [2], the number of branches for the OV LV BPL 

topologies of the TIM OV LV BPL topology database are going to range from 0 

(say, “LOS” case) up to 2 branches in this paper due to time delay reasons 

regarding the application of the following default operation settings C; from [1], 

[2], it has been verified that the preparation time of the TIM OV LV BPL 

topology database exponentially increases with the increase of the demanded 

accuracy of the default operation settings thus establishing a relationship between 

the approximation performance and total duration time of the NNIM-based 

methodologies. The length spacings for the branch distance and the branch length 

are assumed to be equal to 100m and 100m, respectively, while the branch line 

length may range from 0m to 300m. Note that the total distribution line length is 

assumed to be equal to 1,000m in all the OV LV BPL topologies of the TIM OV 

LV BPL topology database. The amplitudes of the coupling scheme channel 

transfer functions in dB are stored in the TIM OV LV BPL topology database for 

the OV LV BPL topologies with respect to the frequency. The frequency range is 

assumed equal to 3-88MHz while the flat-fading subchannel frequency spacing is 

equal to 1MHz. By comparing default operation settings A and B, it is evident 

that default operation settings B are more elaborate in comparison with the default 

operation settings A and this is due to the fact that the approximation of the 

distribution line and branch line lengths remains a difficult challenge where 

higher accuracy is expected from the TIM OV LV BPL topology database that is 

going to be exploited by the NNIM-based methodology. To examine the further 

improvement tomography potential of NNIM-LLA and its behavior when 

measurement differences are applied, default operation settings C, which are 

proposed in this paper, are more elaborate in comparison with the default 

operation settings B. Anyway, the application of the default operation settings C 

is also examined in this paper to act as a countermeasure again the measurement 

differences. Hence, as the default operation settings C are concerned in this paper, 

the length spacings for the branch distance and the branch length are assumed to 

be equal to 100m and 30m, respectively, while the branch line length may range 

from 0m to 300m. Similarly to default operation settings B, the total distribution 

line length, the frequency range and the flat-fading subchannel frequency spacing 

are assumed to be the same. In addition, the following assumptions are made:  

(i) The number of branches of the examined indicative OV LV BPL topologies is 
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assumed to be known; and (ii) the database representativeness, which is analyzed 

in [2] for the operation of NNIM-LLA, is assumed during the application of the 

default operation settings B and C. In accordance with [2], only one of the 

symmetrical OV LV BPL topologies is stored in the OV LV BPL topology 

database so as not to disrupt the approximations due to the symmetry of BPL 

topologies described in [64], [46]. Especially, in this paper, the following 

improvements are assumed with respect to the NNIM-LLA operation and its 

performance of [2]: (i) The suburban case, rural case and LOS case will be 

included into the TIM OV LV BPL topology database in default operation 

settings B and C while only the distribution line and branch line lengths of the 

suburban case and rural case are going to be approximated by NNIM-LLA. 

Conversely to [2], NNIM-LLA does not blindly operate in this paper; (ii) for 

NNIM-LLA distribution line fragment length approximations that are not in the 

range from 0m (minimum acceptable distribution line length) to 1000m (total 

distribution line length), NNIM-LLA approximation is again executed; and (iii) 

for NNIM-LLA branch line fragment length approximations that are not in the 

range from 0m (minimum acceptable branch line length) to 150m or 300m for the 

default operation settings B or C, respectively (maximum acceptable branch line 

length), NNIM-LLA approximation is again executed. Note that the last two 

improvements cope with the unacceptable NNIM-LLA approximations of [2] 

(i.e., at least one of the approximated distribution and branch line lengths is below 

zero given the fixed length of 1000m between the transmitting and receiving ends 

for all the applied OV LV BPL topologies of this paper). 

Finally, it should be noted that the default participation percentages of the three phases of 

NNIM-based methodologies of [1], [2], [47], [48] are assumed in this paper; say, training, 

validation and testing phases during the operation of NNIM-BNI and NNIM-LLA are 

respectively assumed to be equal to 70%, 15% and 15%.  

 

2.4 NNIM-BNI and NNIM-LLA in a Measurement Difference Environment  
 NNIM-BNI lies in the research fields of AI, ML and NNs [47], [49]-[51]. NNIM-

BNI has been proposed and numerically assessed in [1] against TIM-BNI, which is its 

alternative deterministic BNI methodology. NNIM-BNI approximates the branch 

numbers 𝑁NNIM−BNI of the examined indicative OV LV BPL topology per hl hidden layer 

by comparing its coupling scheme channel transfer function values against the respective 

ones of the available OV LV BPL topologies of the TIM OV LV BPL topology database. 

Actually, the operation of NNIM-BNI depends on: (i) the TIM OV LV BPL topology 

database; and (ii) the MATLAB NN program of [47], [48] that programmatically 

supports the fully connected neural network architecture of Figure 2 of [1] as well as the 

involved training, validation and testing phases. The factors that affect the accuracy 

performance of the NNIM-BNI approximations and have been identified in [1] are: (i) the 

default operation setting values that affect the accuracy and size of the TIM OV LV BPL 

topology database; (ii) the representativeness of the TIM OV LV BPL topology database; 

(iii) the number HL of the hidden layers assumed; and (iv) the participation percentage of 

the three phases. Another factor that may affect the accuracy performance of the NNIM-

BNI approximations when measurement differences occur is the inclusion of the 

examined indicative OV LV BPL topologies in the TIM OV LV BPL topology database. 

Until now, NNIM-BNI has exploited the performance metric of RMSD of the amplitude 

of the coupling scheme channel transfer function in dB, as expressed in eq. (2) since the 
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scenario of the existence of measurement differences is first examined in this paper. In 

this paper, NNIM-BNI is again going to exploit the performance metric of RMSD of the 

amplitude of the coupling scheme channel transfer function in dB but via the eq. (3) 

where measurement differences occur and are mathematically taken into account.  

 In [2], NNIM-BNI has been extended to NNIM-LLA so that the lengths of the 

distribution lines and branch lines for a given OV LV BPL topology coupling scheme 

channel transfer function behavior with respect to frequency can be approximated; say, 

NNIM-LLA achieves the tomography of the examined OV LV BPL topology. Indeed, 

NNIM-LLA adopts the same fully connected NN architecture of NNIM-BNI while it 

depends on the same factors with NNIM-BNI, say: (i) the default operation setting values 

that affect the TIM OV LV BPL topology database; (ii) the representativeness of the TIM 

OV LV BPL topology database when the number of branches for the examined OV LV 

BPL topology is a priori known; (iii) the deliberate ignorance of symmetrical OV LV 

BPL topologies during the preparation of the TIM OV LV BPL topology database;  

(iv) the number HL of the assumed hidden layers; and (v) the participation percentage of 

the three phases. The output of the NNIM-LLA approximates the distribution and branch 

line lengths of the examined indicative OV LV BPL topology (i.e., the NNIM-LLA 

approximation lengths of the distribution and branch lines are 

𝐋NNIM−LLA = [𝐿1,NNIM−LLA 𝐿2,NNIM−LLA ⋯ 𝐿𝑁+1,NNIM−LLA]  and 

𝐋b,NNIM−LLA = [𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA ⋯ 𝐿b𝑁,NNIM−LLA] , respectively). Similarly to 

NNIM-BNI, the scenario of the inclusion of the examined indicative OV LV BPL 

topologies in the TIM OV LV BPL topology database is first examined in this paper 

when measurement differences are considered. Extending the application of NNIM-LLA 

of [2], NNIM-LLA here exploits the performance metric of RMSD of the amplitude of 

the coupling scheme channel transfer function in dB when measurement differences are 

included, as expressed in eq. (3). In this paper, NNIM-LLA is again going to exploit the 

performance metric of RMSD of the amplitude of the coupling scheme channel transfer 

function in dB through the eq. (3) where measurement differences occur and are 

mathematically taken into consideration. At the NNIM-LLA output, apart from the 

approximation for the lengths of the distribution and branch lines, NNIM-LLA presents 

its approximation RMSDs per hidden layer. 

 

3. Numerical Results and Discussion 
 

 In this Section, numerical results concerning the performance of NNIM-BNI and 

NNIM-LLA are presented as well as their evaluation when CUD measurement 

differences of different intensities are applied. The higher accuracy of the applied default 

operation settings is treated as the simplest countermeasure technique against 

measurement differences in NNIM-LLA. 

 

3.1 NNIM-BNI – Base Scenario and Measurement Differences  
As the operation of the NNIM-BNI is concerned, NNIM-BNI is based on the 

MATLAB NN training program of [47], [48] while the default operation settings A of 

Sec. 2.3 are assumed. Given the amplitudes of coupling scheme channel transfer 

functions in dB for the urban case A, suburban case and rural case of Table 1, NNIM-

BNI gives as output in Table 2 the respective NNIM-BNI approximation of the branch  
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Table 2 

Branch number approximation of NNIM-BNI without CUD Measurements 

Indicative OV LV BPL Topologies of 

Table 1 

Urban case A 

(Typical urban case) 

Suburban 

case 

Rural case RMSD 

(m) 

Notes 

Actual Number of Branches 
N 

3 2 1 - - 

NNIM-BNI 

(Approximated 

Number of Branches) 

𝑁NNIM−BNI 

 

 

1
st
 execution 2.67 1.80 1.13 0.24 Default Operation Settings A 

+ 

1 hidden layer 
2

nd
 execution 3.02 2.01  1.12 0.07 

3
nd

 execution 3.64 2.16 1.05 0.38 

1
st
 execution 3.06 2.16 1.28 0.19 Default Operation Settings A 

+ 

2 hidden layers 
2

nd
 execution 2.78 2.08 1.34 0.24 

3
nd

 execution 3.32 2.14 1.08 0.21 

1
st
 execution 2.82 1.87 1.18 0.17 Default Operation Settings A 

+ 

3 hidden layers 
2

nd
 execution 2.78 1.97 1.21 0.18 

3
nd

 execution 2.06 1.78 1.44 0.61 

1
st
 execution 2.66 2.51 1.22 0.37 Default Operation Settings A 

+ 

4 hidden layers 
2

nd
 execution 3.12 2.02 1.10 0.09 

3
nd

 execution 2.94 2.01 1.12 0.08 

1
st
 execution 2.99 2.08 1.10 0.08 Default Operation Settings A 

+ 

5 hidden layers 
2

nd
 execution 2.99 2.00 1.24 0.14 

3
nd

 execution 3.01 2.05 1.26 0.15 

 

 

numbers 𝑁NNIM−BNI per hidden layer where the maximum number of hidden layers HL is 

assumed to be equal to 5. Since the results of Table 2 are going to act as the basis 

scenario for the effect study of measurement differences, CUD measurements are omitted 

in the basis scenario (i.e., 𝑎CUD of CUD measurements is assumed to be equal to 0dB). 

Apart from the branch number approximations, the actual branch numbers of the three 

examined OV LV BPL topologies of Table 1 are presented for comparison reasons while 

the RMSDs of NNIM-BNI approximations for these three examined OV LV BPL 

topologies are also computed. Note that three executions of NNIM-BNI are reported for 

each of the three examined OV LV BPL topologies. 

 From Table 2, it is evident that the RMSD per hidden layer remains satisfactorily 

stable when different executions occur for the default operation settings A and the three 

examined OV LV BPL topologies of this paper. In fact, by assessing the RMSD values of 

Table 2, reliable NNIM-BNI approximations can occur even if 1 hidden layer and only 

one execution are assumed for given indicative OV LV BPL topology of Table 1. Since 

no CUD measurement differences are applied in the basis scenario of Table 2, the RMSD 

values may act as the benchmark for assessing the impact of higher 𝑎CUD values of CUD 

measurements on the NNIM-BNI approximation performance, apart from the 

approximated branch numbers per OV LV BPL topology. 

 Similarly to Table 2, in Table 3, given the amplitudes of coupling scheme channel 

transfer functions contaminated with measurements in dB for the urban case A, suburban 

case and rural case of Table 1, NNIM-BNI gives as output the respective NNIM-BNI 

approximations of the branch numbers 𝑁NNIM−BNI  when various 𝑎CUD  values of CUD 

measurements are assumed. Note that: (i) one hidden layer is assumed during the NN 

preparation of NNIM-BNI in this subsection; (ii) one execution is performed in each 

NNIM-BNI approximation case; and (iii) one measurement difference 1 × 𝑄 = 1 ×

(30 − 3) = 1 × 27 line vector is superimposed to the amplitudes of the coupling scheme 
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channel transfer functions of the aforementioned three OV LV BPL topologies in each 

NNIM-BNI approximation case. Apart from the branch number approximations, the 

actual branch numbers of the three examined OV LV BPL topologies of Table 1 are 

presented for comparison reasons while the RMSD values assess the approximation 

performance for given 𝑎CUD  of CUD measurements for the aforementioned BPL 

topologies. More analytically, to graphically examine the performance of NNIM-BNI for 

the various 𝑎CUD values of CUD measurements of Table 3, the rounded branch number 

approximation of NNIM-BNI and the actual branch number are plotted in Fig. 2(a) for 

the urban case A with reference to Table 3. Similar figures with Fig. 2(a) are given in 

Figs. 2(b) and 2(c), but for the suburban and rural case of Table 3, respectively. 

 
Table 3 

Branch number approximation of NNIM-BNI for Different 𝑎CUD Values of CUD Measurements 

Indicative OV LV BPL 

Topologies of Table 1 

Urban case A 

(Typical urban 

case) 

Suburban 

case 

Rural 

case 

RMSD 

(m) 

Notes 

Actual Number of Branches 
N 

3 2 1 - - 

NNIM-BNI 

(Approximated 

Number of 

Branches) 

𝑁NNIM−BNI 

 

 

𝒂𝐂𝐔𝐃 of CUD 

Measurememts 

(dB) 

    Default 

Operation 

Settings A 

+ 

1 hidden 

layer 

0 2.88 1.97 1.13 0.11 

1 3.42 2.13 1.27 0.30 

2 3.19 2.21 1.28 0.23 

3 3.02 1.97 0.98 0.03 

4 2.12 1.24 0.41 0.75 

5 2.68 1.90 0.98 0.19 

6 2.52 2.01 1.57 0.43 

7 3.91 2.86 1.89 0.89 

8 2.33 1.95 1.60 0.52 

9 2.15 1.51 1.14 0.58 

10 2.23 2.04 1.93 0.70 

11 2.68 1.61 0.91 0.29 

12 2.34 1.47 0.73 0.51 

13 3.37 1.92 1.61 0.41 

14 2.94 2.62 2.26 0.81 

15 1.30 0.64 0.32 1.32 

16 2.50 2.06 1.57 0.44 

17 2.71 1.51 0.66 0.38 

18 2.81 2.32 1.98 0.61 

19 1.49 1.31 0.88 0.96 

20 2.02 0.85 0.20 0.99 
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Figure 2.  The rounded branch number approximations of NNIM-BNI with respect to aCUD of CUD 
measurements. (a) Urban case A. (b) Suburban case. (c) Rural case. 
 

 

 From Table 3 and Figs. 2(a)-(c), several interesting remarks concerning the 

performance of NNIM-BNI can be pointed out when CUD measurement differences are 

superimposed. More specifically: 

 As the RMSD results of the NNIM-BNI branch number approximation of the 

three indicative OV LV BPL topologies are examined, fluctuating RMSD values 

can be observed when the aCUD of CUD measurements increases. In fact, the 

highest RMSD values of Table 3 that are equal to 0.99m and 0.96m are observed 

when aCUD of CUD measurements is equal to 20dB and 19dB, respectively. 

 When the aCUD of CUD measurements increases the aforementioned RMSD 

behavior is reflected on Figs. 2(a)-(c); say, given the actual number of branches in 

each one of the three indicative OV LV BPL topologies, the rounded NNIM-BNI 

branch number approximation is almost equal to the actual number of branches 

for each one of the indicative OV LV BPL topologies when the aCUD of CUD 

measurements remains lower or equal to 5dB. When aCUD of CUD measurements 

becomes greater than 5dB, fluctuations of the rounded NNIM-BNI branch number 

approximations are observed in all the indicative OV LV BPL topologies. The 

highest deviations between the actual numbers of branches and the rounded 

NNIM-BNI branch number approximations, which are equal to 2 branches, is 

observed in the urban case A of Fig. 2(a) when aCUD of CUD measurements is 

equal to 15dB and 19dB. 

When aCUD of CUD measurements remains low (i.e., below 5dB), NNIM-BNI can 

intrinsically mitigate measurement differences thus giving accurate rounded NNIM-BNI 

branch number approximations in the majority of the cases examined. Conversely, higher 

aCUD values imply that appropriate mitigation techniques for the measurement differences 

should be externally applied to the measured coupling scheme transfer functions of eq.(3) 

prior to its consideration by NNIM-BNI. 
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3.2 NNIM-LLA – Base Scenario and Measurement Differences  
 As the base scenario of the operation of NNIM-LLA is concerned, the default 

operation settings B of Sec. 2.3 are assumed. Already been mentioned, the number of 

branches for the OV LV BPL topologies of the TIM OV LV BPL topology database are 

going to range from 0 (say, “LOS” case) up to 2 branches in this paper so as to allow the 

application of the default operation settings C bypassing: (i) the extremely high 

preparation time delay of the TIM OV LV BPL topology database when 3 branches need 

to be examined; and (ii) the high execution time of the MATLAB NN program of [47], 

[48] due to the high number of OV LV BPL topologies and the mechanism of avoiding 

the unacceptable NNIM-LLA approximations. Note that the suburban case, rural case and 

LOS case will be included into the TIM OV LV BPL topology database in contrast with 

[2] while only the distribution line and branch line lengths of the suburban case and rural 

case are going to be approximated by NNIM-LLA.  

 As the base scenario without measurement differences is concerned, the length 

approximations of the distribution and branch lines of NNIM-LLA are reported in Table 

4 when the default operation settings Β are assumed and the suburban case of Table 1 is 

examined. Apart from the original approximations that are given in black font color, the 

symmetrical approximations of NNIM-LLA for the suburban case are also given in blue 

font color. Similarly to [2] and for comparison reasons, the real lengths of the distribution 

and branch lines of the suburban case are presented while the RMSDs of NNIM-LLA 

approximations for the suburban case are also computed. Similarly to [1], [2], three 

executions of NNIM-LLA are reported for the suburban case per hidden layer. Table 5 is 

the same with Table 4 but for the rural case of Table 1. Similarly to [2], note that RMSD 

is computed in Tables 4 and 5 when 4 distribution line segments and 3 branches are 

assumed for the two examined indicative OV LV BPL topologies so that the RMSD 

effect of the inclusion of the two indicative OV LV BPL topologies during the 

preparation of the TIM OV LV BPL topology database can be assessed through the 

comparison of RMSD values with the respective ones of [2] where the two examined 

indicative OV LV BPL topologies are excluded from the TIM OV LV BPL topology 

database.  
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Table 4 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Suburban Case and Default 

Operation Settings B with no measurement differences (the symmetrical approximations are reported in 

blue font color and the suburban case is included in the TIM OV LV BPL topology database) 

Indicative OV LV BPL Topologies of Table 1 Suburban case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 0] 
Branch Line Length Lb =[𝐿b1 𝐿b2 0] 

[500m 400m 100m 0m] 

[50m 10m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 0] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 0] 
 

1
st
 

execution 

[61.95m 689.88m 248.17m 0m] 

[134.76m 158.64m 0m] 

 

[248.17m 689.88m 61.95m 0m] 

[158.64m 134.76m 0m] 

216.18m 

 

 

 

158.68m 

Default 

Operation 

Settings 

B 

+ 

1 hidden 

layer 
2

nd
 

execution 

[102.86m 509.38m 387.76m 0m] 

[143.86m 156.92m 0m] 

 

[387.76m 509.38m 102.86m 0m] 

[156.92m 143.86m 0m] 

201.03m 

 

 

 

87.77m 

3
nd

 

execution 

[106.12m 518.35m 375.53m 0m] 

[147.26m 162.89m 0m] 

 

[375.53m 518.35m 106.12m 0m] 

[162.89m 147.26m 0m] 

199.25m 

 

 

 

93.44m 

1
st
 

execution 

[109.41m 550.49m 340.10m 0m] 

[52.35m 48.63m 0m] 

 

[340.10m 550.49m 109.41m 0m] 

[48.63m 52.35m 0m] 

182.97m 

 

 

 

84.60m 

Default 

Operation 

Settings 

B 

+ 

2 hidden 

layers 
2

nd
 

execution 

[108.39m 532.83m 358.78m 0m] 

[228.83m 252.06m 0m] 

 

[358.78m 532.83m 108.39m 0m] 

[252.06m 228.8m 0m] 

216.65m 

 

 

 

134.36m 

3
nd

 

execution 

[57.82m 726.80m 216.30m 0m] 

[92.06m 94.40m 0m] 

 

[216.30m 726.80m 57.82m 0m] 

[94.40m 92.06m 0m] 

215.39m 

 

 

 

168.09m 

1
st
 

execution 

[113.61m 522.69m 363.59m 0m] 

[18.35m 4.77m 0m] 

 

[363.59m 522.69m 113.61m 0m] 

[4.77m 18.35m 0m] 

183.17m 

 

 

 

71.68m 

Default 

Operation 

Settings 

B 

+ 

3 hidden 

layers 
2

nd
 

execution 

[136.05m 516.21m 347.74m 0m] 

[19.02m 18.74m 0m] 

 

[347.74m 516.21m 136.05m 0m] 

[18.74m 19.02m 0m] 

172.54m 

 

 

 

74.68m 

3
nd

 

execution 

[99.88m 498.15m 402.01m 0m] 

[105.41m 149.07m 0m] 

 

[402.01m 498.15m 99.88m 0m] 

[149.07m 105.41m 0m] 

201.19m 

 

 

 

73.83m 

1
st
 

execution 

[207.41m 487.87m 305.00m 0m] 

[117.01m 143.02m 0m] 

 

[305.00m  487.87m 207.41m 0m] 

150.02m 

 

 

 

Default 

Operation 

Settings 

B 
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[143.02m 117.01m 0m] 105.15m + 

4 hidden 

layers 
2

nd
 

execution 

[138.22m 515.74m 346.14m 0m] 

[41.75m 40.02m 0m] 

 

[346.14m 515.74m 138.22m 0m] 

[40.02m 41.75m 0m] 

171.48m 

 

 

 

75.25m 

3
nd

 

execution 

[100.93m 573.22m 329.81m 0m] 

[25.96m 22.40m 0m] 

 

[329.81m 573.22m 100.93m 0m] 

[22.40m 25.96m 0m] 

186.24m 

 

 

 

92.57m 

1
st
 

execution 

[106.50m 527.93m 365.66m 0m] 

[227.01m 217.69m 0m] 

 

[365.66m 527.93m 106.50m 0m] 

[217.69m 227.01m 0m] 

212.55m 

 

 

 

125.17m 

Default 

Operation 

Settings 

B 

+ 

5 hidden 

layers 
2

nd
 

execution 

[152.23m 505.47m 313.49m 0m] 

[15.87m 20.17m 0m] 

 

[313.49m 505.47m 152.23m 0m] 

[20.17m 15.87m 0m] 

159.87m 

 

 

 

84.14m 

3
nd

 

execution 

[103.04m 522.04m 377.05m 0m] 

[43.48m 47.36m 0m] 

 

[377.05m 522.04m 103.04m 0m] 

[47.36m 43.48m 0m] 

189.23m 

 

 

 

66.70m 

 

 
Table 5 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Rural Case and Default 

Operation Settings B with no measurement differences (the symmetrical approximations are reported in 

blue font color and the rural case is included in the TIM OV LV BPL topology database) 

Indicative OV LV BPL Topologies of Table 1 Rural case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 0 0] 
Branch Line Length Lb =[𝐿b1 0 0] 

[600m 400m 0m 0m] 

[300m 0m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 0 0] 
Approximated Branch Line Length 𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 0 0] 
 

1
st
 

execution 

[278.75m 770.31m 0m 0m] 

[232.13m 0m 0m] 

 

[770.31m 278.75m 0m 0m] 

[232.13m 0m 0m] 

187.06m 

 

 

83.08m 

Default 

Operation 

Settings 

B 

+ 

1 hidden 

layer 
2

nd
 

execution 

[205.33m 796.69m 0m 0m] 

[164.04m 0m 0m] 

 

[796.69m 205.33m 0m 0m] 

[164.04m 0m 0m] 

217.65m 

 

 

116.54m 

3
nd

 

execution 

[280.44m 719.56m 0m 0m] 

[299.50m 0m 0m] 

 

[719.56m 280.44m 0m 0m] 

[299.50m 0m 0m] 

170.81m 

 

 

63.91m 

1
st
 

execution 

[266.99m 733.42m 0m 0m] 

[215.69m 0m 0m] 

 

[733.42m 266.99m 0m 0m] 

[215.69m 0m 0m] 

180.94m 

 

 

78.01m 

Default 

Operation 

Settings 

B 

+ 
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2
nd

 

execution 

[297.29m 700.86m 0m 0m] 

[276.04m 0m 0m] 

 

[700.86m 297.29m 0m 0m] 

[276.04m 0m 0m] 

161.57m 

 

 

55.16m 

2 hidden 

layers 

3
nd

 

execution 

[308.12m 692.59m 0m 0m] 

[278.26m 0m 0m] 

 

[692.59m 308.12m 0m 0m] 

[278.26m 0m 0m] 

156.42m 

 

 

49.98m 

1
st
 

execution 

[278.28m 631.75m 0m 0m] 

[112.72m 0m 0m] 

 

[631.75 278.28m 0m 0m] 

[112.72m 0m 0m] 

165.74m 

 

 

85.27m 

Default 

Operation 

Settings 

B 

+ 

3 hidden 

layers 
2

nd
 

execution 

[239.99m 760.01m 0m 0m] 

[299.979397173821m 0m 0m] 

 

[760.01m 239.99m 0m 0m] 

[299.97m 0m 0m] 

192.43m 

 

 

85.53m 

3
nd

 

execution 

[296.21m 731.66m 0m 0m] 

[210.946885278590m 0m 0m] 

 

[731.66m 296.21m 0m 0m] 

[210.95m 0m 0m] 

173.30m 

 

 

 

71.75m 

1
st
 

execution 

[250.02m 749.98m 0m 0m] 

[300.00m 0m 0m] 

 

[749.98m 250.02m 0m 0m] 

[300.00m 0m 0m] 

187.07m 

 

 

80.17m 

Default 

Operation 

Settings 

B 

+ 

4 hidden 

layers 
2

nd
 

execution 

[350.10m 649.68m 0m 0m] 

[295.77m 0m 0m] 

 

[649.68m 350.10m 0m 0m] 

[295.77m 0m 0m] 

133.53m 

 

 

26.66m 

3
nd

 

execution 

[349.94m 628.11m 0m 0m] 

[275.66m 0m 0m] 

 

[628.11m 349.94m 0m 0m] 

[275.66m 0m 0m] 

128.26m 

 

 

23.57m 

1
st
 

execution 

[234.69m 781.13m 0m 0m] 

[325.14m 0m 0m] 

 

[781.13m 234.69m 0m 0m] 

[325.14m 0m 0m] 

199.77m 

 

 

93.17m 

Default 

Operation 

Settings 

B 

+ 

5 hidden 

layers 
2

nd
 

execution 

[349.82m 649.66m 0m 0m] 

[300.21m 0m 0m] 

 

[649.66m 349.82m 0m 0m] 

[300.21m 0m 0m] 

133.59m 

 

 

26.68m 

3
nd

 

execution 

[299.03m 686.21m 0m 0m] 

[310.08m 0m 0m] 

 

[686.21m 299.03m 0m 0m] 

[310.08m 0m 0m] 

157.03m 

 

 

50.33m 
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 By comparing Tables 4 and 5 with the respective Tables 3 and 4 of [2], it is 

evident that the inclusion of the examined indicative OV LV BPL topologies in the TIM 

OV LV BPL topology database affects the accuracy of NNIM-LLA. Also, the mechanism 

for encountering the unacceptable NNIM-LLA approximations fills the missing 

approximations in Tables 4 and 5, especially those when the high number of hidden 

layers is assumed. In total, apart from the elimination of the unacceptable NNIM-LLA 

approximations, the RMSD values get significantly improved regardless of the examined 

indicative OV LV BPL topology and the number of the applied hidden layers. To 

graphically validate the aforementioned RMSD improvement, the best RMSD values of 

the NNIM-LLA approximations (say, the minimum RMSD value between the original 

and symmetrical approximated OV LV BPL topology given the number of execution and 

the number of hidden layers) of Table 4 are plotted in Fig. 3(a) with respect to the 

number of hidden layers when the default operation settings B are assumed. In Fig. 3(b), 

the same plot with Fig. 3(a) is presented but for the rural case of Table 5. 
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Figure 3.  Best RMSD values of NNIM-BNI approximations whether the examined indicative OV 
LV BPL topology is included in the preparation of the TIM OV LV BPL topology database or not. 
(a) Suburban case. (b) Rural case. 
 

 Already been observed in Tables 3-5, the inclusion of the indicative OV LV BPL 

topologies in the TIM OV LV BPL topology database and the mechanism for preventing 

unacceptable approximations significantly improve the performance and accuracy of NN 

related approximations of this paper, say, NNIM-BNI and NNIM-LLA. Also, the 

following assumptions are made for the following CUD measurement study during the 

application of NNIM-LLA, namely: 
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 The best RMSD values of NNIM-BNI approximations imply that the selection 

between the original and symmetrical approximations can be fulfilled. Anyway, in 

accordance with [2], additional topological pieces of information or empirical 

observations so that the distinction between these approximated OV LV BPL 

topologies may help towards the selection between the original and symmetrical 

approximations. 

 Similarly to Sec.3.1 and without affecting the generality of the analysis, only one 

repetition and two hidden layers are going to be applied in the following CUD 

measurement analysis. As the one repetition is considered, best RMSD values of 

Tables 4 and 5 can be considered to be relatively close for the different repetitions 

for given examined indicative OV LV BPL topology and number of hidden 

layers. As two hidden layers are assumed, best RMSD values of Figs. 3(a) and 

3(b) can be considered to be relatively close for the different numbers of hidden 

layers for given examined indicative OV LV BPL topology. Anyway, only one 

hidden layer is assumed to be sufficient in general, but one and five hidden layers 

are assumed so that the NNIM-LLA performance against the measurement 

differences and the total duration time for the different default operation settings 

can be investigated in the rest of this paper. 

As the impact of CUD measurement differences on the performance of NNIM-

LLA is investigated, similarly to Table 4, in Table 6, given the amplitudes of coupling 

scheme channel transfer functions contaminated with measurements in dB for the 

suburban case of Table 1, NNIM-LLA gives as output its respective approximations of 

the distribution and branch line lengths when various 𝑎CUD values of CUD measurements 

are assumed. Note that one 1 × 𝑄 = 1 × (88 − 3) = 1 × 85  measurement difference line 

vector for each 𝑎CUD  value that ranges from 0dB to 20dB is superimposed to the 

amplitudes of the coupling scheme channel transfer functions of the suburban case for the 

respective NNIM-LLA approximation cases. Also, the best RMSD value between the 

approximated original and symmetrical OV LV topologies and the respective OV LV 

BPL topology are presented per 𝑎CUD in Table 6. Table 7 is similar to Table 6 but for the 

rural case of Table 1. Note that the same 21 × 85 measurement difference vector with 

Table 6 is here superimposed to the amplitudes of the coupling scheme channel transfer 

functions of the rural case for all the examined NNIM-LLA approximation cases. In 

Tables 6 and 7, the default operation settings B of Sec.2.3 are applied when one hidden 

layer is assumed during the NNIM-LLA simulations.  
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Table 6 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Suburban Case and Default 

Operation Settings B for Different 𝑎CUD Values of CUD Measurements (the symmetrical approximations 

are reported in blue font color and the suburban case is included in the TIM OV LV BPL topology 

database) 

Indicative OV LV BPL Topologies of Table 1 Suburban Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 0] 
Branch Line Length Lb =[𝐿b1 𝐿b2 0] 

[500m 400m 100m 0m] 

[50m 10m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA = [𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings 

B 

+ 

1 hidden 

layer 

0 [514.49m 335.46m 150.05m 0m] 

[119.28m 106.45m 0m] 

54.75m 

1 [225.07m 718.12m 56.81m 0m] 

[168.35m 152.43m 0m] 

174.42m 

2 [263.82m 653.95m 82.22m 0m] 

[81.64m 75.23m 0m] 

134.08m 

3 [511.72m 343.71m 144.57m 0m] 

[161.23m 157.85m 0m] 

75.14m 

4 [221.28m 716.98m 61.75m 0m] 

[162.76m 139.54m 0m] 

172.84m 

5 [238.17m 707.35m 54.49m 0m] 

[174.80m 150.64m 0m] 

169.22m 

6 [229.59m 711.73m 58.68m 0m] 

[158.89m 141.56m 0m] 

169.53m 

7 [752.89m 34.22m 212.89m 0m] 

[147.32m 142.86m 0m] 

184.24m 

8 [513.37m 380.09m 131.32m 0m] 

[182.12m 137.55m 0m] 

71.00m 

9 [154.58m 805.21m 40.18m 0m] 

[152.33m 138.91m 0m] 

211.85m 

10 [210.15m 723.15m 66.70m 0m] 

[156.13m 146.19m 0m] 

177.02m 

11 [239.26m 694.45m 66.28m 0m] 

[162.12m 155.94m 0m] 

164.62m 

12 [214.29m 732.38m 53.34m 0m] 

[153.16m 141.86m 0m] 

178.21m 

13 [739.43m 47.12m 213.45m 0m] 

[155.50m 149.49m 0m] 

179.41m 

14 [756.80m 28.69m 214.51m 0m] 

[147.00m 146.54m 0m] 

187.07m 

15 [232.00m 716.22m 51.77m 0m] 

[169.73m 155.13m 0m] 

173.01m 

16 [231.56m 704.34m 64.10m 0m] 

[166.45m 147.98m 0m] 

168.42m 

17 [734.08m 66.52m 199.40m 0m] 

[146.32m 139.96m 0m] 

169.89m 

18 [709.93m 87.39m 202.67m 0m] 

[155.54m 158.97m 0m] 

162.86m 

19 [217.50m 713.43m 69.07m 0m] 

[162.53m 144.14m 0m] 

173.06m 
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20 [219.18m 708.39m 72.43m 0m] 

[162.78m 132.21m 0m] 

170.03m 

 

 
Table 7 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Rural Case and Default 

Operation Settings B for Different 𝑎CUD Values of CUD Measurements (the symmetrical approximations 

are reported in blue font color and the rural case is included in the TIM OV LV BPL topology database) 

Indicative OV LV BPL Topologies of Table 1 Rural Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 0 0] 
Branch Line Length Lb =[𝐿b1 0 0] 

[600m 400m 0m 0m] 

[300m 0m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA = [𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 0 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA = [𝐿b1,NNIM−LLA 0 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings 

B 

+ 

1 hidden 

layer 

0 [591.84m 410.07m 0m 0m] 

[39.52m 0m 0m] 

98.58m 

1 [785.00m 216.36m 0m 0m] 

[204.93m 0m 0m] 

104.87m 

2 [839.77m 207.39m 0m 0m] 

[329.55m 0m 0m] 

116.78m 

3 [804.46m 108.34m 0m 0m] 

[75.35m 0m 0m] 

159.17m 

4 [890.85m 109.17m 0m 0m] 

[7.61m 0m 0m] 

190.74m 

5 [701.77m 421.63m 0m 0m] 

[250.88m 0m 0m] 

43.49m 

6 [740.00m 260.00m 0m 0m] 

[0m 0m 0m] 

135.86m 

7 [734.26m 223.51m 0m 0m] 

[101.29m 0m 0m] 

112.54m 

8 [983.99m 23.43m 0m 0m] 

[218.82m 0m 0m] 

205.58m 

9 [745.74m 241.63m 0m 0m] 

[189.25m 0m 0m] 

91.49m 

10 [787.87m 212.13m 0m 0m] 

[151.87m 0m 0m] 

114.97m 

11 [660.41m 338.10m 0m 0m] 

[202.32m 0m 0m] 

49.31m 

12 [765.06m 238.30m 0m 0m] 

[160.25m 0m 0m] 

102.07m 

13 [665.00 474.69 0m 0m] 

[257.86m 0m 0m] 

40.67m 

14 [573.36m 426.64m 0m 0m] 

[328.51m 0m 0m] 

17.86m 

15 [737.08m 114.20m 0m 0m] 

[197.60m 0m 0m] 

125.90m 

16 [590.81m 196.27m 0m 0m] 

[144.09m 0m 0m] 

97.03m 

17 [722.22m 277.78m 0m 0m] 

[144.45m 0m 0m] 

87.89m 
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18 [750.02m 249.98m 0m 0m] 

[162.60m 0m 0m] 

95.54m 

19 [641.08m 353.70m 0m 0m] 

[242.41m 0m 0m] 

31.96m 

20 [605.22m 309.40m 0m 0m] 

[368.12m 0m 0m] 

42.89m 

 

 From Tables 6 and 7, NNIM-LLA presents a similar behavior with NNIM-BNI 

concerning the intrinsic mitigation of the measurement differences; although 

measurement differences affect RMSD values of the NNIM-LLA approximations, a 

strong correlation between RMSD values and aCUD values of CUD measurements is not 

observed in the examined suburban and rural cases. Similarly to Table 3 and Figs. 2(a)-

(c), a highly fluctuating RMSD trend can be observed when the aCUD of CUD 

measurements increases in suburban and rural cases. Indeed, with reference to Table 4, 

the maximum difference between the best RMSD values of the three executions is equal 

to 70.91m for the suburban case when one hidden layer is assumed (i.e. RMSD of the 1
st
 

execution minus the RMSD of the 3
nd

 execution). With reference to Table 6, the 

maximum RMSD difference between the best values of the 21 different measurement 

difference cases is equal to 157.10m for the suburban case when one hidden layer is again 

assumed (i.e. RMSD of the measurement difference case of aCUD=9dB minus the RMSD 

of the measurement difference case of aCUD=0dB). As the rural case is concerned, the 

aforementioned maximum differences are equal to 52.63m and 187.72m with reference to 

Tables 5 and 7, respectively. Therefore, a successful mitigation technique against the 

measurement differences should be benchmarked through the prism of its performance to 

reduce the maximum difference between the best values of the 21 different measurement 

difference cases thus stabilizing the fluctuating behavior of the RMSD values of the 

NNIM-LLA approximations. Finally, for comparison reasons, the total duration time for 

preparing both Tables 6 and 7 is equal to 3,505s for the default operation settings B and 

21 different measurement difference cases when one hidden layer is assumed. For the 

time computations of this paper, the used PC consists of an 1.86GHz Intel Pentium with 

4GB RAM while the worst case scenario of the preparation of TIM OV LV BPL 

topology database is applied where the appropriate TIM OV LV BPL topology is 

prepared per indicative OV LV BPL topology and CUD measurement difference case in 

compliance with the database representativeness, which is analyzed in [2] for the 

operation of NNIM-LLA and mentioned in Sec.2.3. 

 

3.3 NNIM-LLA – Default Operation Settings against Measurement Differences  
 In accordance with [1], the accuracy degree of the TIM OV LV BPL topology 

database, which is affected by the selection of the applied default operation settings, has 

significantly improved RMSDs of the branch number approximations of NNIM-BNI. In 

this paper, default operation settings C, which allow higher accuracy degree of the TIM 

OV LV BPL topology database in comparison with the one of default operation settings 

B, are applied in order to improve the performance of NNIM-LLA against the 

measurement differences. But the higher accuracy degree of the TIM OV LV BPL 

topology requires higher time duration times of NNIM-LLA that can be a prohibitive task 

when the required accuracy is set to be very high. 

 Similarly to Tables 6 and 7, in Table 8, NNIM-LLA gives approximations of the 

distribution and branch line lengths when the same 𝑎CUD values of CUD measurements of 
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Table 6 are applied given the amplitudes of coupling scheme channel transfer functions 

contaminated with measurements in dB for the suburban case of Table 1. The same 

21 × 85 measurement difference vector with Tables 6 and 7 is here superimposed to the 

amplitudes of the coupling scheme channel transfer functions of the suburban case for all 

the 21 NNIM-LLA approximation cases. Similarly to Table 6, the best RMSD value 

between the approximated original and symmetrical OV LV topologies and the respective 

OV LV BPL topology are presented per 𝑎CUD value in Table 8. Conversely to Table 6, 

the default operation settings C are adopted during the preparation of Table 8 instead of 

the default operation settings B. Table 9 is similar to Table 8 but for the rural case of 

Table 7. To graphically examine the impact of the default operation settings that support 

a more elaborate version of the TIM OV LV BPL topology database on the mitigation of 

the measurement differences, the best RMSD values of the NNIM-LLA approximations 

(say, the minimum RMSD value between the original and symmetrical approximated OV 

LV BPL topology given the execution and the number of hidden layers) of Tables 6 and 8 

are plotted in Fig. 4(a) with respect to the aCUD of the applied CUD measurements when 

the default operation settings B and C are assumed, respectively. In Fig. 4(b), the same 

plot with Fig. 4(a) is given but for the rural case and with respect to Tables 7 and 9. 

 

 
Table 8 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Suburban Case and Default 

Operation Settings C for Different 𝑎CUD Values of CUD Measurements (the symmetrical approximations 

are reported in blue font color and the suburban case is included in the TIM OV LV BPL topology 

database) 

Indicative OV LV BPL Topologies of Table 1 Suburban Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 0] 
Branch Line Length Lb =[𝐿b1 𝐿b2 0] 

[500m 400m 100m 0m] 

[50m 10m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings C 

+ 

1 hidden 

layer 

0 [715.32m 71.28m 213.39m 0m] 

[151.51m 147.17m 0m] 

167.50m 

1 [284.39m 650.09m 65.52m 0m] 

[156.12m 143.70m 0m] 

141.10m 

2 [687.71m 110.29m 202.00m 0m] 

[149.84m 144.56m 0m] 

150.07m 

3 [724.46m 62.99m 212.54m 0m] 

[151.86m 145.33m 0m] 

171.26m 

4 [716.60m 72.80m 210.60m 0m] 

[153.16m 143.41m 0m] 

166.75m 

5 [282.40m 656.36m 61.24m 0m] 

[154.76m 149.40m 0m] 

143.91m 

6 [706.15m 81.71m 212.15m 0m] 

[152.85m 144.42m 0m] 

162.58m 

7 [265.15m 676.45m 58.40m 0m] 

[157.69m 150.64m 0m] 

153.38m 

8 [720.49m 70.19m 209.32m 0m] 

[153.10m 144.78m 0m] 

168.24m 

9 [720.59m 67.92m 211.48m 0m] 

[152.64m 144.57m 0m] 

169.03m 
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10 [280.41m 654.99m 64.61m 0m] 

[156.07m 148.88m 0m] 

143.94m 

11 [283.95m 649.47m 66.58m 0m] 

[152.87m 146.65m 0m] 

141.06m 

12 [281.65m 659.43m 58.93m 0m] 

[154.30m 149.01m 0m] 

144.85m 

13 [272.07m 670.23m 57.71m 0m] 

[156.43m 147.97m 0m] 

149.82m 

14 [700.18m 93.36m 206.46m 0m] 

[155.07m 148.79m 0m] 

158.45m 

15 [283.23m 653.08m 63.69m 0m] 

[155.45m 142.52m 0m] 

141.94m 

16 [719.25m 67.76m 212.99m 0m] 

[151.70m 143.67m 0m] 

168.79m 

17 [280.28m 652.45m 67.27m 0m] 

[156.30m 148.75m 0m] 

143.24m 

18 [271.65m 670.15m 58.20m 0m] 

[151.95m 149.16m 0m] 

149.58m 

19 [281.00m 654.80m 64.20m 0m] 

[155.11m 147.51m 0m] 

143.49m 

20 [270.20m 672.51m 57.29m 0m] 

[154.15m 147.87m 0m] 

150.60m 

 

 

 
Table 9 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Rural Case and Default 

Operation Settings C for Different 𝑎CUD Values of CUD Measurements (the symmetrical approximations 

are reported in blue font color and the rural case is included in the TIM OV LV BPL topology database) 

Indicative OV LV BPL Topologies of Table 1 Rural Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 0 0] 
Branch Line Length Lb =[𝐿b1 0 0] 

[600m 400m 0m 0m] 

[300m 0m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA = [𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 0 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA = [𝐿b1,NNIM−LLA 0 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings 

C 

+ 

1 hidden 

layer 

0 [790.25m 189.38m 0m 0m] 

[202.45m 0m 0m] 

113.44m 

1 [750.59m 225.04m 0m 0m] 

[223.77m 0m 0m] 

91.88m 

2 [716.01m 283.97m 0m 0m] 

[191.34m 0m 0m] 

74.38m 

3 [732.49m 267.51m 0m 0m] 

[261.42m 0m 0m] 

72.30m 

4 [665.20m 334.66m 0m 0m] 

[11.30m 0m 0m] 

114.56m 

5 [740.38m 245.13m 0m 0m] 

[145.37m 0m 0m] 

98.27m 

6 [670.96m 329.03m 0m 0m] 

[126.16m 0m 0m] 

75.87m 

7 [739.60m 260.40m 0m 0m] 

[322.50m 0m 0m] 

75.10m 
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8 [779.41m 220.59m 0m 0m] 

[121.76m 0m 0m] 

117.20m 

9 [620.96m 379.04m 0m 0m] 

[655.98m 0m 0m] 

135.01m 

10 [748.68m 251.30m 0m 0m] 

[94.85m 0m 0m] 

111.04m 

11 [833.91m 164.90m 0m 0m] 

[170.90m 0m 0m] 

134.51m 

12 [829.14m 166.38m 0m 0m] 

[142.01m 0m 0m] 

137.34m 

13 [776.44m 223.03m 0m 0m] 

[95.56m 0m 0m] 

122.03m 

14 [685.64m 93.61m 0m 0m] 

[50.95m 0m 0m] 

152.71m 

15 [730.21m 269.73m 0m 0m] 

[93.68m 0m 0m] 

104.54m 

16 [808.70m 313.49m 0m 0m] 

[94.36m 0m 0m] 

115.47m 

17 [751.79m 248.21m 0m 0m] 

[46.39m 0m 0m] 

125.58m 

18 [760.09m 235.28m 0m 0m] 

[95.14m 0m 0m] 

116.33m 

19 [691.35m 358.99m 0m 0m] 

[153.33m 0m 0m] 

67.12m 

20 [727.00m 202.77m 0m 0m] 

[165.94m 0m 0m] 

102.12m 
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Figure 4.  Best RMSD values of NNIM-LLA approximations with respect to aCUD of the applied 

CUD measurements when the default operation settings B and C are applied and one hidden 
layer is assumed. (a) Suburban case. (b) Rural case. 
 

 

 Comparing Tables 8 and 9 and examining Figs. 4(a) and 4(b), it is obvious that 

the adoption of default operation settings that create more elaborate version of the TIM 

OV LV BPL topology database, such as the default operation settings C of this Section, 

reduces the mean RMSD of the NNIM-LLA approximations but the aforementioned 

reduction is constrained by the representativeness of the OV LV BPL topologies in the 
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TIM OV LV BPL topology databases that remains unaffected either in the suburban case 

or in rural one [1], [2]. In addition, the default operation settings C critically reduce the 

fluctuations of NNIM-LLA approximations with respect to aCUD of the applied CUD 

measurements either in suburban case or in rural one; for the suburban case and with 

reference to Table 8, the maximum difference between the best values of the 21 different 

measurement difference cases gets improved from 157.10m to 30.20m when one hidden 

layer is assumed and the default operation settings B and C are applied, respectively. 

Similarly, for the rural case and with reference to Table 9, the maximum difference 

between the best values of the 21 different measurement difference cases gets improved 

from 187.72m to 85.59m when one hidden layer is assumed and the default operation 

settings B and C are applied, respectively. As already been mentioned, a trade-off 

between the improved performance of NNIM-LLA when more elaborate default 

operation settings are applied and the total duration time of NNIM-LLA simulation 

occurs; the total duration time for preparing both Tables 8 and 9 increases up to 29,364s 

in comparison with the total duration time of 3,505s for preparing both Tables 6 and 7.  

 To validate the beneficial role of the default operation settings C against the CUD 

measurement differences when various aCUD are applied, the same procedure, which is 

followed in Table 8, Table 9 and Figure 4 for one hidden layer, is repeated when five 

hidden layers are applied during the NNIM-LLA approximations. Similarly to Fig. 4(a), 

the best RMSD values of the NNIM-LLA approximations for the suburban case are 

plotted in Fig. 5(a) with respect to the aCUD of the applied CUD measurements when the 

default operation settings B and C are assumed, respectively, and five hidden layers are 

applied. In Fig. 5(b), the same plot with Fig. 5(a) is given but for the rural case. Note that 

the same 21 × 85  measurement difference vector, which is applied across the latter 

NNIM-LLA approximations, is again used for the NNIM-LLA approximation cases of 

Figs. 5(a) and 5(b). For the sake of the paper size reduction, the respective Tables to 

Tables 8 and 9 for preparing Figs. 5(a) and 5(b) are not analytically presented in this 

subsection. 
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Figure 5.  Best RMSD values of NNIM-LLA approximations with respect to aCUD of the applied 

CUD measurements when the default operation settings B and C are applied and five hidden 
layers are assumed. (a) Suburban case. (b) Rural case. 
 

 

 Observing Figs. 5(a) and 5(b), the mitigation efficiency of the default operation 

settings C against CUD measurement differences is again validated in the suburban and 

rural cases, respectively, when five hidden layers are assumed. Apart from the similar 

RMSD general image and RMSD values of Figs. 5(a) and 5(b) with the respective Figs. 

4(a) and 4(b), the application of the default operation settings C indeed reduces the mean 
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RMSD and the RMSD fluctuations when compared to the ones of the default operation 

settings B; for the suburban case of Fig. 5(a), the maximum difference between the best 

RMSD values of the 21 different measurement difference cases gets improved from 52m 

to 32m when five hidden layers are assumed and the default operation settings B and C 

are applied, respectively (note that the best RMSD value of default operation settings C 

when aCUD is equal to 0dB is excluded during the previous maximum difference 

computation due to its extremeness). Similarly, for the rural case and with reference to 

Table 9, the maximum difference between the best values of the 21 different 

measurement difference cases gets improved from 201m to 106m when five hidden 

layers are assumed and the default operation settings B and C are applied, respectively. 

The trade-off between the improved performance of NNIM-LLA and the total time 

duration time of NNIM-LLA simulation also occurs; the total time duration time for the 

suburban and rural case plots of Figs. 5(a) and 5(b) when the default operation settings C 

are applied increases up to 45,556s in comparison with the total duration time of 11,270s 

for preparing the suburban and rural case plots of Figs. 5(a) and 5(b) when the default 

operation settings B have been applied. Note that the two improvements of Sec.2.3 that 

deal with the unacceptable NNIM-LLA approximations of [2] have achieved the 

elimination of the unacceptable NNIM-LLA approximations in Figs. 5(a) and 5(b) but the 

increased total duration times of Figs. 5(a) and 5(b) with comparison to the ones of Figs. 

4(a) and 4(b) are explained by the fact that the latter total time duration times also include 

the required repetitions of the MATLAB NN program of [47], [48] that programmatically 

supports the NNIM-LLA approximations so that the unacceptable NNIM-LLA 

approximations can be eliminated. Surely, the worst case scenario of the preparation of 

TIM OV LV BPL topology database per indicative OV LV BPL topology and CUD 

measurement difference case significantly deteriorates the aforementioned total time 

duration times thus indicating the significant delays that may be present if more elaborate 

restrictions concerning the possible database representativeness improvements that may 

be applied during the preparation of TIM OV LV BPL topology database per examined 

case. This clearly unveils the need for: (i) smarter countermeasure techniques against 

measurement differences prior to the application of the MATLAB NN program of 

NNIM-LLA; and (ii) tailored-made and representative segments of the TIM OV LV BPL 

database that holds per case groups and not per examined case.  

 After the previous observations, the companion paper of [52] starts the challenge 

of searching and adopting of appropriate countermeasure techniques against 

measurement differences from the literature so that the performance of NNIM-LLA could 

be improved in terms of their RMSD fluctuations and, at the same time, the mean RMSD 

gets improved and the total duration time remains close to the total duration time of the 

default operation setting basis. From the literature, the application of piecewise 

monotonic data approximation methods, such as L1PMA, L2WPMA and L2CXCV 

which have theoretically been presented and experimentally verified in [30], [53]-[59] as 

output module, is assessed as the intermediate module after the DHM module and before 

the NNIM-LLA module when CUD measurement differences of various aCUD values 

occur during the operation of the OV LV BPL networks.  
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5. Conclusions 
 

 In this paper, the impact of CUD measurement differences on the performance of 

NNIM-BNI and NNIM-LLA has been assessed as well as the countermeasure role of the 

adoption of diverse default operation settings against measurement differences. First, the 

effect of the presence of CUD measurement differences of various aCUD values has been 

examined. Both NN methodologies have presented a strong inherent mitigation efficiency 

against CUD measurement differences and especially those of low aCUD values (i.e., aCUD 

values lower than approximately 5dB). CUD measurement differences of high aCUD 

values primarily affect the stability of the NNIM-BNI and NNIM-LLA approximations in 

terms of their RMSD fluctuations rather than mean RMSD that depends on the accuracy 

of the applied TIM OV LV BPL topology database and its representativeness. Second, 

the adoption of default operation settings that allows more elaborate versions of the 

applied TIM OV LV BPL topology significantly improves the stability of the 

approximations by reducing the RMSD approximation fluctuations. Hence, the adoption 

of the aforementioned default operation settings can act as a countermeasure technique in 

environments where unknown or high CUD measurement differences are observed. 

However, a trade-off between the accuracy of the applied default operation settings and 

the total duration time of NNIM-LLA has been revealed. Third, improvements for the 

finer operation of NN identification methodologies have been examined, such as the BPL 

topology database representativeness, the BPL topology inclusion into the BPL topology 

database and the unacceptable approximation elimination technique. The application of 

more elaborate countermeasure techniques against measurement differences and / or 

representative segments of the TIM OV LV BPL database should be further investigated 

so that more accurate and stable NNIM-BNI and NNIM-LLA approximations can occur. 
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Τhe impact of measurement differences that follow continuous uniform 
distributions (CUDs) of different intensities on the performance of the 
Neural Network Identification Methodology for the distribution line and 
branch Line Length Approximation (NNIM-LLA) of the overhead low-
voltage broadband over powerlines (OV LV BPL) topologies has been 
assessed in [1]. When the αCUD values of the applied CUD measurement 
differences remain low and below 5dB, NNIM-LLA may internally and 
satisfactorily cope with the CUD measurement differences. However, 
when the αCUD values of CUD measurement differences exceed 
approximately 5dB, external countermeasure techniques against the 
measurement differences are required to be applied to the contaminated 
data prior to their handling by NNIM-LLA. In this companion paper, the 
impact of piecewise monotonic data approximation methods, such as 
L1PMA and L2WPMA of the literature, on the performance of NNIM-LLA 
of OV LV BPL topologies is assessed when CUD measurement 
differences of various αCUD values are applied. The key findings that are 
going to be discussed in this companion paper are: (i) The crucial role of 
the applied numbers of monotonic sections of the L1PMA and L2WPMA 
for the overall performance improvement of NNIM-LLA approximations 
as well as the dependence of the applied numbers of monotonic sections 
on the complexity of the examined OV LV BPL topology classes; and (ii) 
the performance comparison of the piecewise monotonic data 
approximation methods of this paper against the one of more elaborated 
versions of the default operation settings in order to reveal the most 
suitable countermeasure technique against the CUD measurement 
differences in OV LV BPL topologies. 
 

Keywords: Smart Grid; Broadband over Power Lines (BPL) networks; Power Line Communications 

(PLC); Distribution and Transmission Power Grids; Neural Networks; Big Data; Modeling; 
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1. Introduction 
 

The emerging smart grid that is the upgraded version of the traditional power grid 

is characterized by its intelligent IP-based communications network of two-way 

information flows, which may further support a plethora of broadband applications  

[1]-[10]. Among the communications solutions that can be integrated across the smart 

grid to support the two-way information flows, Broadband over Power Lines (BPL) 

networks exploit the available wired power grid infrastructure without the need for 

investing in extra networking cable across the entire equipment. The integration of the 

BPL networks with the other communications solutions of the smart grid is feasible 

through the installation and operation of the BPL wireline / wireless interfaces [4], [8], 

[11]. 

Deterministic Hybrid Model (DHM), which describes the BPL signal propagation 

and transmission across the topologies of the overhead low voltage (OV LV) BPL 

networks [12]-[20], has acted as the channel model basis while artificial intelligence (AI), 

machine learning (ML) and neural network (NN) features have been concatenated after it 

in [1]. Indeed, exploiting the available big data of the Topology Identification 

Methodology (TIM) BPL topology database for the OV LV BPL topologies of [21], [22] 

and AI - ML - NN functionalities, the neural network identification methodology for the 

distribution line and branch line length approximation (NNIM-LLA) has been proposed 

for the OV LV BPL topologies in [23] while its performance has been assessed in [1] 

when measurement differences of various intensities may occur. In fact, measurement 

differences between experimental and theoretical OV LV BPL topology channel 

attenuation values may be observed due to several practical reasons and “real” life 

conditions, as shown in [22], [24]. In accordance with [1], [22], [24]-[27], a typical 

scenario to take into account the measurement differences during the BPL topology 

channel attenuation analysis is their handling as error distributions, such as the 

Continuous Uniform Distributions (CUDs) of various amplitudes that are superimposed 

to the coupling scheme transfer function theoretical numerical results from DHM. In [1], 

NNIM-LLA has been deployed and benchmarked by exploiting the already knowledge 

and experience of [3], [23], namely: (i) the list of the indicative OV LV BPL topologies; 

(ii) default operation settings B of [23]; (iii) default operation settings C of [1]; (iv) the 

assumption of a priori knowledge of the number of branches of the examined indicative 

OV LV BPL topologies in each case (i.e. not-blind NNIM-LLA approximations); (v) the 

database representativeness, which is analyzed in [23] for the operation of NNIM-LLA; 

and (vi) the mechanism proposed in [1] against the unacceptable NNIM-LLA 

approximations of [23]. In accordance with [3], [23], Root-Mean-Square Deviation 

(RMSD) has been chosen as the performance metric so that the impact of the 

measurement differences on the NNIM-LLA approximation performance can be 

evaluated as well as the countermeasure techniques against them. In [1], it has been 

revealed that NNIM-LLA presents an inherent mitigation efficiency against CUD 

measurement differences of low aCUD values (i.e., aCUD values that remain lower than 

5dB). In contrast, CUD measurement differences of high aCUD values primarily affect the 

stability of the NNIM-LLA approximations in terms of their RMSD fluctuations rather 

than mean RMSD approximations. Also, the adoption of more elaborate default operation 

settings or representative TIM OV LV BPL topology database sets that are applied 

separately in each simulation case can significantly improve the stability of the 

approximations by reducing the RMSD approximation fluctuations but the total duration 
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time of NNIM-LLA significantly increases. In [1], it has been recognized that the search 

and the adoption of appropriate countermeasure techniques against measurement 

differences, such as: (i) smarter countermeasure techniques against measurement 

differences prior to the application of the NNIM-LLA module; and (ii) tailored-made and 

representative segments of the TIM OV LV BPL database that holds per case groups and 

not per examined case. Among the available countermeasure techniques against 

measurement differences prior to the application of the NNIM-LLA module, the 

piecewise monotonic data approximation methods are assessed in this companion paper 

so as to improve the performance of NNIM-LLA approximations in terms of the RMSD 

fluctuations, mean RMSD and the total duration time. 

From the literature, the application of piecewise monotonic data approximation 

methods, such as L1PMA and L2WPMA which have theoretically been presented and 

experimentally verified in [28]-[33], may successfully cope with the measurement 

differences. In accordance with [25], L1PMA and L2WPMA are formally categorized in 

the piecewise monotonic data approximations with predefined monotonic sections. 

L1PMA and L2WPMA have been proposed in [31]-[35] while their performance 

regarding the mitigation of measurement differences in transmission and distribution BPL 

networks has been assessed in [22], [24], [25], [27], [28], [36], [37] as output module 

after the DHM one. Already been identified in [22], [24], [25], [27], [36], the 

performance of L1PMA and L2WPMA mainly depends on the predefined number of 

monotonic sections while their best approximation performance against measurement 

differences is achieved when a specific number of monotonic sections can be identified 

and applied per measurement difference case. Acknowledging that the right selection of 

the number of monotonic sections plays the key role during the application of L1PMA and 

L2WPMA, the findings of [25], [27] concerning the adaptive number of monotonic 

sections during the operation of L1PMA and L2WPMA are going to be checked in this 

companion paper. Hence, the piecewise monotonic data approximation module 

(PMDAM), which consists of either L1PMA or L2WPMA, is concatenated after the 

DHM module but before the NNIM-LLA one in this companion paper. NNIM-LLA 

performance against CUD measurement differences is going to be assessed in terms of 

RMSD fluctuations, mean RMSD and total duration time when the PMDAM is added. 

Useful conclusions are expected through the comparison of RMSD fluctuations, mean 

RMSD and total duration time achieved by L1PMA and L2WPMA with the respective 

ones of [1], say, achieved by the application of default operation settings B (default 

operation settings basis) and default operation settings C. 

The rest of this companion paper is organized as follows: Section 2 briefly 

presents L1PMA and L2WPMA as well as their integration in the NNIM-LLA operation 

through the PMDAM and DHM. In Section 3, the numerical results regarding the impact 

of measurement differences on the approximation performance of NNIM-LLA are given. 

The mitigation role of the three scenarios against the CUD measurement differences is 

assessed in terms of the RMSD fluctuations, mean RMSD and NNIM-LLA total duration 

time. Section 4 concludes this companion paper. 

 

 

2. PMDAM 
 

 In this Section, the adoption of L1PMA and L2WPMA is detailed under the aegis 

of the PMDAM. As the PMDAM is considered as a countermeasure technique module 
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against the CUD measurement differences of [1], its location across the NNIM-LLA 

operation flowchart stands right after the theoretical coupling scheme channel transfer 

function results of DHM that are contaminated by CUD measurement differences (say, 

measured coupling scheme channel transfer function results) for given examined OV LV 

BPL topology. Depending on the applied piecewise monotonic data approximation 

method of PMDAM, PMDAM input is the aforementioned measured coupling scheme 

channel transfer function results while PMDAM output is the respective approximated 

coupling scheme channel transfer function results, which are ideally equal to the 

theoretical coupling scheme channel transfer function results of the examined OV LV 

BPL topology [22], [24], [25], [27], [28], [36]. Practically, instead of the measured 

coupling scheme channel transfer function results of the examined OV LV BPL 

topology, NNIM-LLA receives as input the respective approximated coupling scheme 

channel transfer function results without affecting the applied representative sets of the 

TIM OV LV BPL topology database and the operation of the MATLAB NN program of 

[38], [39], which programmatically supports the fully connected NN architecture of 

Figure 2 of [3] as well as the involved training, validation and testing phases. The 

efficient performance of piecewise monotonic data approximations entails lower RMSD 

fluctuations that ideally tend to zero. As the total duration time is concerned, the 

representative sets of the TIM OV LV BPL topology database are prepared per each 

examined case and the default operation settings B are assumed as the default operation 

settings basis, it is expected that the total duration time after the application of piecewise 

monotonic data approximation methods as countermeasure technique against the CUD 

measurement differences of [1] remains closer to the one after the application of default 

operation settings B rather than the one of default operation settings C. In the following 

two subsections, a brief presentation of L1PMA and L2WPMA is given. 

 

2.1 L1PMA 
 L1PMA is the first one of the two piecewise monotonic data approximations 

supported by PMDAM in this companion paper. L1PMA is going to exploit the 

piecewise monotonicity property of the theoretical coupling scheme channel transfer 

function results of DHM by decomposing the previous results into separate monotonous 

sections between their adjacent turning points (primary extrema) for given OV LV BPL 

topology [28], [32], [33], [36]. Aiming at minimizing the moduli sum of the CUD 

measurement differences, L1PMA is going to mitigate the uncorrelated measurement 

differences by neglecting the existence of few large ones [28]. A detailed analysis 

concerning the extensive application of L1PMA to transmission and distribution BPL 

networks is given in [22], [24], [25], [27], [28], [36], [40]. Already been reported for 

PMDAM, L1PMA receives as inputs the measured coupling scheme channel transfer 

function results of the examined OV LV BPL topology, the measurement frequencies and 

the number of monotonic sections (i.e., either user- or computer-defined) and gives as 

output the best fit of the measured OV MV BPL coupling transfer function results; say, 

the respective L1PMA approximated coupling scheme channel transfer function results. 

Note that the measurement frequencies and the findings concerning the applied number 

of monotonic sections, which have been presented in [40] and treat with the application 

of L1PMA to OV LV BPL topologies, are going to be exploited in this companion paper. 
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2.2 L2WPMA 
 L2PMA is the second one of the two piecewise monotonic data approximations 

supported by PMDAM in this companion paper. In accordance with [37] and similarly to 

L1PMA of Sec.2.1, L2WPMA is going to decompose the examined input data of the 

measured coupling scheme channel transfer function of the examined OV LV BPL 

topology into separate monotonous sections between its primary extrema [25], [35], [36]. 

Apart from the measured data, L2WPMA software receives as input the measurement 

frequencies and the number of monotonic sections, similarly to L1PMA, and gives as 

output a spline representation of the measured data. Conversely to L1PMA, L2WPMA 

focuses on the first divided of the input measured data by demanding the minimization of 

the weighted sum of the square of the measurement differences via the constraint of 

specific number of sign changes [25], [27], [35], [36]. The number of sign changes is 

equal to the number of monotonic sections minus one where the number of monotonic 

sections is either user- or computer-defined in a similar way to L1PMA. 

 

3. Numerical Results and Discussion 
 

 In this Section, the mitigation role of the piecewise monotonic data 

approximations, say, L1PMA and L2WPMA, against the CUD measurement differences 

of different intensities is investigated. In fact, the default operation settings that are 

adopted in this companion and remain almost identical to the ones of the original paper of 

[1] are initially detailed. The small differences in default operation settings B (basis) and 

default operation settings C are due to the restrictions in software use of L1PMA and 

L2WPMA. Then, the L1PMA and L2WPMA of different number of monotonic sections, 

in compliance with the findings of [25], [27], are deployed against the CUD measurement 

differences of different intensities. The results of the application of the piecewise 

monotonic data approximations of PMDAM of this companion paper are presented and 

discussed in terms of the RMSD approximation fluctuations and the total duration time of 

NNIM-LLA when are compared against the results produced by the simple application of 

the default operation settings B (basis) and default operation settings C. 

 

3.1 Default Operation Settings  
 According to [1], the default operation settings define the values of the maximum 

number of branches Nmax, the length spacing Ls for both the branch distance and the 

branch length, the maximum branch length Lb,max and the operation frequency range that 

are anyway essential factors for the five fields of TIM OV LV BPL topology database 

that are used during the operation of NNIM-LLA. As the maximum number of branches, 

the length spacing and the maximum branch length are concerned, these remain the same 

when the default operation settings B and C are applied in this companion paper. 

However, in order to comply with the requirement of the Fortran software that supports 

the piecewise monotonic data approximations of this companion paper [33], [35], small 

changes are required in the frequency range and the flat-fading subchannel frequency 

spacing; say, the BPL frequency range and flat-fading subchannel frequency spacing are 

assumed equal to 1-30MHz and 1MHz, respectively, in [25], [36]. To prevent the 

misunderstanding of the results of the following subsections with the results of the 

original paper, default operation settings B’ and C’ are denoted hereafter for the default 

operation settings B and C of [1], respectively.  
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 Except for the previous default operation settings, the following assumptions of 

[1] are also taken into account in this companion paper, namely: (i) The number of 

branches of the examined indicative OV LV BPL topologies (say, suburban and rural 

cases of Table 1 of [1]) is assumed to be known; (ii) the database representativeness, 

which is analyzed in [23] for the operation of NNIM-LLA, is assumed during the 

application of the default operation settings B’ and C’; (iii) the exclusion of the 

symmetrical OV LV BPL topologies from the OV LV BPL topology database so as not 

to disrupt the approximations due to the symmetry of BPL topologies described in [41], 

[42]; (iv) the inclusion of the examined suburban and rural cases into the TIM OV LV 

BPL topology database; and (v) the mechanism described in [1] for preventing the 

unacceptable NNIM-LLA approximations of [23] (i.e., at least one of the approximated 

distribution and branch line lengths is below zero given the fixed length of 1000m 

between the transmitting and receiving ends for all the applied OV LV BPL topologies). 

Finally, it should be noted that the default participation percentages of the three 

phases of NNIM-based methodologies of [3], [23], [38], [39] are assumed in this paper; 

say, training, validation and testing phases during the operation of NNIM-LLA are 

assumed to be equal to 70%, 15% and 15%, respectively. 

 

3.1.1 Default Operation Settings B’ 
 As the impact of CUD measurement differences on the performance of NNIM-

LLA is investigated, similarly to Table 6 of [1], in Table 1, given the amplitudes of 

coupling scheme channel transfer functions contaminated with measurements in dB for 

the suburban case, NNIM-LLA gives as output its respective approximations of the 

distribution and branch line lengths when various 𝑎CUD values of CUD measurements are 

assumed. Conversely to Table 6 of [1], note that one 1 × 𝑄 = 1 × (30 − 1) = 1 × 29 

measurement difference line vector for each 𝑎CUD value that ranges from 0dB to 20dB is 

superimposed to the amplitudes of the coupling scheme channel transfer functions of the 

suburban case for the respective NNIM-LLA approximation cases. Also, the best RMSD 

value between the approximated original and symmetrical OV LV topologies and the 

respective OV LV BPL topology are presented per 𝑎CUD value in Table 1. Table 2 is 

similar to Table 1 but for the rural case. Note that the same 21 × 29  measurement 

difference vector with Table 1 is here superimposed to the amplitudes of the coupling 

scheme channel transfer functions of the rural case for all the examined NNIM-LLA 

approximation cases. In Tables 1 and 2, the default operation settings B’ are applied 

when one hidden layer is assumed during the NNIM-LLA simulations, as analyzed in [1].  

 From Tables 1 and 2, the fluctuating RMSD value trend that is not directly 

correlated with the examined aCUD values, which has first been observed in [1], is also 

seen in this companion paper when different aCUD values for the CUD measurements are 

applied in the suburban and rural cases. Indeed, with reference to Table 1, the maximum 

RMSD difference between the best values for the suburban case is equal to 137.95m 

when one hidden layer is assumed and aCUD values range from 1dB to 20dB. As the rural 

case is concerned in Table 2, maximum RMSD difference between the best values is 

equal to 127.26m when one hidden layer is assumed and aCUD values range from 1dB to 

20dB. Note that the respective maximum RMSD difference of Tables 6 and 7 in [1] was 

equal to 157.10m.and 187.72m for the suburban and rural cases, respectively, when aCUD 

values range from 0dB to 20dB. Similarly to [1], the intrinsic mitigation characteristic of   
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Table 1 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Suburban Case and Default 

Operation Settings B’ for Different 𝑎CUD Values of CUD Measurements (the symmetrical approximations 

are reported in blue font color and the suburban case is included in the TIM OV LV BPL topology 

database) 

Indicative OV LV BPL Topologies of Table 1 of [1] Suburban Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 0] 
Branch Line Length Lb =[𝐿b1 𝐿b2 0] 

[500m 400m 100m 0m] 

[50m 10m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings 

B’ 

+ 

1 hidden 

layer 

0 [36]4.46m 72.13m 213.41m 0m] 

[148.890m 147.42m 0m] 

166.91m 

1 [213.23m 731.29m 55.49m 0m] 

[171.73m 135.05m 0m] 

179.06m 

2 [405.62m 491.25m 103.13m 0m] 

[157.74m 147.86m 0m] 

82.68m 

3 [224.99m 717.42m 57.59m 0m] 

[169.55m 150.48m 0m] 

174.11m 

4 [213.40m 736.27m 50.33m 0m] 

[157.45m 120.47m 0m] 

177.86m 

5 [721.98m 65.59m 212.43m 0m] 

[147.66m 137.09m 0m] 

168.79m 

6 [706.71m 80.54m 212.75m 0m] 

[164.17m 172.26m 0m] 

167.70m 

7 [147.59m 830.84m 21.53m 0m] 

[143.29m 136.76m 0m] 

220.63m 

8 [744.82m 33.54m 221.64m 0m] 

[162.64m 151.99m 0m] 

185.88m 

9 [700.03m 103.25m 196.72m 0m] 

[156.13m 147.66m 0m] 

154.75m 

10 [701.72m 97.38m 200.90m 0m] 

[135.33m 141.61m 0m] 

154.48m 

11 [666.52m 134.99m 198.50m 0m] 

[152.01m 141.36m 0m] 

139.04m 

12 [618.06m 201.75m 180.19m 0m] 

[161.76m 153.20m 0m] 

115.06m 

13 [231.12m 708.62m 60.26m 0m] 

[158.41m 129.19m 0m] 

166.94m 

14 [708.95m 83.73m 0m] 

[151.95m 153.28m 0m] 

163.06m 

15 [267.66m 159.70m 174.12m 0m] 

[301.11m 165.48m 0m] 

170.90m 

16 [690.06m 118.57m 191.37m 0m] 

[132.96m 149.55m 0m] 

146.40m 

17 [162.82m 818.26m 18.85m 0m] 

[127.85m 128.08m 0m] 

212.21m 

18 [677.14m 132.21m 190.65m 0m] 

[145.84m 144.05m 0m] 

140.64m 

19 [36]9.34m 64.14m 216.52m 0m] 

[158.07m 139.60m 0m] 

170.28m 
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20 [214.14m 739.62m 46.24m 0m] 

[166.20m 141.49m 0m] 

181.56m 

 

 

 
Table 2 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Rural Case and Default 

Operation Settings B’ for Different 𝑎CUD Values of CUD Measurements (the symmetrical approximations 

are reported in blue font color and the rural case is included in the TIM OV LV BPL topology database) 

Indicative OV LV BPL Topologies of Table 1 of [1] Rural Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 0 0] 
Branch Line Length Lb =[𝐿b1 0 0] 

[600m 400m 0m 0m] 

[300m 0m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA = [𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 0 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA = [𝐿b1,NNIM−LLA 0 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings 

B’ 

+ 

1 hidden 

layer 

0 [36]1.15m 288.85m 0m 0m] 

[167.16m 0m 0m] 

77.78m 

1 [700.35m 299.69m 0m 0m] 

[18.16m 0m 0m] 

119.26m 

2 [628.82m 255.02m 0m 0m] 

[320.21m 0m 0m] 

56.39m 

3 [732.97m 267.31m 0m 0m] 

[157.15m 0m 0m] 

89.20m 

4 [582.56m 417.44m 0m 0m] 

[29.11m 0m 0m] 

102.81m 

5 [678.36m 320.46m 0m 0m] 

[135.46m 0m 0m] 

75.16m 

6 [824.04m 382.54m 0m 0m] 

[181.65m 0m 0m] 

96.00m 

7 [548.71m 318.94m 0m 0m] 

[62.44m 0m 0m] 

96.83m 

8 [635.77m 281.28m 0m 0m] 

[80.30m 0m 0m] 

95.35m 

9 [780.97m 218.95m 0m 0m] 

[356.41m 0m 0m] 

99.08m 

10 [630.51m 346.01m 0m 0m] 

[483.88m 0m 0m] 

73.35m 

11 [888.77m 119.76m 0m 0m] 

[193.03m 0m 0m] 

157.37m 

12 [700.03m 300.01m 0m 0m] 

[208.74m 0m 0m] 

63.62m 

13 [748.51m 251.49m 0m 0m] 

[106.72m 0m 0m] 

107.88m 

14 [700.61m 275.78m 0m 0m] 

[143.78m 0m 0m] 

84.48m 

15 [741.43m 258.36m 0m 0m] 

[158.01m 0m 0m] 

92.76m 

16 [904.25m 95.90m 0m 0m] 

[74.08m 0m 0m] 

183.65m 

17 [720.42m 512.40m 0m 0m] 

[309.69m 0m 0m] 

62.37m 
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18 [800.02m 223.20m 0m 0m] 

[158.85m 0m 0m] 

114.14m 

19 [524.16m 507.58m 0m 0m] 

[614.82m 0m 0m] 

128.97m 

20 [737.50m 262.50m 0m 0m] 

[150.00m 0m 0m] 

92.82m 

 

NNIM-LLA against the measurement differences is more affected by the TIM OV LV 

BPL topology database representativeness in terms of the topology characteristics rather  

than the accuracy of the assumed frequency range. The latter observation is verified by 

the comparable maximum RMSD differences between the best values when the two 

different frequency range of 3-88MHz of [1] and 1-30MHz of this companion paper are 

assumed for the suburban and rural cases of Tables 1 and 2, respectively. As the mean 

RMSD values of Tables 1 and 2 are concerned for the aCUD values that range from 1dB to 

20dB, these are equal to 163.60m and 99.57m for the suburban and rural case, 

respectively. Note that the total duration time for preparing both Tables 1 and 2 is equal 

to 1,342s for the default operation settings B’ of the frequency range of 1-30MHz while 

the respective total duration time for the default operation settings B of the frequency 

range of 3-88MHz was equal to 3,505s as reported in [1]. The previous total duration 

time difference is mainly due to the operation of the MATLAB NN program of [38], [39] 

that programmatically supports the fully connected NN architecture of NNIM-LLA as 

well as the involved training, validation and testing phases. 

 

3.1.2 Default Operation Settings C’ 
 In accordance with [1], the higher accuracy degree of the TIM OV LV BPL 

topology database, which is affected by the adoption of the default operation settings C, 

has significantly improved the RMSD fluctuations by reducing the maximum RMSD 

differences of the NNIM-LLA approximations when the aCUD values range from 1dB to 

20dB. Also, the default operation settings C has slightly improved mean RMSD values 

for given examined indicative OV LV BPL topology. But the adoption of the default 

operation settings C entailed higher duration times of NNIM-LLA in [1] when the 

preparation of the TIM OV LV BPL topology database is made from the beginning in 

each examined case. 

 Similarly to Table 1, NNIM-LLA gives approximations of the distribution and 

branch line lengths in Table 4 when the default operation settings C’ are adopted and the 

same 𝑎CUD  values of CUD measurements of Table 1 are assumed. The same 21 × 29 

measurement difference vector with Tables 1 and 2 is here superimposed to the 

amplitudes of the coupling scheme channel transfer functions of the suburban case for all 

the 21 NNIM-LLA approximation cases. Similarly to Table 1, the best RMSD value 

between the approximated original and symmetrical OV LV topologies and the respective 

OV LV BPL topology are presented per 𝑎CUD value in Table 3. Table 4 is similar to 

Table 3 but for the rural case.  
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Table 3 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Suburban Case and Default 

Operation Settings C’ for Different 𝑎CUD Values of CUD Measurements (the symmetrical approximations 

are reported in blue font color and the suburban case is included in the TIM OV LV BPL topology 

database) 

Indicative OV LV BPL Topologies of Table 1 of [1] Suburban Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 0] 
Branch Line Length Lb =[𝐿b1 𝐿b2 0] 

[500m 400m 100m 0m] 

[50m 10m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings 

C’ 

+ 

1 hidden 

layer 

0 [627.845m 189.99m 182.16m 0m] 

[147.73m 140.07m 0m] 

115.68m 

1 [573.93m 265.68m 160.39m 0m] 

[158.32m 147.37m 0m] 

90.83m 

2 [630.92m 189.36m 179.72m 0m] 

[148.02m 139.35m 0m] 

116.01m 

3 [567.68m 270.96m 161.36m 0m] 

[156.08m 149.47m 0m] 

89.20m 

4 [234.82m 724.03m 41.16m 0m] 

[125.29m 111.39m 0m] 

166.79m 

5 [303.84m 620.03m 76.12m 0m] 

[135.79m 127.45m 0m] 

124.57m 

6 [567.25m 272.78m 159.97m 0m] 

[157.14m 149.64m 0m] 

88.87m 

7 [571.01m 266.27m 162.71m 0m] 

[156.06m 146.84m 0m] 

90.10m 

8 [223.63m 731.26m 45.11m 0m] 

[168.40m 159.68m 0m] 

179.50m 

9 [575.78m 259.46m 164.76m 0m] 

[148.27m 138.48m 0m] 

89.33m 

10 [239.14m 711.14m 49.72m 0m] 

[128.35m 122.70m 0m] 

163.11m 

11 [569.29m 266.80m 163.91m 0m] 

[156.69m 148.66m 0m] 

90.43m 

12 [567.31m 272.21m 160.48m 0m] 

[157.04m 149.03m 0m] 

88.89m 

13 [569.82m 269.94m 160.24m 0m] 

[159.05m 150.65m 0m] 

90.31m 

14 [572.51m 263.54m 163.95m 0m] 

[153.36m 144.36m 0m] 

90.00m 

15 [272.11m 665.07m 62.82m 0m] 

[126.67m 117.14m 0m] 

141.89m 

16 [629.36m 189.32m 181.31m 0m] 

[146.02m 142.22m 0m] 

116.15m 

17 [569.76m 269.09m 161.15m 0m] 

[157.22m 149.08m 0m] 

89.91m 

18 [566.49m 273.58m 159.93m 0m] 

[156.31m 149.37m 0m] 

88.42m 

19 [632.95m 188.14m 178.91m 0m] 

[147.73m 142.46m 0m] 

117.03m 
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20 [210.58m 743.53m 45.89m 0m] 

[145.86m 130.88m 0m] 

180.68m 

 

 
Table 4 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Rural Case and Default 

Operation Settings C’ for Different 𝑎CUD Values of CUD Measurements (the symmetrical approximations 

are reported in blue font color and the rural case is included in the TIM OV LV BPL topology database) 

Indicative OV LV BPL Topologies of Table 1 of [1] Rural Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 0 0] 
Branch Line Length Lb =[𝐿b1 0 0] 

[600m 400m 0m 0m] 

[300m 0m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA = [𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 0 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA = [𝐿b1,NNIM−LLA 0 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings 

C’ 

+ 

1 hidden 

layer 

0 [726.55m 251.36m 0m 0m] 

[108.88m 0m 0m] 

103.26m 

1 [748.48m 251.54m 0m 0m] 

[346.36m 0m 0m] 

81.27m 

2 [793.83m 206.16m 0m 0m] 

[202.98m 0m 0m] 

109.91m 

3 [767.26m 246.89m 0m 0m] 

[154.48m 0m 0m] 

101.84m 

4 [735.21m 277.30m 0m 0m] 

[116.69m 0m 0m] 

97.79m 

5 [373.28m 605.60m 0m 0m] 

[16.22m 0m 0m] 

157.75m 

6 [730.68m 269.01m 0m 0m] 

[180.13m 0m 0m] 

83.33m 

7 [772.27m 227.73m 0m 0m] 

[204.96m 0m 0m] 

98.84m 

8 [627.09m 421.38m 0m 0m] 

[155.14m 0m 0m] 

56.29m 

9 [694.73m 302.17m 0m 0m] 

[175.22m 0m 0m] 

69.81m 

10 [706.80m 296.86m 0m 0m] 

[157.79m 0m 0m] 

77.705m 

11 [733.03m 266.97m 0m 0m] 

[41.41m 0m 0m] 

120.87m 

12 [795.07m 204.92m 0m 0m] 

[339.34m 0m 0m] 

105.33m 

13 [788.62m 206.09m 0m 0m] 

[162.14m 0m 0m] 

114.76m 

14 [605.60m 373.28m 0m 0m] 

[16.22m 0m 0m] 

107.75m 

15 [654.23m 374.86m 0m 0m] 

[149.29m 0m 0m] 

61.28m 

16 [764.86m 235.14m 0m 0m] 

[125.68m 0m 0m] 

110.03m 

17 [674.54m 276.29m 0m 0m] 

[53.44m 0m 0m] 

108.00m 
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18 [27]2.63m 317.37m 0m 0m] 

[441.75m 0m 0m] 

69.44m 

19 [877.89m 276.24m 0m 0m] 

[191.15m 0m 0m] 

122.12m 

20 [737.27m 258.02m 0m 0m] 

[152.23m 0m 0m] 

93.22m 

 

 

 According to [1], the adoption of default operation settings that create more 

elaborate versions of the TIM OV LV BPL topology database, such as the default 

operation settings C’ of this Section against the default operation settings B’ of Sec.3.1.1, 

improves the NNIM-LLA approximation performance but the preparation of the TIM OV 

LV BPL topology database, which is assumed in [1] and this companion paper, entails 

prohibitive total duration times when even more elaborate default operation settings need 

to be assumed. With reference to Table 3, the maximum RMSD difference between the 

best values for the suburban case is equal to 92.26m when the default operation settings 

C’ are applied, one hidden layer is assumed and aCUD values range from 1dB to 20dB 

while the respective maximum RMSD difference between the best values is equal to 

137.95m when the default operation settings B’ has been applied in Table 1. Similarly to 

the suburban case, as the rural case is concerned in Table 4, maximum RMSD difference 

between the best values is equal to 93.71m when the default operation settings C’ are 

applied, one hidden layer is assumed and aCUD values range from 1dB to 20dB while the 

respective maximum RMSD difference between the best values is equal to 127.26m 

when the default operation settings B’ has been applied in Table 2. Apart from the 

maximum RMSD difference between the best values, the default operation settings C’ 

also improve the mean RMSD metrics; say, the mean RMSDs between the best values for 

the suburban case of Table 3 and rural case of Table 4 are equal to 114.60m and 96.98m, 

respectively, when the default operation settings C’ are applied, one hidden layer is 

assumed and aCUD values range from 1dB to 20dB while the respective mean RMSDs of 

Tables 1 and 2 are equal to 163.60m and 99.57m when the default operation settings B’ 

has been applied. Therefore, it is evident that the adoption of more elaborate default 

operation settings is a fine countermeasure technique against the measurement 

differences of various aCUD values that anyway enhances the intrinsic mitigation 

characteristics of NNIM-LLA. However, the slight positive impact of the elaborate 

default operation settings on the RMSD metrics is explained by the representativeness of 

the OV LV BPL topologies in the TIM OV LV BPL topology databases that remains 

unaffected either in the suburban case or in rural one [1], [3], [23]. Note that the total 

duration time for preparing both Tables 3 and 4 is equal to 10,048s for the default 

operation settings C’ of the frequency range of 1-30MHz while the respective total 

duration time for the default operation settings C of the frequency range of 3-88MHz was 

equal to 29,364s as reported in [1]. Again, similarly to the default operation settings C 

and B of [1], the total duration time for preparing both Tables 3 and 4 is increased by 

approximately three times in comparison with the total duration time for preparing both 

Tables 1 and 2 and this is clearly due to the operation of the NNIM-LLA as well as the 

involved training, validation and testing phases. 
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3.2 L1PMA and L2WPMA of PMDAM 
 Already been identified in [22], [24], [25], [27], [36], the mitigation performance 

of L1PMA and L2WPMA against measurement differences mainly depends on the 

predefined number of monotonic sections. In accordance with [25], [27], different 

numbers of monotonic sections can be applied depending on the examined BPL topology 

class and the applied aCUD value when deterministic and statistic systems are examined. 

Here, the mitigation performance of L1PMA and L2WPMA against measurement 

differences is assessed when the measurement differences of various aCUD values are 

applied and default operation settings B’ are assumed but PMDAM, which consists of 

piecewise monotonic data approximations, precedes the NNIM-LLA module. Except for 

the mitigation performance, the total duration time of the integration of the default 

operation settings B’, PMDAM and NNIM-LLA is compared against the total duration 

time of the operation of the default operation settings C’ and NNIM-LLA. 

 As the effect of the number of monotonic sections is investigated in L1PMA, in 

Table 5, the maximum RMSD difference between the best values and mean RMSD for 

the suburban case is reported per monotonic section, which ranges from 1 to 20, when 

L1PMA is applied and aCUD values of measurement differences range from 1dB to 20dB. 

In Table 6, similar approximation performance metrics are given but for the rural case. 

Note that the same measurement difference vector with Tables 1 and 2 is here 

superimposed to the amplitudes of the coupling scheme channel transfer functions of the 

suburban and rural cases for all the NNIM-LLA approximation cases. Apart from the 

aforementioned approximation performance metrics, for comparison reason, the 

maximum RMSD difference between the best values and mean RMSD are reported when 

the default operation settings B’ and C’ are applied in each examined case. 

 In Tables 5 and 6, the maximum RMSD difference between the best values and 

the mean RMSD that are lower than the respective values of the default operation settings 

B’ per case are shown in green color while the cases with the lowest maximum RMSD 

difference between the best values are highlighted in yellow color. As the suburban case 

of Table 5 is concerned, L1PMA mainly helps towards the improvement of mean RMSD 

rather than of the maximum RMSD difference between the best values while the opposite 

holds in the rural case of Table 6. In accordance with [25], [27], the careful selection of 

the number of monotonic sections is critical for achieving the measurement difference 

mitigation and this number primarily depends on the examined BPL topology 

complexity; say, for the suburban and rural cases, 20 and 6 monotonic sections have been 

respectively applied in [25], [27]. Due to the higher complexity of the suburban case 

concerning the number of the branches, higher number of monotonic sections is here 

required in contrast with the rural case. Indeed, with reference to Tables 5 and 6, 10 and 6 

monotonic sections achieve the lowest maximum RMSD difference between the best 

values for the suburban and rural case, respectively; the previous values for the 

monotonic sections agree with the concept presented in [25], [27]. 
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Table 5 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Suburban Case and Default 

Operation Settings B’ for Different L1PMA Numbers of Monotonic Sections when 𝑎CUD Values of CUD 

Measurements range from 1dB to 20dB 

L1PMA 

Number 

of 

Monotonic 

Sections 

Maximum RMSD Difference between the 

Best Values 

(m) 

 

(Default Operation Settings B’: 137.95m) 

(Default Operation Settings C’: 92.26m) 

Mean RMSD 

(m)  

 

 

(Default Operation Settings B’: 163.60m) 

(Default Operation Settings C’: 114.60m) 

1 209.74 166.42 

2 213.38 163.84 

3 133.41 164.72 

4 186.07 180.41 

5 186.82 153.33 

6 146.45 173.01 

7 335.68 156.29 

8 202.05 147.61 

9 217.04 159.22 

10 132.31 158.89 

11 193.60 163.39 

12 143.01 165.39 

13 174.36 158.81 

14 188.72 150.15 

15 170.42 164.38 

16 550.68 203.93 

17 191.52 148.08 

18 190.31 155.58 

19 148.37 157.85 

20 180.33 166.42 

 

 

 

Table 6 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Rural Case and Default 

Operation Settings B’ for Different L1PMA Numbers of Monotonic Sections when 𝑎CUD Values of CUD 

Measurements range from 1dB to 20dB 

L1PMA 

Number 

of 

Monotonic 

Sections 

Maximum RMSD Difference between the 

Best Values 

(m) 

 

(Default Operation Settings B’: 127.26m) 

(Default Operation Settings C’: 93.71m) 

Mean RMSD 

(m)  

 

 

(Default Operation Settings B’: 99.57m) 

(Default Operation Settings C’: 96.98m) 

1 100.24 95.82 

2 116.38 97.78 

3 252.16 100.47 

4 178.65 106.13 

5 237.15 89.21 

6 94.16 101.73 

7 128.24 101.48 

8 217.56 105.02 

9 189.85 99.59 

10 224.98 115.85 
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11 98.55 102.35 

12 120.74 90.33 

13 145.04 87.71 

14 181.69 103.53 

15 145.69 98.98 

16 181.15 104.00 

17 120.28 103.75 

18 116.41 104.33 

19 114.11 93.58 

20 144.43 95.82 

 

Similarly to Tables 1 and 3, NNIM-LLA gives approximations of the distribution 

and branch line lengths of the suburban case in Table 7 when the default operation 

settings B’ are adopted, L1PMA of PMDAM with 10 monotonic sections is activated 

prior to the NNIM-LLA and the same 𝑎CUD values of CUD measurements of Tables 1 

and 3 are assumed. Also, the best RMSD value between the approximated original and 

symmetrical OV LV topologies and the respective OV LV BPL suburban topology are 

presented per 𝑎CUD  value. Table 8 is similar to Table 7 but for the rural case when 

L1PMA of PMDAM with 6 monotonic sections is activated. 

 From Tables 7 and 8, it is verified that the L1PMA application may allow better 

mitigation performance of the measurement differences in comparison with the 

performance of only applying default operation settings B’ but a careful selection of 

monotonic sections is required, which is anyway a difficult task when NN algorithms 

follow the PMDAM operation. Conversely, the L1PMA application does not achieve 

better mitigation performance of the measurement differences in comparison with the 

performance of only applying default operation settings C’. But, it should be noted that 

the total duration time for preparing both Tables 7 and 8 is equal to 1416s when L1PMA 

and default operation settings B’ are adopted that is anyway significantly lower than 

10,048s of preparing the respective Tables 3 and 4 when the default operation settings C’ 

are adopted. 
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Table 7 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Suburban Case, Default 

Operation Settings B’ and L1PMA of 10 Monotonic Sections for Different 𝑎CUD Values of CUD 

Measurements (the symmetrical approximations are reported in blue font color and the suburban case is 

included in the TIM OV LV BPL topology database) 

Indicative OV LV BPL Topologies of Table 1 of [1] Suburban Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 0] 
Branch Line Length Lb =[𝐿b1 𝐿b2 0] 

[500m 400m 100m 0m] 

[50m 10m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings 

B’ 

+ 

1 hidden 

layer 

+L1PMA 

(10 

monotonic 

sections) 

0 [36]1.25m 92.91m 195.84m 0m] 

[146.14m 139.60m 0m] 

157.73m 

1 [721.59m 70.38m 208.02m 0m] 

[168.39m 171.17m 0m] 

172.96m 

2 [36]6.27m 78.62m 205.11m 0m] 

[151.49m 148.70m 0m] 

165.03m 

3 [750.48m 34.69m 214.82m 0m] 

[151.82m 149.2m 0m] 

184.82m 

4 [700.04m 99.81m 200.14m 0m] 

[143.47m 141.51m 0m] 

154.08m 

5 [701.93m 100.58m 197.49m 0m] 

[139.43m 143.54m 0m] 

153.89m 

6 [36]7.19m 71.79m 211.02m 0m] 

[145.24m 154.62m 0m] 

167.84m 

7 [211.77m 728.54m 59.69m 0m] 

[155.44m 152.73m 0m] 

178.94m 

8 [36]4.05m 37.94m 248.01m 0m] 

[34.47m 54.02m 0m] 

169.45m 

9 [731.75m 59.54m 208.71m 0m] 

[156.03m 157.09m 0m] 

174.98m 

10 [223.17m 724.06m 52.79m 0m] 

[155.63m 139.29m 0m] 

173.93m 

11 [27]3.94m 70.41m 245.12m 0m] 

[117.71m 127.27m 0m] 

161.18m 

12 [709.64m 85.87m 204.49m 0m] 

[148.06m 147.70m 0m] 

161.30m 

13 [225.25m 723.82m 50.92m 0m] 

[173.68m 145.01m 0m] 

175.78m 

14 [27]9.01m 97.95m 213.04m 0m] 

[189.25m 197.95m 0m] 

166.67m 

15 [265.06m 658.55m 76.39m 0m] 

[143.67m 126.54m 0m] 

143.90m 

16 [36]7.72m 56.28m 225.99m 0m] 

[65.79m 67.21m 0m] 

162.54m 

17 [215.08m 738.84m 46.08m 0m] 

[153.77m 122.19m 0m] 

178.19m 

18 [448.78m 434.41m 116.81m 0m] 

[192.89m 185.16m 0m] 

88.79m 

19 [477.56m 376.06m 146.39m 0m] 

[132.08m 118.15m 0m] 

55.63m 
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20 [200.05m 754.74m 45.21m 0m] 

[170.11m 128.41m 0m] 

187.94m 

 
Table 8 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Rural Case, Default Operation 

Settings B’ and L1PMA of 6 Monotonic Sections for Different 𝑎CUD Values of CUD Measurements (the 

symmetrical approximations are reported in blue font color and the rural case is included in the TIM OV 

LV BPL topology database) 

Indicative OV LV BPL Topologies of Table 1 of [1] Rural Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 0 0] 
Branch Line Length Lb =[𝐿b1 0 0] 

[600m 400m 0m 0m] 

[300m 0m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 0 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA = [𝐿b1,NNIM−LLA 0 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings 

B’ 

+ 

1 hidden 

layer 

+L1PMA 

(6 

monotonic 

sections) 

0 [567.23m 340.47m 0m] 

[43.93m 0m 0m] 

100.14m 

1 [901.25m 174.66m 0m 0m] 

[219.91m 0m 0m] 

145.38m 

2 [799.60m 200.49m 0m 0m] 

[2.95m 0m 0m] 

154.87m 

3 [658.73m 339.81m 0m 0m] 

[128.19m 0m 0m] 

72.30m 

4 [777.12m 246.59m 0m 0m] 

[167.58m 0m 0m] 

101.73m 

5 [730.17m 287.42m 0m 0m] 

[186.08m 0m 0m] 

78.01m 

6 [742.86m 257.14m 0m 0m] 

[142.86m 0m 0m] 

96.74m 

7 [814.28m 185.72m 0m 0m] 

[157.14m 0m 0m] 

126.63m 

8 [640.86m 363.36m 0m 0m] 

[127.33m 0m 0m] 

68.48m 

9 [661.92m 420.99m 0m 0m] 

[113.90m 0m 0m] 

74.55m 

10 [889.51m 149.91m 0m 0m] 

[190.40m 0m 0m] 

150.41m 

11 [694.01m 293.40m 0m 0m] 

[225.18m 0m 0m] 

60.71m 

12 [709.27m 260.91m 0m 0m] 

[187.81m 0m 0m] 

79.17m 

13 [815.67m 184.49m 0m 0m] 

[81.02m 0m 0m] 

141.88m 

14 [743.26m 249.32m 0m 0m] 

[59.21m 0m 0m] 

120.24m 

15 [707.03m 354.37m 0m 0m] 

[130.14m 0m 0m] 

77.82m 

16 [704.34m 303.33m 0m 0m] 

[122.22m 0m 0m] 

86.05m 

17 [779.61m 217.71m 0m 0m] 

[183.32m 0m 0m] 

106.30m 
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18 [743.38m 192.28m 0m 0m] 

[219.24m 0m 0m] 

100.17m 

19 [772.08m 216.12m 0m 0m] 

[138.79m 0m 0m] 

113.02m 

20 [750.02m 250.11m 0m 0m] 

[298.27m 0m 0m] 

80.16m 

 

 As L2WPMA of PMDAM is concerned, similarly to Table 5 of L1PMA, in 

Tables 9, the maximum RMSD difference between the best values and mean RMSD for 

the suburban case is reported per monotonic section, which ranges from 1 to 20, when 

L2WPMA and default operation settings B’ are applied and aCUD values of measurement 

differences range from 1dB to 20dB. Similarly to Table 6 of L1PMA, in Table 10, similar 

approximation performance metrics are given but for the rural case when L2WPMA and 

default operation settings B’ are applied. Similarly to Tables 6 and 7, the maximum 

RMSD difference between the best values and the mean RMSD that are lower than the 

respective values of the default operation settings B’ per case are shown in green color 

while the cases with the lowest maximum RMSD difference between the best values are 

highlighted in yellow color in Tables 9 and 10. 

 

 
Table 9 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Suburban Case and Default 

Operation Settings B’ for Different L2WPMA Numbers of Monotonic Sections when 𝑎CUD Values of CUD 

Measurements range from 1dB to 20dB 

L1PMA 

Number 

of 

Monotonic 

Sections 

Maximum RMSD Difference between the 

Best Values 

(m) 

 

(Default Operation Settings B’: 137.95m) 

(Default Operation Settings C’: 92.26m) 

Mean RMSD 

(m)  

 

(Default Operation Settings B’: 

163.60m) 

(Default Operation Settings C’: 

114.60m) 

1 238.68 161.43 

2 133.91 166.17 

3 166.44 150.33 

4 503.18 165.03 

5 179.32 161.39 

6 153.12 169.48 

7 166.76 166.20 

8 112.38 150.10 

9 112.74 156.24 

10 140.70 179.77 

11 178.16 159.96 

12 53.48 173.48 

13 248.88 169.05 

14 141.12 169.79 

15 181.97 163.25 

16 213.50 156.58 

17 156.26 185.69 

18 102.97 166.37 

19 137.95 170.37 

20 111.46 161.43 
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Table 10 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Rural Case and Default 

Operation Settings B’ for Different L2WPMA Numbers of Monotonic Sections when 𝑎CUD Values of CUD 

Measurements range from 1dB to 20dB 

L1PMA 

Number 

of 

Monotonic 

Sections 

Maximum RMSD Difference between the 

Best Values 

(m) 

 

(Default Operation Settings B’: 127.26m) 

(Default Operation Settings C’: 93.71m) 

Mean RMSD 

(m)  

 

(Default Operation Settings B’: 99.57m) 

(Default Operation Settings C’: 96.98m) 

1 142.50 79.87 

2 189.54 115.42 

3 135.63 110.10 

4 317.46 109.18 

5 94.38 108.50 

6 187.90 115.80 

7 187.20 113.90 

8 164.55 89.29 

9 147.96 100.75 

10 235.47 105.82 

11 171.38 109.40 

12 117.72 109.60 

13 162.39 125.97 

14 872.65 147.28 

15 233.67 125.19 

16 219.60 92.21 

17 127.40 106.80 

18 128.80 88.18 

19 127.26 99.68 

20 98.61 79.87 

 

 In Table 9 where the suburban case is investigated, L2WPMA helps towards the 

improvement of either the maximum RMSD difference between the best values (i.e. 7 out 

of 20 cases examined) or the mean RMSD (i.e. 9 out of 20 cases examined) when the 

careful selection of monotonic sections is made. Actually, in 3 examined cases of Table 

9, the application of L2WPMA achieves to improve both the maximum RMSD difference 

between the best values and the mean RMSD. Similar performance results are observed 

in the rural case of Table 10. As the numbers of monotonic sections with the lowest 

maximum RMSD difference between the best values, 12 and 5 monotonic sections are 

concerned for the suburban and rural cases, respectively, while 20 and 6 monotonic 

sections have been respectively applied in [25], [27]. Already been mentioned and 

identified in [25], [27], L1PMA and L2WPMA are both piecewise monotonic data 

approximations and components of the PMDAM that present similar behavior concerning 

the selection of the monotonic sections per examined OV LV BPL topology despite their 

theoretical definition differences; say, higher numbers of monotonic sections are 

expected when OV LV BPL topologies of more and shorter branches are encountered.  

Similarly to Tables 7 and 8, NNIM-LLA gives approximations of the distribution 

and branch line lengths of the suburban case in Table 11 when the default operation 

settings B’ and L2WPMA with 12 monotonic sections are applied and the same 𝑎CUD 

values of CUD measurements of Tables 1, 3 and 7 are assumed. Also, the best RMSD 

value between the approximated original and symmetrical OV LV topologies and the 
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respective OV LV BPL suburban topology are presented per 𝑎CUD value. Table 12 is 

similar to Table 11 but for the rural case when the default operation settings B’ and 

L2WPMA of 5 monotonic sections are applied. 

 

 
Table 11 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Suburban Case, Default 

Operation Settings B’ and L2WPMA of 12 Monotonic Sections for Different 𝑎CUD Values of CUD 

Measurements (the symmetrical approximations are reported in blue font color and the suburban case is 

included in the TIM OV LV BPL topology database) 

Indicative OV LV BPL Topologies of Table 1 of [1] Suburban Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 𝐿3 0] 
Branch Line Length Lb =[𝐿b1 𝐿b2 0] 

[500m 400m 100m 0m] 

[50m 10m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 𝐿3,NNIM−LLA 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA =
[𝐿b1,NNIM−LLA 𝐿b2,NNIM−LLA 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings B’ 

+ 

1 hidden 

layer 

+L2WPMA 

(12 

monotonic 

sections) 

0 [188.04m 771.39m 40.57m 0m] 

[150.63m 128.97m 0m] 

193.86m 

1 [36]5.07m 71.50m 213.43m 0m] 

[149.51m 142.19m 0m] 

166.65m 

2 [752.06m 36.74m 211.20m 0m] 

[157.03m 145.04m 0m] 

184.22m 

3 [214.46m 743.14m 42.40m 0m] 

[172.75m 149.09m 0m] 

184.01m 

4 [700.94m 76.41m 222.65m 0m] 

[139.91m 151.19m 0m] 

163.95m 

5 [213.49m 740.01m 46.51m 0m] 

[143.54m 147.21m 0m] 

180.53m 

6 [181.03m 782.64m 36.23m 0m] 

[154.65m 145.29m 0m] 

200.53m 

7 [213.55m 745.46m 40.99m 0m] 

[166.60m 122.28m 0m] 

181.69m 

8 [224.62m 722.36m 53.03m 0m] 

[167.81m 113.32m 0m] 

171.76m 

9 [36]5.06m 74.02m 210.93m 0m] 

[141.77m 148.54m 0m] 

165.80m 

10 [233.92m 704.59m 61.48m 0m] 

[169.93m 145.51m 0m] 

168.10m 

11 [36]0.63m 80.57m 208.80m 0m] 

[146.69m 147.52m 0m] 

163.23m 

12 [223.02m 723.78m 53.21m 0m] 

[173.72m 141.00m 0m] 

175.75m 

13 [223.15m 736.73m 40.11m 0m] 

[173.50m 127.07m 0m] 

178.32m 

14 [690.93m 115.86m 193.21m 0m] 

[139.01m 142.52m 0m] 

147.05m 

15 [36]4.54m 78.36m 207.10m 0m] 

[145.28m 154.86m 0m] 

165.19m 

16 [212.69m 738.15m 49.17m 0m] 

[166.44m 118.70m 0m] 

179.22m 
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17 [213.24m 728.84m 57.92m 0m] 

[162.19m 146.09m 0m] 

178.58m 

18 [222.91m 722.87m 54.23m 0m] 

[161.27m 152.80m 0m] 

175.62m 

19 [734.82m 40.68m 224.50m 0m] 

[164.86m 148.24m 0m] 

182.07m 

20 [707.92m 97.29m 194.79m 0m] 

[152.97m 147.45m 0m] 

157.36m 

 

 
Table 12 

Distribution and Branch Line Length Approximations of NNIM-LLA for the Rural Case, Default Operation 

Settings B’ and L2WPMA of 5 Monotonic Sections for Different 𝑎CUD Values of CUD Measurements (the 

symmetrical approximations are reported in blue font color and the rural case is included in the TIM OV 

LV BPL topology database) 

Indicative OV LV BPL Topologies of Table 1 of [1] Rural Case RMSD Notes 

Distribution Line Length L =[𝐿1 𝐿2 0 0] 
Branch Line Length Lb =[𝐿b1 0 0] 

[600m 400m 0m 0m] 

[300m 0m 0m] 

- - 

NNIM-LLA 

Approximated Distribution Line Length 

𝐋NNIM−LLA =
[𝐿1,NNIM−LLA 𝐿2,NNIM−LLA 0 0] 
Approximated Branch Line Length 

𝐋b,NNIM−LLA = [𝐿b1,NNIM−LLA 0 0] 
 

𝒂𝐂𝐔𝐃 of CUD 

Measurements 

(dB) 

  Default 

Operation 

Settings B’ 

+ 

1 hidden 

layer 

+L2WPMA 

(5 

monotonic 

sections) 

0 [726.69m 283.12m 0m 0m] 

[178.69m 0m 0m] 

79.67m 

1 [725.80m 274.20m 0m 0m] 

[151.94m 0m 0m] 

87.48m 

2 [501.71m 497.64m 0m 0m] 

[181.40m 0m 0m] 

68.93m 

3 [779.14m 238.37m 0m 0m] 

[66.48m 0m 0m] 

126.91m 

4 [538.48m 210.80m 0m 0m] 

[135.55m 0m 0m] 

97.56m 

5 [811.12m 177.45m 0m 0m] 

[27].65m 0m 0m] 

145.22m 

6 [699.43m 270.02m 0m 0m] 

[189.01m 0m 0m] 

74.74m 

7 [801.41m 199.45m 0m 0m] 

[187.32m 0m 0m] 

155.56m 

8 [823.41m 763.60m 0m 0m] 

[254.69m 0m 0m] 

162.21m 

9 [794.92m 272.25m 0m 0m] 

[171.80m 0m 0m] 

100.53m 

10 [762.50m 237.50m 0m 0m] 

[150m 0m 0m] 

103.73m 

11 [732.72m 269.18m 0m 0m] 

[32.17m 0m 0m] 

123.32m 

12 [780.04m 220.83m 0m 0m] 

[143.68m 0m 0m] 

112.73m 

13 [575.14m 559.29m 0m 0m] 

[76.26m 0m 0m] 

104.23m 

14 [836.89m 124.36m 0m 0m] 

[301.10m 0m 0m] 

137.37m 
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15 [773.05m 223.89m 0m 0m] 

[7.56m 0m 0m] 

144.66m 

16 [425.06m 375.05m 0m 0m] 

[268.79m 0m 0m] 

67.83m 

17 [704.19m 295.81m 0m 0m] 

[86.19m 0m 0m] 

98.15m 

18 [656.53m 309.71m 0m 0m] 

[102.55m 0m 0m] 

84.80m 

19 [728.78m 271.18m 0m 0m] 

[4.14m 0m 0m] 

131.32m 

20 [36]2.50m 287.50m 0m 0m] 

[150m 0m 0m] 

82.65m 

 

From Tables 11 and 12, it can be generalized that the application of piecewise 

monotonic data approximations may allow better mitigation performance of the 

measurement differences in comparison with the performance of only applying default 

operation settings B’ but this performance cannot surpass the one of only applying more 

elaborate default operation settings, such as default operation settings C’. Known the 

number of monotonic sections, which remains a challenge anyway, the main advantage of 

deploying piecewise monotonic data approximations against measurement differences is 

their light total duration time aggravation; the total duration time for preparing both 

Tables 11 and 12 is equal to 1,423s for L2WPMA and default operation settings B’ that is 

almost equal to the duration time of applying L1PMA and default operation settings B’ 

but it is again significantly lower than 10,048s of preparing the respective Tables 3 and 4 

when the default operation settings C’ are adopted. 

 

 

3.3 Piecewise Monotonic Data Approximations against Measurement Differences 
in a NN Environment - Discussion 

 To graphically validate the mitigation performance of the application of L1PMA 

against the CUD measurement differences when various aCUD values are applied, which 

has been reported in Tables 5-12, the best RMSD values of the NNIM-LLA 

approximations for the suburban case are plotted in Fig. 1(a) with respect to the aCUD of 

the applied CUD measurements when the default operation settings B’, the default 

operation settings C’ and the combined operation of L1PMA of 10 monotonic sections 

with the default operation settings B’ are applied. In Fig. 1(a), Tables 1, 3 and 7 are 

exploited for curving the plots of the default operation settings B’, the default operation 

settings C’ and the combined application of L1PMA with the default operation settings 

B’, respectively, when one hidden layer is applied. In Fig. 1(b), the same plot with Fig. 

1(a) is given but for the rural case by exploiting Tables 2, 4 and 8 for the application of 

the default operation settings B’, the default operation settings C’ and the combined 

operation of L1PMA of 6 monotonic sections with the default operation settings B’, 

respectively. As the application of L2WPMA against the CUD measurement differences 

is concerned, the best RMSD values of the NNIM-LLA approximations for the suburban 

case are plotted in Fig. 2(a) with respect to the aCUD of the applied CUD measurements 

when the default operation settings B’, the default operation settings C’ and the combined 

operation of L2WPMA of 12 monotonic sections with the default operation settings B’ 

are applied. In Fig. 2(a), Tables 1, 3 and 11 are exploited for curving the plots of the 
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default operation settings B’, the default operation settings C’ and the combined 

application of L2WPMA with the default operation settings B’, respectively, when one 

hidden layer is applied. In Fig. 2(b), the same plot with Fig. 2(a) is given but for the rural 

case by exploiting Tables 2, 4 and 12 for the application of the default operation settings 

B’, the default operation settings C’ and the combined operation of L2WPMA of 5 

monotonic sections with the default operation settings B’, respectively. 

 In Figs. 1 and 2, the mitigation performance of the default operation settings B’, 

the default operation settings C’ and the combined operation of L1PMA with the default 

operation settings B’ is graphically synopsized. Concluding this companion paper and 

with reference to Figs. 1 and 2, the following remarks are pointed out: 

 The maximum RMSD difference between the best values has been applied as the 

criterion or the main mitigation performance metric against the CUD 

measurement differences of various aCUD values for assessing the default 

operation settings B’, the default operation settings C’ and the combined 

operation of L1PMA / L2WPMA with the default operation settings B’. This 

performance metric has been chosen so as to focus on the stability of the NNIM-

LLA approximations thus bypassing the high number of executions [1]. Figs. 1 

and 2 validate that the combined operation of L1PMA / L2WPMA with the 

default operation settings B’ achieves more stable NNIM-LLA approximations in 

comparison with the ones of simply applying the default operation settings B’ 

with small total duration time increase. However, the selection of the appropriate 

number of monotonic sections in both piecewise monotonic data approximation 

methods remains a challenging issue for the different BPL topologies and BPL 

topology classes. Conversely, Figs. 1 and 2 also verify that the combined 

operation of L1PMA / L2WPMA with the default operation settings B’ achieves 

less stable NNIM-LLA approximations in comparison with the ones of simply 

applying the default operation settings C’. Apart from the better maximum RMSD 

differences between the best values achieved, the default operation settings C’ 

allow better mean RMSDs for the NNIM-LLA approximations but significantly 

higher total duration times when different segments of the TIM OV LV BPL 

topology database are required to be prepared in each case. 

 Already been identified, other mitigation performance metrics against the CUD 

measurement differences of various aCUD values that should be taken into account 

during the assessment of various methodologies are the mean RMSD and the total 

duration time. In fact, the main mitigation performance metric against the CUD 

measurement differences of various aCUD values could be the mean RMSD when 

the accuracy of NNIM-LLA approximations is of interest rather than the NNIM-

LLA approximation stability of this companion paper. Anyway, a fair 

compromise of all the aforementioned mitigation performance metrics is 

promoted during the assessment in the future works. 
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Figure 1.  Best RMSD values of NNIM-LLA approximations with respect to aCUD of the applied 

CUD measurements when the default operation settings B’, the default operation settings C’ and 
the combined operation of the default operation settings B’ with L1PMA are applied and one 
hidden layer is assumed. (a) Suburban case -10 monotonic sections for L1PMA-. (b) Rural case -
6 monotonic sections for L1PMA-. 
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Figure 2.  Best RMSD values of NNIM-LLA approximations with respect to aCUD of the applied 

CUD measurements when the default operation settings B’, the default operation settings C’ and 
the combined operation of the default operation settings B’ with L2WPMA are applied and one 
hidden layer is assumed. (a) Suburban case -12 monotonic sections for L2WPMA-. (b) Rural 
case -5 monotonic sections for L2WPMA-. 
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 The main constraint of successfully applying piecewise monotonic data 

approximations, such as L1PMA or L2WPMA of this companion paper, against 

measurement differences during the operation of NN methodologies is the right 

selection of monotonic sections. Already been identified in [25], [26], [28], [36], 

[37], [40], [43], the higher complexity of the examined BPL topologies 

concerning the number and the length of the branches requires higher number of 

monotonic sections by the piecewise monotonic data approximations due to the 

occurred number and depth of notches across the coupling scheme transfer 

function theoretical numerical results from DHM that are further contaminated 

with the measurement differences. Although the aforementioned correlation 

between the complexity of BPL topology classes and the number of monotonic 

sections still occurs during the combined operation of DHM, PMDAM and 

NNIM-LLA of this companion, further study and investigation are required 

towards the use of the adaptive number of monotonic sections, which has been 

proposed in [25], [27]. 

 Piecewise monotonic data approximation methods, such as L1PMA and 

L2WPMA, have theoretically been presented and experimentally verified in  

[28]-[31], [44]-[46]. Until now, when piecewise monotonic data approximation 

methods have been applied as the output module they have successfully mitigated 

the measurement differences in transmission and distribution BPL networks. In 

this companion paper, piecewise monotonic data approximation methods, which 

are contained in the PMDAM module, are located prior to the NNIM-LLA 

module and feed the latter module with the approximated coupling scheme 

channel transfer function results. However, the applied representative sets of the 

TIM OV LV BPL topology database, the assumed default operation settings and 

the operation specifications of the MATLAB NN program of [38], [39] mainly 

affect the NNIM-LLA approximation performance thus limiting the PMDAM 

performance improvement. 

 

 

4. Conclusions 
 

 In this companion paper, the mitigation role of the piecewise monotonic data 

approximation methods against CUD measurement differences of various αCUD values 

has been assessed when NNIM-LLA approximations are expected for OV LV BPL 

topologies. In fact, PMDAM module, which contains L1PMA and L2WPMA that are the 

piecewise monotonic data approximations of interest in this companion paper, acts as the 

intermediate module after the DHM module and before the NNIM-LLA module. In 

accordance with the existing literature of piecewise monotonic data approximation 

methods, the crucial issue of the right selection of the number of monotonic sections of 

L1PMA and L2WPMA has been recognized while the correlation of the number of 

monotonic sections with the complexity of the examined OV LV BPL topology classes 

has also been revealed in this companion paper. It has been shown that the right selection 

of the applied number of monotonic sections in L1PMA and L2WPMA may improve 

either the stability of NNIM-LLA approximations through the improvement of the 

maximum RMSD difference between the best values or the overall performance of 

NNIM-LLA approximations through the improvement of the mean RMSD. At the same 

time, the total duration time of NNIM-LLA operation is not significantly affected by the 
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operation of PMDAM. However, it has been verified that the default operation settings, 

which affect the preparation of the TIM OV LV BPL topology database and the NNIM-

LLA operation, are the dominant factor of the NNIM-LLA approximation performance; 

say, the best tuning of L1PMA and L2WPMA can improve the NNIM-LLA 

approximation performance for given default operation settings but it cannot improve the 

NNIM-LLA approximation performance in comparison with the one of applying more 

elaborated default operation settings and this is due to: (i) the PMDAM position prior to 

the NNIM-LLA module; and (ii) the NN definition and operation inside the NNIM-LLA 

module. 
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This paper explores the significant role of technological advancements, 
strategic policies, and collaborations in driving Africa towards a more 
sustainable future. It highlights how the continent's increasing adoption of 
innovative technologies, such as renewable energy solutions and digital 
infrastructure, coupled with well-crafted strategic policies and 
international collaborations, is transforming various sectors and fostering 
a sustainable future. These advancements have not only improved 
access to basic services like healthcare and education but have also 
created new opportunities for economic growth and job creation. The 
paper emphasizes the importance of ongoing collaborations between 
African countries and international partners in sharing knowledge, 
expertise, and resources to accelerate sustainable development efforts 
across the continent. The paper discusses different international 
organizations that have collaborated with and assisted Africa in the areas 
of technical innovation, finance, and knowledge exchange necessary to 
achieve a full-scale sustainable future. Despite their humanitarian efforts, 
Africa faces tremendous hurdles in attaining a sustainable future. These 
challenges range from a lack of access to technology and digital 
infrastructure in rural areas to difficulties in harnessing technological 
advancements due to infrastructure and connectivity constraints. These 
challenges have hindered Africa's ability to fully leverage the potential of 
technical innovation and digital solutions for a sustainable future. Limited 
financial resources and investment opportunities have further impeded 
progress in achieving the necessary infrastructure and connectivity 
upgrades. The continent is vulnerable to the impacts of climate change, 
which further hinders its development progress. Therefore, it is crucial for 
ongoing collaborations between African countries and international 
partners to address these challenges collectively and work towards long-
term solutions for a sustainable future in Africa.   
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1. Introduction  
  

 In recent years, Africa has witnessed a remarkable surge in technological 

innovations that are not only transforming the continent but also driving it towards a 

more sustainable future. These innovations have the potential to address some of the 
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pressing challenges faced by African nations, such as access to clean energy [1], efficient 

agriculture practices [2], and improved healthcare systems [3]. By harnessing the power 

of technology, Africa is paving the way for sustainable development. These technological 

innovations are not only benefiting African nations but also attracting global attention [4] 

and investment [5]. With increased collaboration and support, Africa has the opportunity 

to further accelerate its progress towards a more sustainable future and become a model 

for other regions facing similar challenges [6]. With advancements in renewable energy 

technologies, African nations are able to tap into their vast natural resources [7] and 

provide clean and affordable energy solutions to their populations [8]. The use of smart 

farming techniques and precision agriculture is enabling farmers to maximize crop yields 

while minimizing environmental impact. These technological advancements not only 

improve food security [7] but also promote sustainable land management practices [7]. 

The use of mobile technologies has enhanced agricultural practices by providing farmers 

with real-time weather updates [8], market prices, and access to financial services for 

loans and insurance [8]. This has resulted in increased productivity and income for 

farmers, ultimately contributing to food security [7] and poverty reduction in rural 

communities[8].  

 The adoption of digital platforms and mobile technologies in Africa has 

revolutionized access to financial services, allowing for greater financial inclusion and 

economic empowerment. This has led to increased entrepreneurship and job opportunities, 

contributing to overall economic growth in the region. These technological advancements 

have also facilitated improved healthcare delivery through telemedicine and remote 

monitoring, especially in rural areas with limited access to medical facilities. The use of 

mobile technologies has also transformed the education sector in Africa. With access to 

online learning platforms and educational apps, students in remote areas can now access 

quality education and resources, bridging the educational gap between urban and rural 

areas [9]. This has not only improved literacy rates but also enhanced the skills and 

knowledge of individuals, leading to a more skilled workforce and increased productivity 

in various industries.  

These advancements have the potential to address some of Africa's pressing 

challenges, such as access to clean energy [10], financial inclusion, food security, 

healthcare delivery, and efficient resource management. By embracing these technologies, 

Africa can not only improve the quality of life for its citizens but also contribute to global 

efforts to mitigate climate change [11] and achieve sustainable development goals [12]. 

The adoption of these technologies can also foster economic growth and create job 

opportunities in Africa. By investing in renewable energy sources [13] and promoting 

green industries [14], African countries can reduce their dependence on fossil fuels [15] 

and attract investments from international organizations and businesses that prioritize 

sustainability [16]. This will not only strengthen Africa's economy but also position it as 

a leader in sustainable development on the global stage.  

We will also distinctively explore the role of strategic policies in driving Africa 

towards a more sustainable future [17]. As the continent faces various challenges such as 

climate change [18], rapid urbanization [8], and resource depletion [8], it is crucial to 

examine how well-designed policies [19] can effectively address these issues and pave 

the way for long-term sustainability [20]. By analysing successful case studies and 

examining key strategies implemented by African nations, we aim to highlight the 

importance of strategic policies in shaping a brighter future for Africa and its people [21]. 

These policies should prioritize renewable energy sources, promote sustainable 
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agriculture practices, and encourage investment in green technologies [22]. It is essential 

for these policies to prioritize education and awareness programs that empower 

communities to actively participate in sustainable practices [23]. Fostering partnerships 

between governments [24], private sectors [25], and international organizations can 

ensure the successful implementation [26] and monitoring of these policies [27, 28], 

leading to a more resilient and prosperous Africa.   

 In this paper, the seven proposed strategic policies driving Africa toward a more 

sustainable future. By engaging in these efforts, African countries can work towards 

achieving the Sustainable Development Goals and creating a more sustainable future for 

all. Additionally, it is important to involve local communities and indigenous peoples in 

decision-making processes to ensure their voices are heard and their rights are respected 

in sustainable development initiatives.    

 We will also explore the significant role that collaborations and partnerships play 

in driving Africa towards a more sustainable future. With the continent facing numerous 

environmental, social, and economic challenges, it has become increasingly evident that 

no single entity can address these issues alone. Therefore, this paper aims to highlight the 

power of collective action and cooperation in achieving sustainable development goals 

across Africa. By examining successful collaborations and partnerships in various sectors 

such as renewable energy, conservation, education, and entrepreneurship, we will shed 

light on the transformative potential of working together towards a common goal. These 

partnerships not only leverage resources and expertise but also foster knowledge sharing 

and innovation, leading to more effective and impactful solutions. Ultimately, by 

promoting collaboration and cooperation, Africa can overcome its challenges and pave 

the way for a sustainable future that benefits all its people. Foster collaborations among 

various stakeholders, including the African Union's Agenda 2063, the United Nations 

Sustainable Development Goals, the African Renewable Energy Initiative, the Great 

Green Wall Initiative, the African Circular Economy Alliance, the African Union's 

Climate Change Strategy, and the Renewable Energy for Africa program, are proposed to 

propel Africa toward a more sustainable future. These initiatives aim to address key 

challenges such as poverty, inequality, climate change, and energy access in Africa. By 

leveraging the collective efforts of these stakeholders, Africa can unlock its vast potential 

for renewable energy, promote circular economy practices, and build resilience to climate 

change impacts.  

This paper also proposes that it is crucial to engage with international partners and 

organizations to leverage resources and expertise in promoting sustainable technologies 

in Africa. This can be achieved through partnerships with institutions such as The African 

Development Bank (AfDB), the United Nations Development Programme (UNDP), 

Google, Microsoft, the United Nations Environment Programme (UNEP), the World 

Wildlife Fund (WWF), and the World Bank to secure funding and technical assistance for 

sustainable energy projects across the continent [29]. By collaborating with these 

international partners and organizations, African countries can access financial support 

and knowledge transfer to implement renewable energy solutions. This not only helps in 

reducing greenhouse gas emissions but also enhances energy security and fosters 

economic growth in the region. These partnerships can also facilitate knowledge 

exchange and capacity building, allowing African countries to learn from successful 

experiences in other regions and adapt them to their specific contexts. Engaging with 

international partners can help African countries access global networks and platforms 
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that promote sustainable technologies, enabling them to showcase their own innovations 

and attract further investment in the sector.  

Generally, we will explore how technological advancements, strategic policies, 

and collaborations are playing a crucial role in driving Africa towards a more sustainable 

future. By examining the various initiatives and efforts undertaken by governments, 

organizations, and individuals across the continent, we will shed light on the 

transformative potential of these factors in addressing pressing environmental challenges 

and promoting socio-economic development. We will analyse the key opportunities and 

challenges that arise from this journey towards sustainability, highlighting the need for 

continued innovation and cooperation to ensure that progress is sustained and amplified. 

This exploration will also delve into the importance of education and awareness in 

driving sustainable practices, as well as the role of technology and research in finding 

innovative solutions. In addition, we will examine the role of government policies and 

regulations in creating an enabling environment for sustainable development. This 

includes exploring how governments can incentivize businesses and individuals to adopt 

sustainable practices through tax incentives, subsidies, and other economic measures.  

We also examine areas the African Development Bank (AfDB), the United 

Nations Development Programme (UNDP), Google, Microsoft, the United Nations 

Environment Programme (UNEP), the World Wildlife Fund (WWF), and the World 

Bank have all determined that Africa's future is poised to become more sustainable as a 

result of significant technological advancements. In spite of these, there are still 

challenges that need to be addressed in order to fully harness the potential of technology 

for sustainable development in Africa. These difficulties are the hallmarks of the research 

question in this paper. This paper aims to explore the specific challenges that hinder the 

full utilization of technology for sustainable development in Africa. By identifying and 

addressing these obstacles, it is possible to unlock the true potential of technological 

advancements and ensure a more sustainable future for the continent. Thus, the major 

research question of this study is: what are the potential factors impeding Africa's 

progress toward a more sustainable future, despite technological advancements? By 

understanding these factors, policymakers and stakeholders can develop targeted 

strategies and interventions to overcome them. Additionally, this research will contribute 

to the existing body of knowledge on sustainable development in Africa and provide 

insights for future policy decisions and investments in technology.  

 
 
2. Approach 
 
 This section investigates seven reputable international technological organizations 

that have recognized that Africa is moving toward a more sustainable future as a result of 

technological advancements, strategic policies, and collaborations, as documented in our 

recent research findings [29].  These organizations have acknowledged Africa's efforts in 

harnessing renewable energy sources such as solar and wind power, which are 

contributing to the continent's sustainable development goals. They have commended 

Africa's focus on digital innovation and connectivity, which is driving economic growth 

and improving access to essential services for its population. These organizations include 

Google, Microsoft, the World Bank, the United Nations Environment Programme 

(UNEP), the World Wildlife Fund (WWF), the African Development Bank (AfDB), and 

the United Nations Development Programme (UNDP).  
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Why do the authors of this study select these international technological 

organizations as the ideal entities to recognize Africa's progress toward a more 

sustainable future as a result of technological advancements? The World Bank and the 

United Nations Development Programme (UNDP) are considered the best organizations 

to acknowledge Africa's sustainable future due to their extensive experience and expertise 

in global development issues. With their vast networks and resources, these organizations 

have been actively involved in supporting African countries in implementing sustainable 

technologies and promoting inclusive growth. Their recognition carries significant weight 

in the international community, lending credibility to Africa's progress towards 

sustainability. These organizations have a proven track record of successfully 

implementing sustainable projects in various sectors, such as renewable energy, 

agriculture, and healthcare. Their expertise in navigating complex challenges and finding 

innovative solutions makes them invaluable partners in Africa's journey towards a 

sustainable future. Furthermore, their collaborations with local communities and 

governments ensure that the initiatives are tailored to the specific needs and aspirations of 

African nations, fostering long-term development and resilience. By leveraging their 

extensive network and resources, these organizations are able to mobilize funding and 

technical expertise to support the implementation of sustainable projects. Their 

commitment to capacity building and knowledge sharing empowers local communities to 

take ownership of these initiatives, ensuring their long-term success and impact.  

Another prominent international technological group that has recognized Africa's 

advancement towards a more sustainable future is Google. Google has been actively 

investing in various initiatives across the continent, such as providing internet access to 

remote areas through projects like Project Loon and supporting local entrepreneurs 

through programs like Google for Startups Africa. These efforts highlight Google's belief 

in the transformative power of technology to drive sustainable development in Africa. By 

leveraging its expertise in technology and innovation, Google aims to bridge the digital 

divide in Africa and empower communities with access to information and opportunities. 

Through partnerships with local governments and organizations, Google is working 

towards creating a more inclusive and connected Africa, paving the way for economic 

growth and social progress.  Another notable international technological group 

acknowledging Africa's potential for sustainable development is Microsoft. Microsoft has 

been working closely with African governments and organizations to provide digital 

skills training and empower local communities. Their initiatives, such as the Africa 

Development Center and the 4Afrika Initiative, aim to foster innovation, create job 

opportunities, and address social challenges through technology. Through the Africa 

Development Center, Microsoft is not only investing in talent and innovation but also 

supporting local startups and entrepreneurs. By providing access to resources and 

mentorship, they are helping to build a thriving tech ecosystem in Africa. Additionally, 

the 4Afrika Initiative focuses on bridging the digital divide by providing affordable 

access to technology and internet connectivity, ensuring that more Africans can 

participate in the digital economy and benefit from its opportunities.  By collaborating 

with local partners and investing in infrastructure, Microsoft is actively contributing to 

Africa's journey towards a more sustainable future.  

The African Development Bank (AfDB) has been instrumental in financing and 

supporting various sustainable development projects across the continent. Through its 

investments in renewable energy, agriculture, and infrastructure, the AfDB has helped 

create jobs, improve access to clean energy, and enhance food security in Africa. This not 
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only benefits the local communities but also contributes to global efforts to combat 

climate change and promote sustainable development worldwide. The AfDB's 

commitment to sustainable development is evident in its efforts to promote gender 

equality and empower women in Africa. By providing financial support and technical 

assistance to women-led businesses and initiatives, the AfDB is helping to bridge the 

gender gap and foster inclusive economic growth. These initiatives not only have a 

positive impact on the lives of women but also contribute to overall social and economic 

development in the region.  

For instance, the United Nations Environment Programme (UNEP) and the World 

Wildlife Fund (WWF) have collaborated with African nations to develop innovative 

conservation initiatives, such as the Great Green Wall project. This initiative aims to 

combat desertification and promote sustainable land management practices across the 

Sahel region, demonstrating Africa's commitment to environmental preservation. 

Additionally, UNEP and WWF have supported capacity-building efforts in Africa, 

empowering local communities and governments to take ownership of their sustainable 

development agenda and drive positive change at the grassroots level. These capacity-

building efforts have resulted in the implementation of various sustainable development 

projects, such as renewable energy installations and water conservation programs. By 

empowering local communities and governments, Africa is fostering a sense of 

ownership and responsibility towards environmental preservation, leading to long-term 

positive impacts on the region's ecosystems and natural resources. In addition, these 

capacity-building efforts have also led to increased awareness and education on 

sustainable practices, promoting a shift towards more environmentally friendly lifestyles. 

As a result, local communities are now actively involved in decision-making processes 

and are taking proactive measures to protect their natural surroundings. This holistic 

approach to development not only benefits the environment but also enhances the overall 

well-being and resilience of African communities in the face of climate change and other 

environmental challenges.  

 

 
3. Prominent International Organizations Recognition of Africa's 

Advancement towards a Sustainable Future 
 

3.1 Technological Advancement Paves the Way for Africa's Sustainable Future 
 The African Development Bank (AfDB), the United Nations Development 

Programme (UNDP), Google, Microsoft, the United Nations Environment Programme 

(UNEP), the World Wildlife Fund (WWF), and the World Bank have all determined that 

Africa's future is poised to become more sustainable as a result of significant 

technological advancements [29]. These organizations recognize that the continent's 

adoption of innovative technologies holds immense potential for addressing key 

challenges such as poverty [30], inequality[31], and environmental degradation [32]. By 

leveraging these advancements, Africa can unlock new opportunities for economic 

growth [33], improve social well-being [34], and protect its natural resources [35]. The 

integration of innovative technologies can enhance the continent's resilience to climate 

change and promote sustainable development practices [36]. This collaborative effort 

between the African Development Bank (AfDB), the United Nations Development 

Programme (UNDP), Google, Microsoft, the United Nations Environment Programme 

(UNEP), the World Wildlife Fund (WWF), and the World Bank aims to support Africa in 
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harnessing the power of technology to create a more sustainable and prosperous future 

for its people. According to the six selected organizations detailed in Nwokolo et al. [29], 

substantial technological developments are set to make Africa's future more sustainable 

include:   

 

3.1.1 Improved Access to Education 

 In recent years, the proliferation of mobile devices and internet connectivity in 

Africa has revolutionized access to educational resources. With the help of smartphones 

and tablets, Africans can now easily access online courses, e-books, and educational 

videos from anywhere, even in remote areas with limited infrastructure [37]. This has not 

only contributed to increased literacy rates but has also empowered individuals to acquire 

new skills and knowledge [38], ultimately creating a more skilled workforce that can 

drive economic growth and development in the region. In addition, the availability of 

online educational resources has also fostered a culture of lifelong learning [39] in Africa. 

Individuals can now pursue higher education degrees or acquire specialized skills through 

online platforms, expanding their career opportunities and contributing to personal 

growth. Furthermore, the accessibility of educational resources has opened up avenues 

for collaboration and knowledge sharing among African students and educators, 

facilitating cross-cultural exchanges and fostering innovation in various fields [40]. 

Moreover, the availability of educational resources has played a crucial role in bridging 

the education gap in Africa. With online platforms, individuals in remote areas can now 

access quality education and receive training that was previously inaccessible to them. 

This has not only empowered individuals but has also contributed to the overall 

development and progress of the continent. According to World Bank statistics, the 

number of internet users in Africa has increased significantly over the past decade, 

reaching approximately 453 million users in 2019 [41]. According to the World Bank, 

this information shows that internet access has a positive impact on education because it 

has increased the literacy rate of African countries from 52% in 2010 to 65% in 2019 [41]. 

 

3.1.2 Enhanced Healthcare Services 

 Telemedicine and mobile health applications have revolutionized healthcare 

delivery by bridging the gap between patients and healthcare providers in remote areas 

[42]. Through telemedicine, individuals living in underserved regions can access medical 

consultations [43], receive diagnoses [44], and even undergo remote monitoring of their 

health conditions [45]. This not only saves time and money for patients who would 

otherwise have to travel long distances for medical care but also allows healthcare 

professionals to reach a wider patient population, ultimately improving overall health 

outcomes in these areas. Mobile health applications provide convenient access to 

healthcare information and resources [46]. These apps allow users to track their 

symptoms, manage medications, and even connect with healthcare providers through 

virtual consultations. This technology empowers individuals to take control of their own 

health [47] and make informed decisions about their care [48], regardless of their location 

or access to traditional healthcare facilities. According to World Bank statistics, 

improved healthcare services as a result of technological applications in Africa have 

decreased the mortality rate by 10% in the past decade [41]. Additionally, these apps 

have also helped bridge the healthcare gap in rural areas, where access to medical 

professionals is limited. These technological applications have revolutionized healthcare 

delivery by providing remote consultations, telemedicine services, and access to medical 
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information through mobile devices. This has not only saved lives but also empowered 

individuals to actively participate in managing their health and seeking timely medical 

assistance, ultimately leading to better health outcomes in African countries.  

 

3.1.3 Increased Agricultural Productivity 

 Precision farming techniques and advanced machinery have revolutionized 

agriculture in Africa, enabling farmers to optimize their use of resources such as water, 

fertilizers, and pesticides [8]. By employing precision planting and irrigation systems, 

farmers can ensure that crops receive the exact amount of nutrients and water they need, 

reducing waste and maximizing yields. Furthermore, advanced machinery like GPS-

guided tractors and drones allows for more efficient land management and pest control, 

minimizing crop damage and increasing overall productivity [8]. As a result of these 

technological advancements, African farmers have been able to increase their crop yields 

and improve their overall agricultural productivity. This has not only helped in 

addressing food security challenges but has also contributed to economic growth in the 

region [7]. Additionally, the adoption of these technologies has empowered farmers by 

providing them with valuable data and insights, enabling them to make informed 

decisions and optimize their farming practices for long-term sustainability. According to 

the World Bank, agricultural productivity on the African continent increased between 

2010 and 2020 as a result of climate change [41]. This can be attributed to the utilization 

of advanced technologies such as precision agriculture, which has helped farmers 

overcome the adverse effects of climate change and improve their crop yields. Moreover, 

the adoption of these technologies has also attracted investment in the agricultural sector, 

creating employment opportunities and boosting economic development in Africa.  

 

3.1.4 Expanded Financial Inclusion 

 The use of mobile banking and digital payment platforms in Africa has 

revolutionized the way people access financial services. By providing convenient and 

secure ways to transfer money, make payments, and manage their finances, these 

technologies have empowered millions of Africans who previously had limited or no 

access to traditional banking services. As a result, the reliance on cash transactions has 

significantly reduced, leading to increased transparency, efficiency, and financial 

inclusion. This shift towards digital financial services has not only improved the lives of 

individuals but has also played a crucial role in driving economic growth and 

development in Africa. With increased access to financial services, individuals and 

businesses can now participate more actively in the formal economy, access credit 

facilities, and make investments. This has led to job creation, increased productivity, and 

overall economic stability in the region.  

Digital financial services have also enabled governments to better track and 

monitor financial transactions, reducing the risk of corruption and promoting good 

governance. Furthermore, the availability of digital financial services has fostered 

financial inclusion by reaching previously underserved populations, such as those in rural 

areas or without traditional banking infrastructure. This has empowered individuals to 

save money, manage their finances more effectively, and build a foundation for long-term 

economic growth. Additionally, the use of digital platforms for financial transactions has 

also facilitated cross-border trade and increased economic integration within Africa and 

with the global economy. The World Bank predicts that a rapid increase in digital 

financial services in Africa could contribute to a 3% increase in the continent's GDP by 
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2025 [41]. This growth is expected to create new job opportunities and attract foreign 

investments, further stimulating economic development.  

The adoption of digital financial services has the potential to reduce poverty and 

inequality by providing access to credit and insurance products, enabling individuals and 

businesses to invest in education, healthcare, and other essential needs.  They also 

predicted that access to digital financial services in Africa could contribute an additional 

$3.7 trillion to the continent's GDP by 2025 [41]. This growth is driven by the 

convenience and efficiency of digital transactions, which have reduced the cost and time 

involved in conducting business across borders. The increased financial inclusion has 

also opened up opportunities for entrepreneurship and innovation, as individuals now 

have access to capital and resources that were previously out of reach. This has led to the 

emergence of new businesses and industries, creating jobs and stimulating economic 

growth. Additionally, digital financial services have also improved financial transparency 

and accountability, reducing the risk of corruption and promoting a more stable business 

environment in Africa.  

 

3.1.5 Increased  Job Opportunities 

 The digital revolution has enabled the rise of online marketplaces and e-

commerce platforms, allowing individuals and businesses to reach a global customer base. 

This has led to the creation of new job roles in areas such as online retail management, 

logistics, and customer support. Additionally, the demand for IT professionals and digital 

marketers has surged as companies seek to establish their online presence and effectively 

market their products or services. These employment opportunities have not only 

provided income for individuals but also stimulated economic growth by attracting 

investments in technology infrastructure and promoting innovation in the digital space. 

As companies expand their online operations, they require robust technology systems and 

networks, leading to increased investments in data centers, cloud computing, and 

cybersecurity. This has not only created jobs in these sectors but also encouraged 

advancements in technology and improved connectivity worldwide.  

The growth of online operations has also led to an increase in demand for skilled 

professionals in fields such as software development, digital marketing, and e-commerce. 

This has resulted in a positive ripple effect on the overall economy, as individuals with 

these skills are able to find employment opportunities and contribute to the growth of 

various industries. Advancements in technology and improved connectivity have 

facilitated global collaboration and communication, allowing businesses to expand their 

reach and tap into new markets around the world. The rise of remote work and flexible 

work arrangements has allowed professionals in these fields to work from anywhere, 

increasing their job satisfaction and work-life balance. This has also led to the emergence 

of a gig economy, where individuals can take on freelance projects and diversify their 

income streams.  

As a result, the overall economy has become more dynamic and resilient, with a greater 

emphasis on innovation and entrepreneurship. According to Bank World, the digital 

revolution has the potential to increase Africa's employment rate by 20–30% by 2030 

against the backdrop of high unemployment rates [41]. This is due to the fact that digital 

technologies can bridge the gap between job seekers and employers, making it easier for 

individuals to find work opportunities. The digital revolution has also facilitated the 

growth of remote work, allowing individuals in rural or underserved areas to access job 

opportunities that were previously unavailable to them. This is due to the fact that digital 
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technologies can create new job opportunities and improve productivity in various sectors, 

such as agriculture, healthcare, and education. Additionally, the digital revolution can 

also bridge the gap between urban and rural areas, providing equal access to employment 

opportunities for individuals in remote regions.  

 

3.1.6 Improved Skill Sets 

 The adoption of digital technologies has also led to an improvement in the skill 

sets of Africans, as they have had to learn how to use and navigate these platforms 

effectively. This has opened up new opportunities for Africans to participate in the global 

digital economy and has helped bridge the digital divide between Africa and other 

regions. The increased use of digital technologies has sparked innovation and 

entrepreneurship in Africa, with many individuals and businesses leveraging these tools 

to create innovative solutions to local challenges and drive economic growth. These 

digital platforms have also facilitated the growth of e-commerce in Africa, allowing 

businesses to reach a wider customer base and expand their market presence. The use of 

digital technologies has improved access to education and healthcare services in remote 

areas, contributing to the overall development and empowerment of communities across 

the continent. Digital technologies have played a crucial role in promoting financial 

inclusion in Africa. Mobile banking and digital payment systems have made it easier for 

individuals to access and manage their finances, especially those who were previously 

excluded from traditional banking services. This has not only increased financial stability 

but also fostered entrepreneurship and economic opportunities for individuals in 

underserved communities. The adoption of digital technologies has enhanced 

communication and collaboration among different sectors, enabling more efficient 

coordination and cooperation in addressing social and environmental challenges in Africa. 

The increased access to digital technologies has also facilitated the growth of e-

commerce and online marketplaces, allowing small businesses in Africa to reach a wider 

customer base and expand their operations. The use of digital platforms has streamlined 

administrative processes and reduced paperwork, leading to cost savings and increased 

productivity for organizations across various industries. According to the World 

Intellectual Property Organization (WIPO), the use of digital technologies has also led to 

an increase in intellectual property filings in Africa [49]. This indicates a growing 

recognition of the importance of protecting innovative ideas and creations, which can 

further stimulate economic growth and investment in the region. The digitization of 

information has improved access to education and knowledge sharing, empowering 

individuals and communities to learn and develop new skills that can contribute to 

sustainable development in Africa. However, the World Bank predicts that the digital 

divide in Africa may widen if the necessary infrastructure and policies are not put in 

place. This could hinder the potential benefits of digitization, such as increased 

connectivity and access to markets, for marginalized communities and remote areas. 

Therefore, it is crucial for governments and stakeholders to prioritize investments in 

digital infrastructure and promote inclusive policies to ensure equal opportunities for all 

Africans in the digital era.  

 

3.1.7 Examples of Technological Innovations Driving Africa toward a More Sustainable 

Future 

 One data-based example of how advancements in technology are assisting 

Africa's transition to a more sustainable future is the use of solar power. According to the 
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International Renewable Energy Agency (IRENA), Africa has the highest solar 

irradiation levels globally, making it an ideal region for harnessing solar energy [50]. 

With the help of technological advancements in solar panels and energy storage systems, 

African countries are increasingly adopting solar power as a clean and sustainable energy 

source. For instance, in 2019, Egypt inaugurated the world 's largest solar park, the 

Benban Solar Park, which has a capacity of 1.8 gigawatts and is expected to reduce 

carbon emissions by 2 million tons annually [50]. This project not only demonstrates 

Africa's commitment to renewable energy but also showcases its potential to become a 

global leader in solar power generation. As more African countries invest in solar 

infrastructure and develop policies to promote renewable energy, the continent is poised 

to make significant progress towards a greener and more sustainable future. 

For example, in South Africa, the Renewable Energy Independent Power 

Producer Procurement Program (REIPPPP) has been critical in attracting private 

investment and accelerating the deployment of solar energy projects. This program has 

successfully added over 6,000 MW of renewable energy capacity to the country's grid, 

reducing carbon emissions and creating job opportunities in the process [29]. As other 

African nations follow suit and implement similar initiatives, the continent's solar power 

potential will continue to be unlocked, paving the way for a cleaner and more prosperous 

future. In Nigeria, solar parks such as the 75 MW Katsina Solar Power Plant have been 

established, further contributing to the country's renewable energy goals [29]. These solar 

parks not only provide clean and sustainable electricity to remote areas but also stimulate 

economic growth by attracting investments and creating employment opportunities in the 

solar industry. With the continuous development of solar parks, Nigeria is on track to 

achieve its target of generating 30% of its electricity from renewable sources by 2030 

[29].  

The use of mobile banking is one data-driven example of how technological 

advancements are assisting Africa's transition to a more sustainable future. In Africa, 

mobile banking has become increasingly popular, allowing individuals to access financial 

services and make transactions using their mobile phones. This technology has not only 

improved financial inclusion but also reduced the reliance on traditional brick-and-mortar 

banks, making it easier for people in remote areas to manage their finances and contribute 

to economic growth. Additionally, mobile banking has also helped reduce the 

environmental impact by minimizing the need for paper-based transactions and physical 

infrastructure. In South Africa, mobile banking technology is being utilized to provide 

financial services to the unbanked population, who previously had limited access to 

traditional banking services. This has empowered individuals to save money, access 

credit, and engage in other financial activities that were previously out of reach. 

Moreover, mobile banking has also played a crucial role in promoting entrepreneurship 

and small business growth by enabling easy and secure payment solutions for customers. 

As a result, it has contributed to the overall economic development of the country.   

Numerous banks in South Africa, including Standard Bank, Absa, Capitec, First 

National Bank, and Nedbank, are using mobile banking technology to provide financial 

services to the unbanked population. These banks have introduced mobile banking apps 

that allow users to open accounts, transfer money, and make payments using their 

smartphones. This has greatly improved financial inclusion in the country, as individuals 

who were previously excluded from the formal banking sector now have access to a 

range of financial services. Additionally, mobile banking has also helped reduce the cost 
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of financial transactions for both customers and businesses, leading to increased 

efficiency and productivity in the economy.  

In Nigeria, mobile banking technology is being utilized to provide financial 

services to the unbanked population by numerous banks, including Guaranty Trust Bank, 

Access Bank, First Bank, United Bank for Africa, Ecobank, Fidelity Bank, and Zenith 

Bank. These banks have developed user-friendly mobile banking applications that allow 

individuals to open bank accounts, transfer funds, and make payments using their mobile 

phones. This has significantly expanded the reach of financial services in the country, 

especially in rural areas where traditional banking infrastructure is limited. Furthermore, 

these mobile banking solutions have also facilitated the growth of small businesses by 

providing them with convenient and secure means of accepting payments from customers.  

Equity Bank, Safaricom's M-Pesa, Airtel Money, KCB M-Pesa, Tala, and T-Kash by 

Telkom Kenya are just a few of the banks in Kenya using mobile banking technology to 

offer financial services to the unbanked population. These mobile banking platforms have 

not only increased financial inclusion but have also revolutionized the way people 

manage their money. With just a mobile phone, individuals can now access a range of 

financial services, such as savings accounts, loans, and insurance, empowering them to 

take control of their finances and improve their economic well-being.  

Precision agriculture practices, like remote sensing and data analytics, that assist 

farmers in optimizing their crop production, leading to higher yields and less negative 

environmental impact, are one data-based example of how technological advancements 

are assisting Africa's transition to a more sustainable future. These techniques allow 

farmers to monitor soil conditions, weather patterns, and crop health in real-time, 

enabling them to make informed decisions and minimize the use of water, fertilizers, and 

pesticides. As a result, not only do these advancements contribute to a more sustainable 

agricultural sector in Africa, but they also support food security and economic growth in 

the region. By utilizing precision agriculture technologies, farmers can precisely apply 

resources such as water and fertilizers to specific areas of their fields, ensuring efficient 

usage and minimizing waste. Additionally, these advancements enable farmers to detect 

and address potential crop diseases or pest infestations early on, preventing significant 

yield losses and reducing the need for chemical interventions. Ultimately, the integration 

of these technologies promotes long-term sustainability in African agriculture while 

simultaneously boosting productivity and profitability for farmers.  

In Kenya, precision agriculture techniques, such as remote sensing and data 

analytics, that help farmers optimize their crop production, leading to increased yields 

and reduced environmental impact, are employed by numerous agricultural firms, 

including Twiga Foods and UjuziKilimo. These companies provide farmers with real-

time data on soil moisture levels, weather patterns, and crop health, allowing them to 

make informed decisions about irrigation and pest control. By implementing precision 

agriculture practices, these firms are not only helping farmers increase their productivity 

and profitability but also reducing the overall environmental footprint of agriculture in 

Kenya. Others include AgriTech Solutions and Green Solutions Ltd. These companies 

provide farmers with real-time data on soil moisture levels, nutrient content, and pest 

infestations, allowing them to make informed decisions about irrigation and pesticide 

application. By adopting precision agriculture techniques, farmers in Kenya have been 

able to improve their crop yields by up to 30% while reducing water usage by 40% [41]. 

These advancements not only benefit the farmers themselves but also contribute to the 

overall sustainability and resilience of the agricultural sector in Kenya.  
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The Internet of Things (IoT) technology is one data-based illustration of how 

technological advancements are facilitating Africa's transition to a more sustainable 

future. In South Africa, the Internet of Things (IoT) technology is being utilized to 

monitor and optimize energy consumption by numerous corporations, including mining 

companies such as Anglo American and manufacturing plants like Sasol.  Others include 

transportation companies like Transnet and telecommunications providers like MTN. By 

using IoT technology, these companies are able to track and analyse their energy usage in 

real-time, identifying areas of inefficiency and implementing strategies to reduce their 

carbon footprint. This not only helps them save costs but also contributes to the overall 

goal of achieving a more sustainable future by minimizing energy waste and promoting 

responsible resource management.  Others include Exxaro Resources and Gold Fields in 

the mining sector, and ArcelorMittal South Africa and Nampak in the manufacturing 

industry. These companies have implemented IoT technology to track energy usage, 

identify inefficiencies, and make data-driven decisions to reduce their environmental 

impact and improve operational efficiency. By leveraging IoT devices and real-time data 

analytics, these corporations can effectively manage their energy consumption, leading to 

cost savings and a more sustainable approach to resource utilization.  

Several businesses in Algeria, including mining firms like Algerian Mining 

Corporation and Energy Solutions Ltd., are using the Internet of Things (IoT) technology 

to monitor and optimize energy consumption. These companies have implemented IoT 

sensors and monitoring systems to track energy usage in real-time, allowing them to 

identify areas of inefficiency and implement targeted solutions. This data-driven 

approach has not only resulted in significant cost savings but has also helped reduce their 

carbon footprint by optimizing energy utilization. Additionally, by analysing the 

collected data, these corporations can make informed decisions about equipment 

upgrades or process improvements, further enhancing their operational efficiency and 

sustainability efforts. Others include manufacturing companies like Algerian 

Manufacturing Solutions and logistics companies such as Algerian Logistics Services. 

These corporations are implementing IoT solutions to track and analyse energy usage 

patterns, identify areas of inefficiency, and make data-driven decisions to reduce energy 

waste. By doing so, they not only save costs but also contribute to a greener and more 

sustainable future for Algeria's resource utilization.  

Several corporations in Nigeria, including mining companies such as Shell and 

Chevron, are using Internet of Things (IoT) technology to monitor and optimize energy 

consumption. These mining companies are using IoT devices to collect real-time data on 

energy usage, allowing them to identify areas of high consumption and implement 

strategies to reduce waste. By leveraging IoT technology, these corporations are not only 

improving their operational efficiency but also minimizing their environmental impact by 

reducing energy consumption and emissions. This demonstrates the potential of IoT in 

promoting sustainable practices across various industries in Nigeria. Others include 

manufacturing companies like Dangote Group and telecommunications companies such 

as MTN. These companies are leveraging IoT solutions to remotely monitor their energy 

usage in real-time, identify areas of high consumption, and implement energy-saving 

measures. This not only helps them reduce their carbon footprint but also leads to 

significant cost savings in the long run.  

Many Egyptian companies, including mining firms like the Egyptian Mining 

Company and oil and gas firms like Petro Egypt, are using Internet of Things (IoT) 

technology to monitor and optimize energy consumption. By implementing IoT solutions, 
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these companies can track their energy usage patterns, detect inefficiencies, and make 

data-driven decisions to improve energy efficiency. This not only reduces their 

environmental impact but also enhances their operational efficiency and reduces overall 

costs. Others include manufacturing companies, such as Egypt Aluminium and Egyptian 

Cement, and telecommunications companies like Telecom Egypt. By leveraging IoT 

technology, these companies are able to gather data on their energy usage patterns, 

identify inefficiencies, and make informed decisions to reduce their overall energy 

consumption. This not only benefits the environment but also improves their operational 

efficiency and reduces operational costs.    

The Internet of Things (IoT) technology is being used by many businesses in 

Morocco, including mining firms like phosphate mining firms, to monitor and optimize 

energy consumption. By implementing IoT devices, these companies can track their 

energy usage in real-time, allowing them to identify areas of high consumption and 

implement strategies to reduce waste. This not only helps to conserve energy resources 

but also enhances the sustainability of their operations and reduces their carbon footprint. 

Others include the OCP Group. Through IoT devices and sensors, these companies are 

able to track energy usage in real-time, identify areas of high consumption, and 

implement strategies to reduce waste. This not only helps them meet sustainability goals 

but also saves them significant costs in the long run. Additionally, IoT technology allows 

for remote monitoring and control of energy systems, enabling proactive maintenance 

and minimizing downtime for these companies.  

Numerous corporations in Kenya, including mining companies such as Kenya 

Gold Mines Ltd, are using Internet of Things (IoT) technology to monitor and optimize 

energy consumption.  By using IoT technology, these mining companies are able to track 

their energy usage in real-time and identify areas where energy efficiency can be 

improved. This not only helps them reduce their carbon footprint but also allows them to 

save on energy costs, ultimately increasing their profitability. Moreover, IoT sensors can 

detect potential equipment failures or malfunctions, allowing for timely repairs and 

preventing costly downtime in mining operations. Others include manufacturing 

companies like Kenya Steel Industries Ltd. and telecommunications companies such as 

Safaricom. These companies are leveraging IoT technology to track energy usage in real-

time, identify areas of inefficiency, and implement energy-saving measures. By doing so, 

they are not only reducing their environmental impact but also improving their 

operational efficiency and ultimately increasing their profitability..  

 

3.2 Africa's Strategic Policies: Catalysts for a Sustainable Future 
 The World Bank, the African Development Bank (AfDB), the United Nations 

Development Programme (UNDP), Google, Microsoft, the United Nations Environment 

Programme (UNEP), the World Wildlife Fund (WWF), and the World Bank have 

identified several key reasons why they concluded that Africa's strategic policies have 

played a crucial role in propelling the continent towards a more sustainable future. These 

organizations have highlighted that Africa's strategic policies have successfully promoted 

economic growth, social development, and environmental sustainability. Additionally, 

they have emphasized that these policies have fostered regional integration, strengthened 

governance systems, and encouraged investment in renewable energy sources. 

Furthermore, these organizations have pointed out that Africa's strategic policies have 

effectively addressed key challenges such as poverty reduction, job creation, and access 

to basic services. Moreover, they have underscored the positive impact of these policies 
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on promoting peace and stability within the continent, leading to increased regional 

cooperation and collaboration.  In this section, the following strategic policies are 

considered.   

 

3.2.1 Prioritize Sustainable Development 

 Africa's strategic policies prioritize sustainable development by placing a strong 

emphasis on economic growth that is environmentally friendly. This approach recognizes 

the need to balance economic progress with the preservation of natural resources and 

ecosystems. By promoting green industries, renewable energy sources, and sustainable 

agriculture practices, Africa aims to achieve long-term economic growth while 

minimizing negative environmental impacts. Additionally, these policies also prioritize 

investments in education and capacity-building to ensure that the benefits of sustainable 

development are shared equitably across the continent. This approach not only addresses 

immediate environmental concerns but also acknowledges the importance of social 

development. By investing in education and capacity-building, Africa aims to empower 

its citizens with the knowledge and skills necessary to participate in and contribute to a 

sustainable economy. Moreover, by prioritizing equitable distribution of benefits, Africa 

strives to reduce inequalities and promote social cohesion, fostering a more inclusive and 

resilient society.  

According to environmental assessment by international organizations like the 

United Nations Environment Programme (UNEP), sustainable development in Africa 

requires a holistic approach that takes into account the interdependence of social, 

economic, and environmental factors [51]. This means addressing not only education and 

capacity-building but also promoting sustainable agriculture, renewable energy, and 

conservation efforts to protect natural resources. By integrating these principles into their 

development strategies, African countries can work towards achieving long-term 

sustainability and ensuring a better future for their people. Furthermore, it is crucial for 

African countries to prioritize the inclusion of marginalized communities and empower 

women in their development efforts. By ensuring equal access to education, healthcare, 

and economic opportunities, these countries can create a more inclusive and equitable 

society. Additionally, fostering strong partnerships with international organizations and 

neighbouring countries can facilitate knowledge sharing and resource mobilization, 

ultimately strengthening Africa's collective efforts towards sustainable development.  

 

3.2.2 Effective Environmental Governance Frameworks 

 African nations have long acknowledged the significance of preserving their rich 

biodiversity and natural resources for the benefit of future generations. They understand 

that these resources are not only crucial for their own economic development but also 

play a vital role in maintaining the overall health of the planet. Therefore, they have 

implemented various conservation measures and policies to safeguard their unique 

ecosystems and ensure the sustainable use of their natural resources. These efforts 

include establishing protected areas, promoting sustainable tourism, and supporting local 

communities in their conservation efforts. Additionally, African nations have also 

actively participated in international agreements and collaborations to address global 

environmental challenges and promote the conservation of biodiversity on a larger scale. 

The Central African nation is currently receiving funds as a result of preserving its forest 

ecosystem, which is home to a rich diversity of plant and animal species. These funds not 

only support the local economy but also incentivize the government and communities to 
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continue their conservation efforts. This financial support enables the nation to invest in 

research, education, and infrastructure for sustainable resource management, ensuring the 

long-term preservation of its natural resources. It is also recognized as a vital carbon sink 

and is home to numerous endangered species. These funds are being used to further 

invest in sustainable development projects, improve local livelihoods, and strengthen 

conservation efforts. This not only benefits the nation's economy but also contributes to 

global efforts to mitigate climate change and preserve biodiversity. Furthermore, the 

investment in sustainable development projects and conservation efforts in this country 

has led to the creation of green jobs and increased income opportunities for local 

communities. By promoting sustainable resource management practices, the country is 

setting an example for other nations to follow, encouraging a global shift towards a more 

environmentally conscious future. The World Bank predicts that between 2010 and 2030, 

the country's sustainable development efforts could lead to a significant reduction in 

greenhouse gas emissions and a halt in the loss of biodiversity [41]. This not only 

benefits the country itself but also contributes to global efforts to combat climate change 

and protect ecosystems. Additionally, the country's commitment to sustainable 

development has attracted international investments and partnerships, further 

strengthening its position as a leader in environmental conservation and sustainable 

growth.  

 

3.2.3 Embraced Renewable Energy Sources 

 African countries have embraced renewable energy sources, such as solar and 

wind power, to reduce their reliance on fossil fuels and mitigate the effects of climate 

change. This shift towards renewable energy has not only helped diversify their energy 

mix but has also created new job opportunities and improved access to electricity in 

remote areas. Comparatively to sub-Saharan African nations, North Africa places a 

higher priority on this. North Africa has been at the forefront of renewable energy 

adoption, with countries like Morocco and Egypt leading the way. These nations have 

implemented ambitious renewable energy projects, such as large-scale solar power plants 

and wind farms, to meet their growing energy demands while reducing carbon emissions. 

Additionally, North African countries have also attracted significant investments in the 

renewable energy sector, further driving economic growth and technological 

advancements in the region. However, in sub-Saharan African nations, the adoption of 

renewable energy has been slower due to various challenges. Limited access to financing, 

inadequate infrastructure, and political instability have hindered the development and 

implementation of large-scale renewable energy projects in these countries. Despite these 

obstacles, some sub-Saharan African nations, like Kenya and South Africa, have made 

notable progress in promoting renewable energy through policies and incentives. Efforts 

are being made to address the barriers and accelerate the transition towards clean energy 

in the region. IRENA reports predict that sub-Saharan Africa has the potential to generate 

more than 1,000 gigawatts of renewable energy by 2030, which could meet the region's 

growing electricity demand and contribute to economic growth [50]. However, North 

Africa has the potential to generate an even larger amount of renewable energy due to its 

favourable climate conditions and vast solar resources. Countries like Morocco and Egypt 

have already made significant investments in solar power plants and are leading the way 

in the region's renewable energy transition. With continued support and collaboration, 

North Africa has the potential to become a major exporter of clean energy to 

neighbouring countries and beyond. It is crucial for governments and international 
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organizations to continue supporting and investing in renewable energy projects in order 

to unlock this potential and overcome the existing challenges.  

 

3.2.4 Promote Inclusive and Equitable Access to Clean Water and Sanitation, 

Transforming Lives 

 Africa's strategic policies prioritize the development and implementation of 

sustainable water management systems, ensuring that all citizens have access to clean 

water and sanitation facilities. These policies focus on building infrastructure, such as 

water treatment plants and sewage systems, in both urban and rural areas. Africa actively 

promotes community engagement and participation in decision-making processes related 

to water and sanitation, ensuring that the needs of marginalized groups are addressed. By 

prioritizing inclusive access to clean water and sanitation, Africa's strategic policies 

contribute to improved health outcomes and overall well-being for its population. Access 

to clean water and proper sanitation reduces the risk of waterborne diseases, such as 

cholera and diarrhea, which are major causes of illness and death in many African 

countries. Furthermore, these policies also have a positive impact on education and 

economic development, as children are able to attend school regularly without falling ill 

and adults can focus on productive activities instead of spending time searching for clean 

water sources. According to World Bank statistics, in Sub-Saharan Africa, over 40% of 

the population lacks access to clean water and proper sanitation facilities [41]. This lack 

of access not only hinders health outcomes but also perpetuates the cycle of poverty, as 

families are forced to allocate a significant portion of their income towards medical 

expenses and water procurement. Additionally, investing in clean water and sanitation 

infrastructure can lead to job creation and stimulate economic growth through increased 

agricultural productivity and tourism opportunities. The World Bank also predicted that 

improving access to clean water and sanitation can reduce the prevalence of waterborne 

diseases such as diarrhea and cholera, which are major causes of morbidity and mortality 

in developing countries like Africa. This, in turn, can improve overall productivity and 

educational outcomes, as children are less likely to miss school due to illness.  

 

3.2.5 Progress in Waste Management and Recycling Initiatives 

 Africa's has made significant progress in waste management and recycling 

initiatives, further contributing to its sustainable development goals. For instance, many 

African countries have implemented innovative waste-to-energy projects, harnessing the 

potential of organic waste to generate electricity and reduce reliance on fossil fuels. 

Additionally, community-led recycling programs have been established, creating 

employment opportunities and promoting a circular economy by transforming waste 

materials into valuable resources. These countries include Kenya, where the government 

has launched the "Waste to Wealth" program, encouraging citizens to separate their waste 

and providing incentives for recycling [29]. This initiative has not only reduced the 

amount of waste going to landfills but has also created new businesses in the recycling 

industry. Another example is Rwanda, which has implemented a nationwide ban on 

single-use plastic bags and promotes the use of biodegradable alternatives. These efforts 

have significantly reduced plastic pollution and increased awareness about sustainable 

waste management practices among its citizens. Most African countries could transition 

to a future that is more sustainable, with less waste and a thriving recycling industry, if 

progress is made in this direction. By adopting similar initiatives and policies, African 

nations can not only address the environmental challenges posed by waste but also 
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stimulate economic growth and create job opportunities in the recycling sector. 

Additionally, it would contribute to global efforts to combat plastic pollution and 

promote sustainable development across the continent.  

 

3.2.6 Examples of Strategic Policies Driving Africa toward a More Sustainable Future 

 The use of solar energy is one evidence-based illustration of how strategic 

policies are aiding Africa's transition to a more sustainable future. Solar power has 

become increasingly popular in Africa due to strategic policies that promote its adoption. 

For instance, in Morocco, the Noor Ouarzazate Solar Complex is one of the world's 

largest solar power plants, providing clean energy to over a million people [29]. This 

project not only reduces greenhouse gas emissions but also creates job opportunities and 

stimulates economic growth in the region. Strategic policies in Africa are also focusing 

on other renewable energy sources, such as wind and hydroelectric power. These policies 

aim to diversify the energy mix and reduce dependency on fossil fuels, ultimately 

contributing to a more sustainable future for the continent. Additionally, these initiatives 

are attracting foreign investments and fostering international collaborations, further 

accelerating Africa's transition towards a greener and more prosperous future.  

Strategic policies in Africa are also focusing on promoting renewable energy 

sources other than solar power. For example, countries like Kenya and Ethiopia are 

investing heavily in wind power projects, harnessing the strong winds in their regions to 

generate clean electricity. These initiatives not only contribute to a more sustainable 

future but also enhance energy security and reduce dependence on fossil fuels. In addition 

to wind power, hydropower is another renewable energy source that African countries are 

exploring. With abundant rivers and water resources, countries like Zambia and 

Mozambique are developing large-scale hydropower projects to meet their growing 

energy demands. By diversifying their renewable energy portfolio, these countries are not 

only reducing greenhouse gas emissions but also creating new job opportunities and 

attracting foreign investments in the clean energy sector.  

In southern Africa, the Lesotho Highlands Water Project is a prime example of 

harnessing hydropower for both energy generation and water supply. This project has not 

only helped meet South Africa's electricity needs but has also improved access to clean 

drinking water for millions of people in the region. Additionally, the development of 

hydropower infrastructure in South Africa has the potential to strengthen regional 

cooperation and promote sustainable economic growth across the region. In Nigeria, 

Kamji Dam and the Zungeru hydropower project are notable examples of harnessing 

hydropower for energy generation [29]. These projects have significantly increased 

Nigeria's electricity capacity and have the potential to reduce reliance on fossil fuels, 

contributing to a more sustainable energy mix. Furthermore, the development of 

hydropower infrastructure in Nigeria can create job opportunities and stimulate economic 

development in rural areas, improving the livelihoods of local communities.  

 

3.3 Role of Cooperation in Advancing Africa's Sustainable Future 
 The World Bank, the African Development Bank (AfDB), the United Nations 

Development Programme (UNDP), Google, Microsoft, the United Nations Environment 

Programme (UNEP), the World Wildlife Fund (WWF), and the World Bank have all 

determined that significant technological advancements are poised to make Africa's 

future more sustainable. They cited three main grounds for concluding that cooperation 

between African governments and international organizations or private sector entities 
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has played an important role in moving the continent toward a more sustainable future. 

By implementing innovative technologies such as renewable energy solutions, Africa can 

reduce its reliance on fossil fuels and mitigate the environmental impact of traditional 

energy sources. This transition to cleaner energy not only helps combat climate change 

but also creates new job opportunities and stimulates economic growth in the renewable 

energy sector. Investing in digital infrastructure can improve access to information, 

education, and healthcare services, empowering communities and driving economic 

development across the continent. Moreover, promoting sustainable agriculture practices 

can enhance food security and reduce the vulnerability of African nations to climate-

related shocks. By adopting techniques such as agroforestry and precision farming, 

Africa can increase crop yields while minimizing the use of chemical inputs and 

preserving natural resources. These efforts not only contribute to environmental 

sustainability but also strengthen the resilience of rural communities and foster inclusive 

economic growth. The World Bank record reveals that Africa has made significant 

progress in implementing these practices. For example, in Ethiopia, the use of 

agroforestry has helped farmers increase their crop yields by up to 128% [29]. 

Additionally, precision farming techniques have been successfully adopted in countries 

like Kenya, resulting in improved soil fertility and reduced water usage. These success 

stories demonstrate the potential for African nations to achieve food security and climate 

resilience through sustainable agricultural practices.  

The World Bank and other international organizations working to advance 

sustainability in Africa noted that collaboration between African governments and non-

governmental or for-profit organizations has been crucial in guiding the continent toward 

a more sustainable future. By working together, these partnerships have been able to 

leverage resources, expertise, and technology to implement innovative solutions that 

address the unique challenges faced by African farmers. These collaborations have 

fostered knowledge exchange and capacity building, empowering local communities to 

take ownership of their agricultural practices and drive sustainable development. They 

also predicted that these partnerships will continue to play a crucial role in shaping the 

future of African agriculture, as they provide a platform for ongoing collaboration and 

learning. Through these collaborations, African farmers can access new technologies, 

market opportunities, and training programs that will enable them to improve 

productivity, reduce environmental impact, and enhance resilience in the face of climate 

change. As a result, not only will these partnerships contribute to a more sustainable 

future for Africa, but they will also contribute to the overall economic growth and well-

being of the continent. By fostering partnerships between African farmers and 

organizations, governments, and international stakeholders, there will be increased 

investment in agricultural infrastructure and research, leading to improved access to 

resources such as irrigation systems and advanced farming techniques. This will not only 

boost agricultural productivity but also create employment opportunities and stimulate 

economic growth in rural areas. Ultimately, these partnerships have the potential to 

transform the agricultural sector in Africa, ensuring food security and improving the 

livelihoods of millions of people.  

 

3.3.1 Examples of Collaborations Driving Africa toward a More Sustainable Future 

 Give data-based examples of how collaborations are assisting Africa's transition 

to a more sustainable future. The partnership between the African Development Bank 

(AfDB) and the Global Environment Facility (GEF) is one data-driven example of how 
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collaborations are assisting Africa's transition to a more sustainable future. Through this 

collaboration, they have supported numerous projects across Africa aimed at promoting 

renewable energy, sustainable agriculture, and climate resilience. For instance, in Nigeria, 

the AfDB and GEF collaborated to finance the Off-Grid Energy Access Fund, which has 

provided solar power to over 1 million people in rural areas, reducing reliance on fossil 

fuels and improving access to clean energy. This collaboration not only contributes to the 

achievement of the United Nations Sustainable Development Goals, particularly Goal 7 

(Affordable and Clean Energy) and Goal 13 (Climate Action), but also empowers local 

communities by creating job opportunities in the renewable energy sector [29]. 

Additionally, the partnership between AfDB and GEF has facilitated knowledge sharing 

and capacity building initiatives, enabling African countries to develop their own 

sustainable solutions to address climate change challenges.   

The partnership between the African Union and the United Nations Development 

Programme (UNDP) to implement the Africa Renewable Energy Initiative (AREI) is 

another data-driven example of how collaborations are assisting Africa's transition to a 

more sustainable future. Through this collaboration, over 10,000 megawatts of new 

renewable energy capacity have been installed across Africa [41], providing clean and 

affordable electricity to millions of people. Additionally, the AREI has attracted over $10 

billion in investments, creating job opportunities and stimulating economic growth in the 

region [41]. This partnership has not only contributed to the sustainable development of 

Africa but has also played a crucial role in reducing the continent's carbon footprint. The 

implementation of the Africa Renewable Energy Initiative has paved the way for a 

greener and more resilient future, ensuring access to clean energy for generations to come.  

The alliance between the African Development Bank (AfDB) and the Green Climate 

Fund (GCF) is yet another evidence-based example of how partnerships are assisting 

Africa's transition to a more sustainable future. Through this collaboration, the AfDB has 

received significant funding from the GCF to support various sustainable development 

projects across Africa. For instance, in 2019, the AfDB and GCF jointly launched the 

Africa NDC Hub, which aims to assist African countries in implementing their 

Nationally Determined Contributions (NDCs) under the Paris Agreement. This 

collaboration has helped mobilize resources and expertise to address climate change and 

promote sustainable development in Africa. The AfDB and GCF have worked together to 

fund renewable energy projects, improve climate resilience in vulnerable communities, 

and support the transition to low-carbon economies. Additionally, this collaboration has 

facilitated knowledge sharing and capacity building among African countries, enabling 

them to better respond to the challenges posed by climate change.  

 

 
4. Investigating the Challenges for Major Organizations in Supporting 

Africa's Sustainable Future 
 

4.1 Exploring the Constraints of Key Organizations in Promoting Technological 
Innovations for Africa's Sustainable Future 
 The limitations of the African Development Bank (AfDB), the United Nations 

Development Programme (UNDP), Google, Microsoft, the United Nations Environment 

Programme (UNEP), the World Wildlife Fund (WWF), and the World Bank in advancing 

technological innovations and driving Africa toward a more sustainable future include the 

following: 1) limited financial resources and funding opportunities for technological 
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projects; 2) inadequate infrastructure and access to reliable electricity, hindering the 

implementation of advanced technologies; 3) lack of skilled workforce and technical 

expertise in emerging fields; 4) regulatory challenges and bureaucratic hurdles that slow 

down the adoption of innovative solutions; 5) insufficient collaboration and coordination 

among different stakeholders to effectively leverage technology for sustainable 

development. 6. Limited awareness and understanding of the potential benefits and 

applications of technology, leading to a reluctance to invest in and embrace new 

technological solutions 7. The limited availability of affordable and reliable internet 

connectivity further exacerbates the digital divide and hinders the widespread adoption of 

technology in various sectors. 8. Furthermore, the lack of digital literacy and skills among 

individuals and communities further hampers their ability to fully utilize and benefit from 

technological advancements. 9. Inadequate infrastructure and outdated policies also pose 

significant barriers to the effective integration of technology for sustainable development. 

10. Moreover, the high cost of technology devices and software limits access for 

marginalized communities, perpetuating the inequality in digital opportunities. 11. the 

limited availability of technical support and maintenance services in underserved areas 

hinders the sustainability and long-term effectiveness of technology implementation. 

 However, despite these limitations, these organizations continue to work towards 

overcoming these barriers and are actively seeking partnerships and innovative solutions 

to bridge the digital divide. They are collaborating with government agencies, non-profit 

organizations, and private sector companies to develop affordable and accessible 

technology solutions tailored to the needs of marginalized communities. They are 

advocating for policy changes that prioritize digital inclusion and allocate resources for 

infrastructure development in underserved areas. By leveraging their expertise and 

resources, these organizations are working towards empowering individuals with digital 

skills and knowledge, enabling them to fully participate in the digital economy. They 

understand that closing the digital divide requires a multi-faceted approach that combines 

technological advancements with community engagement and education initiatives. 

These organizations also recognize the importance of addressing affordability barriers to 

ensure that individuals in underserved areas can access and afford digital technologies 

and internet services. They collaborate with local governments and stakeholders to 

develop policies and programs that promote digital literacy and provide equal 

opportunities for all individuals to thrive in the digital age. By offering training programs 

and workshops, these organizations empower individuals with the necessary skills to 

navigate the digital landscape effectively. They also work towards bridging the digital 

divide by advocating for increased internet infrastructure in underserved areas and 

supporting initiatives that provide affordable devices and connectivity options. Through 

their comprehensive approach, these organizations strive to create a more inclusive and 

equitable digital society for everyone. 

 

4.2 Analyzing the Impact of Key Institutions on Africa's Sustainable Future: 
Unveiling the Constraints and Strategic Policy Implications 
 The shortcomings of the World Bank, the African Development Bank (AfDB), 

Google, Microsoft, the United Nations Environment Programme (UNEP), the World 

Wildlife Fund (WWF), and the United Nations Development Programme in offering 

strategic policies to move Africa toward a more sustainable future. Despite their 

significant contributions and efforts, these organizations face certain limitations in 

providing strategic policies for Africa's sustainable future. One major challenge is the 
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complex and diverse nature of the African continent, with its varying socio-economic 

conditions, cultural contexts, and political landscapes. Additionally, the lack of adequate 

funding and resources often hinders these organizations from implementing 

comprehensive and long-term strategies that can effectively address Africa's 

sustainability needs. While these institutions play a crucial role in advancing sustainable 

development in Africa, their limitations stem from various factors such as limited funding, 

bureaucratic processes, and differing priorities among member countries. Moreover, the 

complex socio-economic and political landscape of Africa requires a more 

comprehensive and context-specific approach to address the continent's unique 

challenges and maximize the potential impact of these institutions' strategic policies. 

Despite their significant contributions, these organizations face certain limitations that 

hinder their ability to fully drive Africa toward a more sustainable future. For instance, 

the AfDB and UNDP may struggle with limited funding and resources, while Google and 

Microsoft might face challenges in reaching remote areas with limited internet 

connectivity. The World Wildlife Fund (WWF) and the World Bank might encounter 

difficulties in navigating complex political landscapes and securing cooperation from 

various governments. The WWF and World Bank may also face challenges in effectively 

addressing cultural differences and local community engagement, which are crucial for 

successful conservation and development efforts. Furthermore, the WWF and World 

Bank may struggle with limited funding and resources, hindering their ability to 

implement large-scale projects in remote areas. They may face resistance from local 

communities who may be skeptical of external organizations and their intentions. The 

WWF and World Bank might encounter difficulties in navigating complex political 

landscapes and bureaucratic processes, which can delay or impede their conservation and 

development initiatives. Ensuring the long-term sustainability of their projects could pose 

a challenge, as they may need to find innovative ways to secure ongoing funding and 

support from stakeholders 

 

4.3 Exploring Collaborative Efforts for Africa's Sustainable Future: Assessing the 
Limitations of Key Organizations 
 The limitations of the African Development Bank (AfDB), the United Nations 

Development Programme (UNDP), Google, Microsoft, the United Nations Environment 

Programme (UNEP), the World Wildlife Fund (WWF), and the World Bank in 

collaborations for driving Africa toward a more sustainable future include their limited 

financial resources and capacity to implement large-scale projects. These organizations 

may face challenges in coordinating efforts and aligning their respective agendas and 

priorities. These challenges may arise due to differences in organizational cultures, 

bureaucratic processes, and decision-making structures. Geographical and logistical 

constraints can also hinder effective collaboration among these organizations, making it 

difficult to achieve a cohesive and unified approach towards sustainability in Africa. 

Limited resources and funding can further exacerbate these challenges, as organizations 

may compete for the same pool of resources and struggle to secure the necessary funding 

for their sustainability initiatives. Political instability and conflicts in certain regions of 

Africa can create additional barriers to collaboration, as organizations may be hesitant to 

work together in volatile environments. In addition, cultural and linguistic diversity in 

Africa can also pose challenges to achieving a cohesive and unified approach towards 

sustainability. Different cultural norms and languages may require tailored approaches 

and effective communication strategies to ensure effective collaboration among 
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organizations. Addressing these challenges requires strong leadership and coordination 

among stakeholders to overcome barriers and foster a collective effort towards 

sustainable development in Africa. 

 

 

5. Exploring the Limitations of Technological Advancements in Africa's 
Journey towards Sustainability 

 

 Exploring the limitations of technological advancements in Africa's journey 

towards sustainability is crucial for achieving long-term success. While technology has 

the potential to greatly improve various aspects of sustainability, it is important to 

acknowledge and address the specific challenges and constraints that Africa faces in 

adopting and implementing these advancements. By exploring these limitations, such as 

limited access to reliable electricity or internet connectivity, policymakers and 

stakeholders can develop tailored strategies that leverage technology effectively while 

also considering the unique context of the continent. This holistic approach will help 

ensure that technological advancements contribute meaningfully to Africa's journey 

towards sustainability, ultimately improving the quality of life for its people. This section 

examines these limitations and their potential impact on the implementation of 

technology-driven solutions in Africa.  

 

5.1 Lack of Access to Technology and Digital Infrastructure in Rural Areas 
 The lack of access to technology and digital infrastructure in rural areas of Africa 

poses significant challenges to connectivity and information sharing. Without proper 

infrastructure, communities are unable to benefit from the advantages of digital 

connectivity, such as accessing educational resources, healthcare information, or 

economic opportunities. This digital divide further exacerbates existing inequalities 

between rural and urban areas, limiting the potential for growth and development in these 

regions. The absence of reliable internet connections hampers communication and 

collaboration among individuals and organizations, hindering their ability to connect and 

share ideas, knowledge, and resources. This lack of connectivity can also impede the 

delivery of essential services, such as emergency response systems or online government 

services, leaving these communities at a disadvantage compared to their digitally 

connected counterparts. Without access to reliable internet, individuals in these 

communities may struggle to acquire the necessary digital skills and knowledge needed 

for participation in today's increasingly digital world, widening the gap between those 

who have access to opportunities and those who do not. This digital divide can have 

significant implications for economic and educational opportunities in these communities. 

Without access to reliable internet, businesses may struggle to compete in the digital 

marketplace, limiting their potential for growth and success. Students in these 

communities may face challenges in accessing online educational resources and 

opportunities, hindering their ability to acquire the skills needed for future employment. 

The lack of internet access can also widen the gap between those who have access to 

information and those who do not, exacerbating existing inequalities. This can result in 

limited access to crucial services such as healthcare information, government resources, 

and job opportunities, further marginalizing these communities and hindering their 

overall development. 
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5.2 Insufficient Research and Development Investment Hinders Tailored 
Innovation for Africa 
 This limited investment in research and development has hindered the 

development of innovative solutions that specifically address the unique challenges faced 

by African countries. As a result, many of the existing solutions are not effectively 

adapted to the local context, leading to inefficiencies and missed opportunities for growth 

and development. Moreover, this lack of tailored innovation also hampers Africa's ability 

to compete globally and limits its potential for economic advancement. In order to 

overcome these challenges, it is crucial for African countries to prioritize and allocate 

more resources towards research and development initiatives. By doing so, they can 

foster the creation of innovative solutions that are specifically designed to tackle the 

region's unique obstacles and promote sustainable growth. Investing in tailored 

innovation will not only enhance Africa's competitiveness on a global scale but also 

unlock its untapped potential for economic advancement and prosperity. By focusing on 

research and development, African countries can also address pressing social issues such 

as healthcare, education, and poverty alleviation. These innovative solutions have the 

potential to improve the quality of life for millions of people in the region and contribute 

to overall human development. Ultimately, prioritizing research and development will 

enable African countries to chart their own path towards self-reliance and reduce their 

dependence on external aid or solutions. 

 

5.3 Insufficient Access to Education and Training Hinders Technological Skill 
Development 
 Inadequate education and training opportunities can hinder individuals from 

acquiring the necessary skills to effectively leverage technology. This can result in a 

significant digital skills gap where people struggle to adapt to the rapidly evolving 

technological landscape. As technology continues to advance, it becomes crucial for 

educational institutions and training programs to prioritize equipping individuals with the 

knowledge and abilities needed to navigate and utilize technology effectively. Bridging 

this gap is essential for ensuring equal access and opportunities for all individuals in an 

increasingly digital world. Without the necessary digital skills, individuals may face 

difficulties finding employment or advancing in their careers. Moreover, the digital skills 

gap can exacerbate existing inequalities, as those who are already disadvantaged may be 

further marginalized without access to technology and the ability to use it effectively. 

Therefore, addressing this gap is not only important for personal success but also for 

promoting social and economic equity. 

 

5.4 Barriers to Accessing Advanced Technologies in Africa 
 The high costs associated with adopting and maintaining advanced technologies 

pose a significant barrier, limiting accessibility for many Africans. This financial burden 

not only includes the initial investment required to acquire these technologies but also 

encompasses ongoing expenses such as training, maintenance, and upgrades. 

Consequently, this creates a digital divide, exacerbating the existing inequality gap and 

hindering the potential benefits that advanced technologies can bring to African societies. 

The lack of reliable infrastructure, such as stable electricity and internet connectivity, 

further hampers the adoption and utilization of advanced technologies in Africa. Without 

a consistent power supply and fast internet access, it becomes even more challenging for 

individuals and businesses to fully leverage the potential of these technologies. 
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Consequently, this perpetuates the cycle of limited accessibility and hinders Africa's 

progress in various sectors such as education, healthcare, and economic development. In 

education, the lack of advanced technologies prevents students from accessing online 

resources and participating in virtual learning platforms, limiting their educational 

opportunities. In healthcare, the absence of reliable electricity and internet connectivity 

hinders the implementation of telemedicine and remote healthcare services, depriving 

many people of essential medical care. The limited utilization of advanced technologies 

in Africa's economic sectors restricts innovation and productivity, hindering the region's 

overall economic growth and competitiveness on a global scale. The lack of access to 

advanced technologies also hampers Africa's ability to participate fully in the digital 

economy, limiting its potential for job creation and economic diversification. This digital 

divide further exacerbates existing inequalities and widens the gap between Africa and 

other regions in terms of technological advancements and economic development. 

 

5.5 Need for Strengthening Regulatory Frameworks and Governance Structures 
in Africa's Technology Sector 
 Weak regulatory frameworks and governance structures in Africa have significant 

implications for the ethical and social aspects of technology use. These shortcomings 

often result in a lack of accountability, transparency, and protection for individuals and 

communities affected by technological advancements. The absence of comprehensive 

regulations can lead to the exploitation of personal data, privacy breaches, and unequal 

access to technology resources, exacerbating existing social inequalities. The lack of 

frameworks and governance structures also hinders innovation and limits the potential 

benefits that technology can bring to African societies. Without clear guidelines and 

oversight, there is a risk of unethical practices such as surveillance, discrimination, and 

the spread of misinformation through technology platforms. Therefore, it is crucial for 

African countries to prioritize the development of robust frameworks and governance 

structures that address these ethical and social concerns while fostering a fair and 

inclusive technological landscape. These frameworks should include provisions for data 

protection and privacy, ensuring that individuals' personal information is safeguarded 

from misuse. They should promote transparency and accountability in the use of 

technology, holding both private companies and government entities responsible for any 

unethical practices. By establishing these frameworks, African countries can harness the 

full potential of technology to drive economic growth, improve access to education and 

healthcare, and empower their citizens. 

 

5.6 Impediments to Technological Advancement Due to Inadequate Internet 
Accessibility 
 Limited access to reliable and affordable internet connectivity poses a significant 

challenge to the widespread adoption and utilization of technology in various sectors. 

Without proper internet access, individuals and businesses struggle to leverage the full 

potential of technology, hindering progress and development. In education, for example, 

students in remote areas may not have access to online learning resources or virtual 

classrooms, limiting their educational opportunities. Similarly, healthcare services 

heavily rely on technology for telemedicine and remote patient monitoring, but without 

reliable internet connectivity, these services become inaccessible to those in underserved 

areas. This lack of access can result in a disparity in healthcare outcomes, as patients are 

unable to receive timely medical advice or monitoring. Businesses in remote locations 
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face challenges in conducting online transactions and reaching wider markets, hindering 

their growth and economic potential. In addition, the lack of reliable internet connectivity 

in underserved areas can also hinder educational opportunities for students.  

Online learning platforms and resources are increasingly important in today's 

digital age, and without access to these tools, students in remote locations may struggle to 

keep up with their peers. This further exacerbates the educational divide between urban 

and rural areas, limiting the future prospects of individuals in underserved communities. 

The limited availability of educational facilities and qualified teachers in underserved 

areas adds to the challenges faced by students. Without proper infrastructure and skilled 

educators, students may not receive the quality education they need to thrive 

academically. This disparity in resources and opportunities perpetuates a cycle of 

inequality, making it even more difficult for individuals in underserved communities to 

break free from poverty and achieve their full potential. As a result, these students may 

lack the necessary skills and knowledge to compete in the job market, further widening 

the economic gap between underserved communities and more privileged areas. The lack 

of access to quality education can also lead to higher dropout rates and lower graduation 

rates, limiting future opportunities for these students and perpetuating generational 

poverty. 

 

5.7 Need for Enhanced Collaboration and Knowledge-Sharing in African 
Countries for Sustainable Technological Development 
 This lack of collaboration and knowledge-sharing hinders the ability of African 

countries to effectively address common challenges and capitalize on opportunities 

presented by technology. By working together, African nations can pool their resources, 

expertise, and experiences to develop innovative solutions that address their unique needs 

and drive sustainable development across the continent. Fostering a culture of 

collaboration can promote cross-learning and enable African countries to avoid 

duplicating efforts, leading to more efficient use of resources and accelerated progress 

towards sustainable development goals. Collaboration can also facilitate the sharing of 

best practices and lessons learned, allowing African nations to learn from each other's 

successes and failures. This exchange of knowledge can help accelerate the development 

and implementation of effective technological solutions, ultimately benefiting all 

countries involved. By leveraging collective expertise and resources, African nations can 

negotiate better deals with technology providers and attract more investment in their 

digital infrastructure, further enhancing their capacity for innovation and sustainable 

development. 

 

5.8 Risks of Relying Solely on Foreign Technology without Local Adaptation or 
Customization 
 Dependence on foreign technology without local adaptation or customization in 

Africa can have detrimental effects on the continent's long-term development. While 

importing technology from other countries can provide initial benefits, it often fails to 

address the specific needs and challenges faced by African nations. Without local 

adaptation or customization, foreign technology may not be suitable for the unique socio-

economic and environmental conditions of African countries. This can result in 

inefficiencies, limited scalability, and a lack of sustainability. It hinders the growth of 

local innovation and entrepreneurship as African countries become dependent on foreign 

technology rather than developing their own solutions. This reliance on imported 
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technology also leads to a drain of resources, as funds are spent on purchasing and 

maintaining foreign products instead of investing in local research and development. To 

truly drive long-term development in Africa, it is crucial for countries to prioritize the 

development and utilization of homegrown technologies that are tailored to their specific 

needs and can contribute to sustainable growth. By investing in local research and 

development, African countries can foster innovation and create job opportunities within 

their own borders. 

Developing homegrown technologies can also help to address unique challenges 

and issues that are specific to the African context, ultimately leading to more effective 

and sustainable solutions for the continent. These solutions can range from improving 

access to clean water and energy to enhancing agricultural practices and healthcare 

systems. By nurturing a culture of innovation and entrepreneurship, African countries can 

attract foreign investment and foster economic diversification, ultimately reducing their 

reliance on traditional sectors such as natural resources. By focusing on these specific 

challenges and finding innovative solutions, African countries can not only address 

immediate needs but also build a foundation for long-term development. This approach 

can help create jobs, improve living standards, and empower local communities to take 

charge of their own futures. By leveraging technology and digital advancements, African 

countries can leapfrog traditional development models and find unique solutions that are 

tailored to their specific needs. 

 

5.9 Political Instability and Insufficient Government Support for Technological 
Innovation act as Impediments to Africa's Long-term Viability 
 Political instability in Africa has been a major obstacle to sustainable 

development. Constant changes in leadership, corruption, and conflicts have resulted in a 

lack of long-term planning and commitment to addressing environmental challenges. The 

lack of government support for technological innovation further hinders progress towards 

sustainability. Insufficient funding, limited access to resources, and a lack of policies that 

promote research and development prevent the continent from harnessing the full 

potential of technology to tackle environmental issues effectively. As a result, Africa 

struggles to implement sustainable solutions and adapt to the rapidly changing climate. 

This is particularly concerning as Africa is one of the most vulnerable regions to the 

impacts of climate change, including droughts, floods, and desertification. Without 

adequate support and investment in technology-driven solutions, Africa may continue to 

face significant environmental challenges that hinder its social and economic 

development. These challenges not only affect the continent's natural resources and 

ecosystems but also have severe consequences for its population, especially those who 

rely on agriculture and livestock for their livelihoods. It is crucial for Africa to prioritize 

the development and implementation of innovative strategies that promote renewable 

energy, sustainable agriculture, and efficient resource management to mitigate the 

adverse effects of climate change and ensure a brighter future for its people. By investing 

in renewable energy sources, Africa can reduce its dependence on fossil fuels and 

decrease greenhouse gas emissions. Promoting sustainable agricultural practices like crop 

rotation and water conservation can help farmers adapt to changing climate conditions 

and ensure food security for the growing population. Efficient resource management 

strategies such as waste reduction and recycling can minimize environmental degradation 

and promote a circular economy in Africa. These efforts will not only contribute to 
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mitigating climate change but also create new job opportunities and foster economic 

growth across the continent. 

 

5.10 Challenges in Harnessing Technological Advancements due to 
Infrastructure and Connectivity Constraints 
 Inadequate infrastructure and limited access to electricity and internet 

connectivity hinder the effective implementation and utilization of technological 

advancements. Without a reliable power supply, it becomes difficult to sustain the 

operation of technological devices and systems. Limited internet connectivity restricts 

access to online resources, hindering the ability to leverage technology for educational, 

economic, and social development. These barriers disproportionately affect marginalized 

communities and exacerbate existing inequalities. In order to bridge this digital divide, 

governments and organizations must prioritize investments in infrastructure development 

and expand access to electricity and internet connectivity in underserved areas. Efforts 

should be made to provide digital literacy training and skills development programs to 

ensure that individuals have the necessary knowledge and abilities to navigate the digital 

world effectively. Collaboration between governments, organizations, and private sector 

entities is crucial in order to create sustainable solutions that address the unique 

challenges faced by marginalized communities in accessing technology. By working 

together, these stakeholders can pool resources and expertise to develop innovative 

strategies that prioritize the needs of underserved areas. This collaborative approach will 

not only bridge the digital divide but also empower individuals and communities to fully 

participate in the digital economy and access educational opportunities, healthcare 

services, and other essential resources. 

 

 
6. CONCLUSIONS 
 

 While technological advancements have undoubtedly played a significant role in 

Africa's journey towards sustainability, it is important to acknowledge their limitations. 

One key limitation is the lack of access to technology in many rural areas [52], where 

basic infrastructure and connectivity are still major challenges. The high cost of 

implementing and maintaining advanced technologies can pose a barrier for many 

African countries with limited financial resources. By focusing on inclusive and 

affordable solutions, investing in infrastructure development, and promoting digital 

literacy, Africa can overcome these limitations and leverage the potential of technology 

to drive economic growth and social development [53]. By bridging the digital divide and 

ensuring equal access to technology, African countries can empower their citizens, 

improve education and healthcare systems, and foster innovation and entrepreneurship.  

 By fostering partnerships with international organizations and leveraging the 

expertise of local tech entrepreneurs, Africa can tap into global knowledge and resources 

to accelerate its technological advancement. This can lead to the creation of new 

industries and job opportunities, ultimately contributing to poverty reduction and overall 

economic prosperity. The integration of technology in various sectors such as agriculture, 

finance, and transportation can enhance efficiency and productivity, further boosting 

Africa's competitiveness in the global market. This can lead to the creation of new 

industries and job opportunities, ultimately boosting economic growth and reducing 

poverty. The adoption of technology can also enhance government efficiency and 
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transparency, leading to better governance and public service delivery for African 

citizens. Technology can play a crucial role in improving access to education and 

healthcare in Africa. With the use of digital platforms and telemedicine, individuals in 

remote areas can receive quality education and medical assistance, bridging the gap 

between urban and rural areas. The integration of technology in governance can also 

empower citizens by providing them with easier access to government services and 

information, promoting citizen engagement and participation in decision-making 

processes.  

 It is therefore recommended that more sophisticated strategic policies and 

collaboration with foreign partners be implemented in order to fully utilize technological 

innovations and expertise in advancing the African economy and improving the quality of 

life for its citizens. By leveraging technology, governments can streamline administrative 

processes and reduce bureaucratic inefficiencies, leading to cost savings and improved 

service delivery. Additionally, the integration of technology can enhance transparency 

and accountability in governance, fostering trust between citizens and their governments. 

It is recommended that researchers conduct additional research into the potential of 

emerging technologies such as artificial intelligence and blockchain to transform key 

sectors of the African economy. These technologies have the potential to revolutionize 

industries such as agriculture, healthcare, and finance, leading to increased productivity, 

better access to services, and greater financial inclusion. 
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Temporal trends in surface air temperatures across some selected eco-
climatic zones in Nigeria from 1981 to 2018 were assessed using the 
Merra-2 reanalysis dataset. A total of 15 stations spread across the eco-
climatic zones in Nigeria were used for this study. The Mann-Kendall (M-
K) trend test was used to detect direction, significance, coefficients of 
time trends, while the linear regression and the Sen’s slope trend tests 
were used to estimate the trend magnitudes. The M-K trend test showed 
that the surface air maximum temperature of 14 stations had monotonic 
increasing trends, of which 13 stations were statistically significant at the 
0.01 significance level, and 1 station was statistically significant at the 
0.05 significance level. However, the M-K trend test also showed that 
surface air minimum temperature for all the 15 stations (representing 
100%), showed monotonic upward trends, statistically significant at the 
0.01 significance level. The Sen's slope and linear trend tests showed 
higher trend magnitudes at most stations, particularly stations in the 
Guinea-wooded, Sudan and Sahel savannas. The estimated mean trend 
magnitudes of maximum and minimum air surface temperatures 
increased by approximately 0.035°C/year and 0.036°C/year, respectively. 
The estimated mean air surface temperature increased by approximately 
0.036°C/year and approximately 1.4°C for Nigeria over the 38-year 
period. The study then presents a linear trend projection of mean air 
surface temperature increase in Nigeria of approximately 4.3°C by 2100. 
This is 0.2°C below maximum levels and within the range of 
approximately 1.5 to 4.5°C that global air surface temperature is 
projected to rise by 2100 in the Intergovernmental Panel on Climate 
Change (IPCC) 2007 report. The M-K and linear trend tests were fully 
consistent with the standardized time series anomaly plots. Mean annual 
values of the air surface temperatures showed latitudinal dependence. 
The manifestation of significant long-term trends at high confidence 
levels in the air surface temperatures over the period, provides a clear 
evidence that the climate of Nigeria is witnessing a possible human-
induced radiative forcing and a strong tendency for the occurrences of 
climate-related extreme events and their resulting adverse implications.  
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1. Introduction  
  

 A trend is  generally a long-term movement in a chronologically ordered 

observation (i.e., a time series), having a period exceeding the length of the time series. 

Stephenson  [1] defines a trend as a long-term variation in the average level, a smooth 

regular component having a period exceeding the length of a time series. There is 

generally a basic tendency either for data to go upward, downward or remain stable over 

a considerable period of time. Most importantly, analyzing temporal trends and changes 

in air surface temperature can indirectly reveal the "health" of the environment. A rising 

and/or declining trend may be quite instructive for different segments of human and 

natural systems. 

 The detection of time series trends in hydroclimatic parameters has become the 

most popular technique for detecting local, regional and global climate change and 

variability, and spatial or temporal changes in climate parameters appear to be non-

uniform. Yue and Hashino [2] pointed out that there may be considerable and significant 

spatiotemporal changes between regions with different climates. 

Many researchers analyzed surface air temperature-time series from various 

climate change perspectives across a wide range of temporal and spatial scales. Their 

analysis indicates significant increases in surface air temperature in different parts of the 

world [3-5]. Climate change scenarios for Nigeria as examined by Abiodun et al. [3], 

using a 30-year data distribution that spanned from 1971-2000, reported upwards trends 

in surface air maximum and minimum temperatures. Many studies have shown positive 

trends in surface air temperatures, although the changes vary from one region to another 

[6-9].  Analysis of 30 years’ data for temperature and rainfall variability in Nigeria 

spanning from 1971-2000 conducted by Akinsanola and Ogunjobi [10], indicated that 

surface temperatures and rainfall increased significantly at a considerable number of the 

sites they studied. Their results further suggested a sequence of alternately upward and 

downward trends in the two parameters.  Oguntunde et al. [11] conducted a study to 

assessed the possible occurrence of trends in air surface temperature across Nigeria from 

1901-2000. Their results showed that the change in the minimum air surface temperature 

was higher than the change in the maximum air surface temperature. Amadi et al. [12] 

conducted a trend and variation study of basic atmospheric parameters including but not 

limited to mean annual air surface temperatures. Their findings showed trends in the 

parameters across Nigeria from 1950-2012. 

The contemporary focus of applied climate science is on enhancing knowledge at 

local, regional and global scales. The more limited this information is available, the more 

relevant it will be to most users of the application. Studying trends and changes in a 

region's weather and climate elements is critical for sustainable agriculture, water 

management, power generation, marine and aviation safety, and more. Most communities 

in Nigeria are vulnerable to the vagaries of climate change and variability since they are 

exposed to several environmental hazards associated with climate change and variability. 

The effective use of weather and climate information to manage climate-related risks and 

prepare adaptive and mitigation measures to face future challenges is very vital. 

According to the IPCC report [13], high temperatures leaves in its wake, incidences of 

heatwaves. High temperatures can trigger off incidences of diseases linked to high 

temperatures such as Cerebra-spinal meningitis, heat stroke etc. Also, changes in surface 

air temperatures influences quite a number of hydrological processes, including 

precipitation.   
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 Some trend studies in Nigeria focus on individual towns over relatively short 

periods of time [14-18]. Most of these studies carried out in Nigeria focused on the last 

century, while others focused on small spatial scales, mostly using in-situ meteorological 

data. Therefore, there is a need to study current trends in annual mean air surface 

temperatures at representative stations of selected eco-climatic zones in Nigeria using an 

Integrated Earth System Analysis (IESA) approach using decades of global reanalysis 

data. Reanalysis is a process in which a data assimilation system provides a consistent 

reprocessing of meteorological observations, typically covering an extended period of the 

historical data record. Milestones in achieving the objectives of this study are: 1. 

Assessing the historical recorded trends of the selected parameters at the site and period 

studied; 2. Assessing the temporal trends and possible causes of spatial variation of the 

selected parameters.   

 
 
2. Location and Brief Geography of the Study Area 
 

 Nigeria is sandwiched between latitudes 4° and 14°N and between longitudes 3° 

and 15°E of the Equator and Greenwich Meridian respectively. The climate of Nigeria is 

made up of various ecotypes and climate zones and is influenced by the interaction of the 

Tropical Maritime and the Tropical Continental air masses and their associated Planetary 

Winds-the South-east and the North-east trade winds respectively. The Tropical Maritime 

air mass emanates from the Sub-tropical High Pressure belt, centered about 30°S of the 

equator, and off the coast of Namibia while the Tropical Continental air mass emanates 

from the Sub-tropical High pressure belt., centered about 30°N, north of the equator and 

over the Sahara Desert [3] The Tropical Maritime air mass is warm and moist while the 

Tropical Continental air mass is cold and dry, even as it travels across the Sahara Desert, 

towards Nigeria. The interactions of these two air masses defines the Wet and Dry season 

pattern in Nigeria. Teleconnection influences on the Nigerian landscape are imposed by 

the strong North Atlantic Oscillation (NAO) during the dry season and the El Nino- 

Southern Oscillation (ENSO) during the wet season [11]. 

Adefolalu [19] has pointed out that Nigeria may be divided into five eco-climatic 

zones - the Mangrove-swamp rainforest, the Tropical rainforest, the Guinea, Sudan and 

the Sahel Savannas. The characteristic of the eco-climatic zones is essentially defined by 

the vegetation pattern. Other factors such as rainfall, relief, soil type and human activity, 

may have significant impacts. Fig. 1: shows the meteorological stations for the study and 

the eco-climatic zones.  
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Fig. 1. Map of Nigeria showing the meteorological stations for the study and eco-climatic zones 

 

Table 1. Summary information on the meteorological stations [3, 19, 20] 
Station name Latitude (°N) Longitude (°E) Altitude (m) Eco-climatic Zones 

Katsina 

Maiduguri 

Damaturu 

12.98 

11.83 

11.73 

7.60 

13.15 

11.95 

163.91 

331.51 

388.54 

Sahel 

Savanna 

Abuja 

Lafia 

Lokoja 

9.05 

8.48 

7.75 

7.41 

8.52 

6.82 

404.65 

163.91 

198.15 

Sudan 

savanna 

Minna 

Ilorin 

Makurdi 

9.62 

8.50 

7.72 

6.55 

4.55 

8.53 

346.62 

283.03 

139.21 

Guinea-wooded 

Savanna 

Asaba 

Umuahia 

Owerri 

6.83 

5.53 

5.48 

6.75 

7.48 
7.02 

136.69 

92.84 
60.61 

Tropical 

rainforest 

Ikeja 

Calabar 

Yenagoa 

6.56 

4.95 

4.93 

3.51 

8.32 

6.26 

55.68 

34.68 

13.06 

Mangrove-swamp 

rainforest 
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3. Data and Methodology 
  

3.1 Dataset 
 The data for the assessment of mean annual air surface temperatures for trends 

across some representative stations of the selected eco-climatic zones in Nigeria is 

MERRA-2, which is obtained from the National Aeronautics and Space Administration 

(NASA) database. The GEOS Atmospheric model and the Grid Point Statistical 

Interpolation analysis scheme are considered as the important components of this system 

[21-23]. Reanalysis products are increasingly used in climate monitoring because 

appropriate and careful consideration is given to their inherent uncertainties [20]. The 

stations are the representative stations of the selected eco-climatic zones in Nigeria. The 

data represents the mean monthly values of air surface temperatures remotely sensed at 2 

meters above the ground surface from the space-borne observation systems, spanning 

from 1981 to 2018. The parameters of interest are the air surface maximum and minimum 

temperatures. Summary information on the representative stations, meteorological 

parameters measured at the representative stations are presented in Table 1.  

 

3.2 Data Check and Smoothening 
 Data was checked for incompleteness, outliers, and homogeneity.  The data had 

no missing values. Quality checks help to remove outliers (genuine freak events or single 

data errors) and their biases. According to Longobardi & Villani [24], long-term climate 

analysis should be based on homogenous data, since there is a large variability in space 

and time of climate variables. Climate datasets are homogeneous datasets with 

fluctuations/variations caused only by weather and climate changes. Non-climatic factors 

can introduce fluctuations/homogeneities that create progressive biases in the data 

distribution [12]. Hence,  normality and homogeneity tests were conducted on the 

datasets. 

 

3.3 Methodology 
 The original mean monthly datasets were converted to mean annual datasets. This 

study synergistically embraced the parametric linear trend test and the non-parametric 

Mann-Kendall (M-K) and Sen’s slope trend tests. According to Kundzewicz & Robson 

[25] and Sonali & Kumar [26], multiple statistical tests should be used to accurately 

interpret the data and test hypotheses when each statistical test addresses a specific 

question. 

The M-K trend test was used to evaluate the trend direction, significance of the 

trend and the M-K tau b. The linear regression model using the least squares method and 

the Sen’s slope trend tests were used to estimate the magnitudes of the trend. Many 

authors have pointed out that non-parametric tests have statistical advantages over the 

parametric test. Therefore, non-parametric tests are superior because of the following 

advantages: they are insensitive to the presence of outliers (i.e., being robust to rogue 

events and incomplete data) and they exhibit a degree of monotonicity [27-29].  

In cases where the non-parametric tests showed disparity in results with the 

parametric linear trend test, the M-K and Sen’s slope trend tests results were held 

superior to the parametric test. 

 

3.3.1 The Mann-Kendall (M-K) Trend Test 
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 The M-K trend test statistics is computed using the sign of differences between 

successive values rather than  on the values of the randomly selected variables [35]. This 

non-parametric statistical tool has been widely used to assess trends in hydro-climatic 

data [30, 31, 36, 37]. Hence, it was adopted in this study. 

Given a time series of n-sized  dataset, such that n is greater than or equal to 10, 

the M-K test statistic (S) is computed with the  formula [28, 32]. 

𝑆 = ∑𝑛−1𝑘=1 ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘)
𝑛
𝑗=𝑘+1         1 

where jx  and kx  are the sequential data values for the 
thj  and  thk  terms ( j > k) 

Sgn (𝑥𝑗 − 𝑥𝑘) =

{
 

 
1 𝑖𝑓 𝑥𝑗 − 𝑥𝑘 > 0

0 𝑖𝑓 𝑥𝑗 − 𝑥𝑘 = 0

−1 𝑖𝑓 𝑥𝑗 − 𝑥𝑘 < 0
       2 

An increasing (upward) trend (later values exceeding earlier values) is denoted by 

a large positive value of test statistic (S). A decreasing (downward) trend (later values not 

exceeding earlier values) is denoted by a large negative value of the test statistic (S). A 

small absolute M-K test statistic(S) value implies that a trend does not exist. 

The variance of S, VAR(S) (σ2) where ties are not present (i.e., j=k does not exist) 

is defined as 

  1 2 5
( )

18

n n n
VAR S

 
         3 

where ties are present, the variance of S is defined as 

𝑉𝐴𝑅(𝑆) =  
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑝

𝑞
𝑝=1  (𝑡𝑝 − 1)(2𝑡𝑝 + 5)]   4 

From Eqn. 4, q denotes the number of tied (i.e., j=k), pt  denotes the number of data 

values in the p
th

 group. 

Computation of Z test statistic is done using the values of M-K test statistic(S) and 

the variance of the M-K test statistic AR(S) as follow 

Z = 

{
 
 

 
 

𝑆−1

√𝑉𝐴𝑅(𝑆)
 𝑖𝑓  𝑆 > 0

 0            𝑖𝑓 𝑆 =  0
𝑆+1

√𝑉𝐴𝑅(𝑆)
  𝑖𝑓  𝑆 < 0

        5 

An upward or downward trend is denoted by a positive or negative value of Z, 

respectively. For a two-tailed test, the null hypothesis Ho implies that a linear trend does 

not exist and that the data distribution is randomly ordered and independent. An 

alternative hypothesis 
1H  implies that a linear trend does exists. For the null hypothesis 

0H  to be rejected., the absolute value of Z  evaluated using Eqn. 5 must be greater  than 

the critical value Zα/2, at the selected  significance level, for the null hypothesis H0 to be 

rejected. Other than that, the null hypothesis is accepted. 

 

3.3.2 The Linear Trend Test 

The linear trend and Sen’s slope trend tests were synergistically used in 

determining the trend magnitudes. A test for linear trend is given by the linear regression 

of y on time t. 

0 1y x              6 
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The slope is denoted by 
1 ,  and the intercept on y is denoted by 

0 , which is the 

value of y at x = 0. The dependent variable is y, the independent variable is x, and ε is the 

error, residual, or bias, which can be positive, negative, or zero and is caused by random 

effects. The dependent variable y value corresponding to a given independent variable x 

value is estimated by finding the value of y from the least-squares line that fits the data. 

The null hypothesis is that slope coefficient 
1 0   (i.e., lack of linear dependence) 

and the alternative hypothesis is that slope coefficient 
1 0   (i.e., linear dependence 

exists). A significant slope different from zero is the condition for rejecting the null 

hypothesis and accepting the alternative hypothesis that y has a linear trend over time 

with a ratio equal to 
1 . 

 

3.3.3 The Sen’s Slope Trend Test 

Estimation of trend magnitude in hydro-meteorological time series has been 

widely carried out using the Sens slope trend test [2, 18, 29].  

 Demonstration of the presence of a monotonic trend and the linearity of the trend 

allows for the estimation of the trend magnitude using the Sen’s line. The non-parametric 

Sen’s line models how the median data changes linearly with time, and the trend 

magnitude for the entire period covered by the study is obtained by multiplying the 

estimated slope per year by the total number of years involved. Following the method of 

Sen [33], the slope magnitude can be obtained as follows: 

 
i J

sen

Y Y
b Median

i j

 
  

 

for all j < i       7 

where 
iY  and 

jY  are data at time points i and j, respectively.  

If the total number of data points in the series is n, then the corresponding slope 

estimates will be  1

2

n n   and the test statistic 
senb  will be the median of all slope estimates. 

Increasing or decreasing trend is shown by a positive or negative value of the test statistic 

respectively. 

 

3.3.4 The p-value 

 The p-value defines a region in the probability distribution tail beyond the 

noticeable values of the selected test statistic. When the p-value is small, the 

corresponding selected test statistic value will be seen to be particularly high and when 

the p-value is large, the corresponding selected test statistic will be seen to be very small. 

The null hypothesis is rejected if the p-value is smaller than the selected significance 

level, assuming that the data is not consistent with the null hypothesis at the selected 

significance level and vice versa.  

 

 

4. Results  
 

4.1 Results of Mean Air Surface Temperatures 
4.1.1 Temporal Trend in Mean Annual Air Surface Temperatures 

 Tables 2 and 3 show the temporal trend for mean annual air surface maximum 

temperatures. The Mann-Kendall’s test statistic (S) ranges from -113 to 398, the 

coefficients of time trends range from -0.161 to 566, and the trend magnitude increase 
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ranges from 0.015° to 0.073°C/year for mean annual air surface maximum temperatures 

across the selected eco-climatic zones in Nigeria. The highest trend magnitude in mean 

annual air surface maximum temperature is noticeable in Lafia (i.e., 073 °C/year) while 

the lowest value is observed in Yenagoa (i.e., 0.015 °C/year) (Table 2). The temporal 

trend for mean annual air surface minimum temperatures are shown in Tables 4 and 5. 

The Mann-Kendall’s test statistic (S) ranges from 280 to 446, the coefficients of time 

trends (i.e., the Kendall’s tau b) range from 0.398 to 0.634, and the trend magnitude 

increase ranges from 0.024° to 0.069 °C/year for mean annual air surface minimum 

temperatures across the selected eco-climatic zones in Nigeria. The highest trend 

magnitude in mean annual air surface minimum temperature is noticeable in Abuja (i.e., 

0.069 °C/year), while the lowest value is noticeable in Katsina and Ikeja (i.e., 0.024 

°C/year). (Table 4).  

Figs. 2 to 6 are the standardized anomaly time series plots for mean annual air 

surface maximum temperatures, showing monotonic positive (upward) trends in the plots 

of 14 stations. A monotonic negative (downward) trend is shown by one station (i.e., 

Ikeja). 

 

 

Table 2. Results of Mann-Kendall’s and Sen’s slope trend tests for mean annual 
air surface maximum temperatures 

Station 

name 

S Kendall’s 

tau b 

Z Sen’s slope 

estimates 

(°C/year) 

p-value 

Maiduguri 255 0.363** 3.1938 0.039** 1.404E-03 

Damaturu 284 0.404** 3.5587 0.043** 3.727E-04 

Katsina 196 0.279* 2.4529 0.020* 1.417E-02 

Ilorin 129 0.184 1.6098 0.019 0.1074420 

Lafia 398 0.566** 4.9914 0.073** 5.993E-07 

Lokoja 320 0.455** 4.0114 0.051** 6.036E-05 

Minna 365 0.519** 4.5762 0.065** 4.736E-06 

Abuja 364 0.518** 4.5640 0.069** 5.019E-06 

Makurdi 388 0.552** 4.8665 0.058** 1.136E-06 

Owerri 316 0.450** 3.9632 0.019** 2.925E-04 

Asaba 269 0.383** 3.3698 0.028** 7.522E-04 

Ikeja -113 -161 4.6035 -0.006 0.1587637 

Umuahia 318 0.452** 3.9869 0.020** 6.695E-05 

Yenagoa 284 0.404** 3.5594 0.015** 8.041E-03 

Calabar 345 0.491** 4.3270 0.017** 1.511E-05 

For Kendall’s tau b, ** means that Kendall’s tau b is significant at the 0.01 level (2-tailed), while means 

that *Kendall’s tau b is significant at the 0.05 level (1-tailed). For Sen’s slope, ** means that the slope is 

significant at the 0.01 level (2-tailed), while * means that the slope is significant at the 0.05 level (1-tailed). 

 

Figs. 7 to 11 are the standardized anomaly time series plots for mean annual air 

surface minimum temperatures, showing monotonic positive (upward) trends in all the 15 

stations. 
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Table 3. Results of linear trend estimation for mean annual air surface maximum 
temperature 

Station 

name 

Parameters Slope 

estimates 

(°C/year) 

Standard 

error 

Students 

t-test 

p-value 

Maiduguri Slope 0.039** 0.011 3.5862 4.77E-04 

 Intercept 34.933 0.131 272..412 4.36E-02 

Damaturu Slope 0.048** 0.011 4.3837 8.50E-05 

 Intercept 33.628 0.146 236.828 7.46E-03 

Katsina Slope 0.022* 0.009 2.4022 1.60E-02 

 Intercept 33.465 0.103 330.044 5.58E-01 

Ilorin Slope 0.016 0.011 1.2883 1.25E-01 

 Intercept 31.674 0.113 283.215 9.90E-01 

Lafia Slope 0.0075** 0.010 7.8234 2.01E-09 

 Intercept 29.939 0.170 184.621 2.92E-07 

Lokoja Slope 0.052** 0.012 4.5241 3.71E-05 

 Intercept 29.96 0.151 205.252 2.23E-03 

Minna Slope 0.069** 0.012 5.8302 6.22E-07 

 Intercept 29.331 0.175 175.050 3.83E-05 

Abuja Slope 0.073** 0.012 6.0492 2.68E-07 

 Intercept 29.157 0.182 167.914 1.54E-05 

Makurdi Slope 0..059** 0.008 7.1710 1.54E-08 

 Intercept 29.384 0.137 222.263 4.90E-06 

Asaba Slope 0.028** 0.004 3.4982 6.87E-04 

 Intercept 29.069 0.096 310.227 9.02E-02 

Owerri Slope 0.018** 0.004 4.7703 2.03E-05 

 Intercept 28.3323 0.051 570.588 3.66E-01 

Umuahia Slope 0.020** 0.004 4.8984 1.21E-05 

 Intercept 228.72 0.055 528.139 1.92E-01 

Ikeja Slope -0.0069 0.044 -1.7697 1.11E-01 

 Intercept 29.017 0.048 606.314 1.37E-07 

Yenagoa Slope 0.014** 0.004 3.8055 5.30E-04 

 Intercept 28.468 0.045 633.952 8.00E-01 

Calabar Slope 0.018** 0.004 4.1381 8.17E-06 

 Intercept 27.79 0.050 560.224 7.46E-01 

**Slope is significant at the 0.01 level (2-tailed) 

*Slope is significant at the 0.05 level (1-tailed) 
 

 

Table 4. Mann-Kendall and Sen’s slope trend tests for mean annual air surface 
minimum temperatures 
Station name S Kendall’s tau b Z Sen slope  

(°C/year) 

p-value 

Maiduguri 289 0.411** 3.6219 0.027** 2.925E-04 

Damaturu 345 0.491** 4.3261 0.031** 1.518E-06 

Katsina 280 0.398** 3,5089 0.024** 4.499E-04 

Ilorin 366 0.521** 4.5906 0.029** 4.421E-06 

Lafia 415 0.590** 5.2056 0.048** 1.934E-07 

Lokoja 385 0.548** 4.8284 0.043** 1.132E-06 

Minna 407 0.579** 5.1050 0.045** 2.735E-07 

Abuja 364 0.518** 4.5640 0.069** 1.285E-07 

Makurdi 388 0.552** 4.8673 0.038** 1.132E-06 

Asaba 394 0.560** 4.9419 0.033** 7.735E-07 

Owerri 410 0.583** 5.1439 0.033** 1.323E-04 

Umuahia 391 0.556** 4.9038 0.033** 9.399E-07 
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Yenagoa 414 0.589** 5.1953 0.031** 2.043E-07 

Calabar 446 0.634** 5.6340 0.030** 1.761E-08 

Ikeja 348 0.495** 4.3651 0.024** 1.271E-05 

**Kendall’s tau b is significant at the 0.01 level (2-tailed) 

**Slope is significant at the 0.01 level (2-tailed) 
 

 

Table 5. Results of linear trend estimation for mean annual air surface minimum 
temperature 

Station 

name 

Parameters Slope estimates 

(°C/year) 

Standard 

error 

Students 

t-test 

p-value 

Maiduguri Slope 0.027** 0.006 4.2017 7.65E-05 

 Intercept 20.671 0.08005 264.667 1.10E-02 

Damaturu Slope 0.031** 0.006 5.1639 6.93E-06 

 Intercept 20.044 0.08490 243.210 1.25E-03 

Katsina Slope 0.024** 0.006 4.0525 1.33E-04 

 Intercept 19.368 0.07586 261.603 1.32E-04 

Ilorin Slope 0.031** 0.005 5.49899 1.11E-06 

 Intercept 20.903 0.07665 280.258 6.55E-04 

Lafia Slope 0.047** 0.006 7.9952 8.95E-10 

 Intercept 20.876 0.10506 207.447 2.66E-07 

Lokoja Slope 0.041** 0.006 6.6786 4.39E-08 

 Intercept 21.05 0.09876 221.315 1.18E-05 

Minna Slope 0.046** 0.007 6.5024 6.69E-08 

 Intercept 19.418 0.11102 183.002 6.51E-06 

Abuja Slope 0.046** 0.006 7.0835 8.86E-09 

 Intercept 19.44 0.10720 189.767 1.28E-06 

Makurdi Slope 0.039** 0.006 6.8273 3.24E-08 

 Intercept 20.834 0.09194 234.822 1.28E-08 

Asaba Slope 0.034** 0.005 6.6422 5.06E-08 

 Intercept 21.20 0.08097 269.966 4.5E-05 

Owerri Slope 0.033** 0.044 7.3927 6.52E-09 

 Intercept 21.753 0.07659 292.493 1.51E-05 

Umuahia Slope 0.032** 0.005 6.8802 2.93E-08 

 Intercept 21.52 0.07664 289.009 4.66E-05 

Ikeja Slope 0.025** 0.004 5.7450 1.23E-06 

 Intercept 23.035 0.06338 370.915 4.62E-03 

Yenagoa Slope 0.031** 0.0042 7.4115 8.71E-09 

 Intercept 22.768 0.0724 322.836 4.23E-05 

Calabar Slope 0.029** 0.004 8.8284 1.35E-10 

 Intercept 23.767 0.6238 389.961 1.08E-05 

**Slope is significant at the 0.01 level (2-tailed) 
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Fig. 2. Standardized anomaly time series plots for mean annual air surface maximum 
temperatures for representative stations (a: Yenagoa, b: Ikeja and c: Calabar) of the Mangrove-
swamp rainforest eco-climatic zone 
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Fig. 3. Standardized anomaly time series plots for mean annual air surface maximum 
temperatures for representative stations (a: Umuahia, b: Owerri and c: Asaba) of the Tropical 
rainforest eco-climatic zone 
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Fig. 4. Standardized anomaly time series plots for mean annual air surface maximum 
temperatures for representative stations (a: Ilorin, b: Minna and c: Makurdi) of the Guinea-
wooded savanna eco-climatic zone 
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Fig. 5. Standardized anomaly time series plots for mean annual air surface maximum 
temperatures for representative stations (a: Lafia, b: Lokoja and c: Abuja) of the Sudan savanna 
eco-climatic zone 
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Fig. 6. Standardized anomaly time series plots for mean annual air surface maximum 
temperatures for representative stations (a: Maiduguri, b: Katsina and c: Damaturu) of the Sahel 
savanna eco-climatic zone 
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Fig. 7. Standardized anomaly time series plots for mean annual air surface minimum 
temperatures for representative stations (a: Calabar, b: Ikeja and c: Yenagoa) of the Mangrove-
swamp rainforest eco-climatic zone 
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Fig. 8. Standardized anomaly time series plots for mean annual air surface minimum 
temperatures for representative stations (a: Asaba, b: Owerri and c: Umuahia) of the Tropical 
rainforest eco-climatic zone 
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Fig. 9. Standardized anomaly time series plots for mean annual air surface minimum 
temperatures for representative stations (a: Minna, b: Ilorin and c: Makurdi) of the Guinea-
wooded savanna eco-climatic zone 
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Fig. 10. Standardized anomaly time series plots for mean annual air surface minimum 
temperatures for representative stations (a: Lokoja, b: Lafia and c: Abuja) of the Sudan savanna 
eco-climatic zone 
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Fig. 11. Standardized anomaly time series plots for mean annual air surface minimum 
temperatures for representative stations (a: Katsina, b: Damaturu and c: Maiduguri) of the Sahel 
savanna eco-climatic zone 
 

 
4. Discussion 
 

 Long-term monotonic trends were manifested in the historical records of the 

studied parameter. The highlights of the findings are hereby presented.   
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 The temporal trend analysis of mean annual air surface maximum temperature in 

Tables 2 and 3 reveals that 14 stations have monotonic positive (upward) trends in mean 

annual air surface maximum temperature as shown by the positive values of the M-K test 

statistic (S). Ikeja however, shows a monotonic negative (downward) trend as observed 

by the negative value of the Mann-Kendall’s test statistic (S). The highest value in the M-

K test statistic for mean annual air surface maximum temperature was observed in Lafia, 

while the lowest value was observed in Ilorin. The M-K coefficients of time trend (i.e., 

Kendall’s tau b) for mean annual air surface maximum temperature for 12 stations are 

statistically significant at the 99% confidence interval (i.e., 0.01 significance level) and 

one station (i.e., Katsina) is statistically significant at the 95% confidence interval (i.e., 

0.05 significance level). 

Similarly, the long-term temporal trend analysis of mean annual air surface 

minimum temperature in Tables 4 and 5 shows that all the stations have monotonic 

positive (upward) trends in mean annual air surface minimum temperature as revealed by 

the positive values of the M-K test statistic(S). The highest value was observed in Calabar, 

while Katsina revealed the lowest value. The trends for all the stations are statistically 

significant at the 0.01 significance level as revealed by the coefficients of time trends 

values. Comparing Tables 2 and 4, it was observed that mean annual air surface 

minimum temperature has a higher change rate than mean annual air surface maximum 

temperature. The results of this study long-term temporal trend analysis are in line with 

the findings of [11], in which mean annual air surface minimum temperature has a higher 

rate of change than mean annual air surface maximum temperature. Majority of the 

stations in the Guinea-wooded (i.e., Makurdi and Minna), Sudan (Abuja, Lafia and 

Lokoja) and Sahel savanna (i.e., Maiduguri and Damaturu) zones have higher trend 

magnitudes. The highest trend magnitude in mean annual air surface maximum 

temperature is noticeable in Lafia (i.e., 073 °C/year), while the lowest value was 

noticeable in Yenagoa (i.e., 0.015 °C/year). The highest trend magnitude in mean annual 

air surface minimum temperature was noticeable in Abuja (i.e., 0.069 °C/year), while the 

lowest value is noticeable in Katsina and Ikeja (i.e., 0.024 °C/year). Mean estimated trend 

magnitude increase for mean annual air surface maximum temperature is about 0.035 

°C/year and about 0.036 °C/year for mean annual air surface minimum temperature. 

Thus, this study gives an estimated mean trend magnitude increase in mean annual air 

surface temperature of about 0.036 °C/year (i.e., 0.36 °C/decade) and an estimated mean 

annual air surface temperature increase in Nigeria of about 1.4°C from 1981-2018. 

The standardized chronologically ordered anomaly plots for mean annual air 

surface maximum temperature show monotonic positive (upward) trends in 14 stations 

(Figs 2 a-c to 6 a-c). Extreme temperature events such as that of 1998 are shown in some 

of the standardized anomaly time series plots (i.e., Calabar, Owerri, Umuahia and 

Yenagoa). The outstanding years (i.e., 2005, 2009 and 2010) which are amongst the 10 

warmest years in the global record relative to the 1961-1990 reference period [34], were 

observed in the plots of some stations. No significant long-term trends were observed in 

Ikeja (Fig. 2b) and Ilorin (Fig. 4a). The results of the plots are in line with the M-K and 

the linear trend tests results (Tables 2 and 3 respectively) 

Additionally, the standardized chronologically ordered anomaly plots for mean 

annual air surface minimum temperature showing monotonic positive (upward) trends in 

all the 15 stations were observed (Figs. 7 a-c to 11 a-c). The standardized anomaly time 

series plots also displays the years with records of extreme events in mean annual air 

surface minimum temperatures during the period of this study. All the station’s time 
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series plots depict monotonic trends that are in complete agreement with the results of the 

M-K and the linear trend tests (Tables 4 and 5, respectively). The plots for the mean 

annual air surface temperatures depict chronologically ordered meteorological 

observations of air surface temperatures for the period covered by this study. The trend 

line fitted into the plots shows that mean annual air surface maximum temperature had 

increased monotonically for 14 stations as shown by the positive (upward) trend lines. 

Excerpt one station (i.e., Ikeja) where the mean annual air surface maximum temperature 

had decreased monotonically as shown by the negative(downward) trend line over the 

period covered by this study. Similarly, the plots for mean annual air surface minimum 

temperature shows that mean annual air surface minimum temperature had increased 

monotonically across all the representative stations of the eco-climatic zones over the 

period covered by this study. The magnitudes of the increase in both mean annual air 

surface maximum and minimum temperatures are shown by the Sen’s slope (Table 2 and 

4) and the linear trend tests (Tables 3 and 5). 

The synergistic use of more than one method to analyze the trends in mean annual 

air surface temperatures in Nigeria from 1981 to 2018, in this study is in line with the 

findings of [25, 26]. According to them, proper care should be taken to arrive at correct 

interpretation of data and test assumptions during trend analysis using statistical tests, and 

the conclusions should be made by using more than one statistical test as each statistical 

test addresses a specific question. 

This study suggests that increasing population, urbanization, increased 

evapotranspiration rates, severe drought, deforestation and desertification may be 

culpable for the upward and high trend magnitudes in air surface temperature observed in 

the Guinea-wooded, Sudan and Sahel savannas. The result of this study trend magnitude 

and direction is in line with that of Akinsanola & Ogunjobi [10], who reported an 

increase of about 0.036 °C/year in air surface temperatures and upward trends in most 

stations in Nigeria, a decreasing trend of about -0.02°C in Jos over the period 1971-2000 

and a decreasing air surface temperature trend in Ikeja and Oshodi from 1991-2000. The 

result of this study is also in line with the findings of Abiodun et al., [3], who found a 

trend in increasing mean annual air surface temperature in Nigeria which are statistically 

significant at the 95% confidence interval (i.e., 0.05 significance level) from 1971 to 

2000 historical record. 

This research results agrees in part with that of Amadi et al. [12], which found 

upward trends in mean annual air surface  maximum and minimum temperatures in 

Nigeria which are statistically significant at the 95% and 99% confidence intervals (i.e., 

0.05 and 0.01 levels of significance) and  monotonic positive (upward) trends, in most of 

the stations covered by this study, a statistically non -significant downward trend in mean 

annual air surface maximum temperature in Ilorin and a significant, monotonic positive 

(upward) trend in both mean annual air surface  maximum and minimum temperatures in 

Ikeja. The disagreements in Ilorin mean annual air surface maximum temperature result 

could be as a result of differences in data length. The disagreements in Ikeja’s mean 

annual air surface maximum temperature result could be as a result of the possible build-

up in the atmosphere over Ikeja, of a layer of air that tends to attenuate the intensity of 

the downwelling solar radiation reaching the earth’s surface but traps the thermal Infrared 

radiation upwelling from the earth’s surface and lower atmosphere at night. This study 

suggests that this may be culpable for the reducing mean annual air surface maximum 

temperature but increasing mean annual air surface minimum temperature noticeable in 
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Ikeja. Therefore, further studies should be carried out to unravel the cause of the 

downward trend in   mean annual air surface maximum temperature noticeable in Ikeja.  

 

 
5. CONCLUSIONS 
 

 This study provides an invaluable insight on the temporal trend in mean annual air 

surface temperatures across the representative stations of the selected eco-climatic zones 

in Nigeria. The study revealed monotonic positive (upward) trends significant at the 0.01 

and 0.05 significance levels across the representative stations whose estimated mean 

trend magnitude increase over the 38-year period is 1.3°C and 1.4°C for mean annual air 

surface maximum and minimum temperatures respectively. The estimated mean trend 

magnitude increase for mean annual air surface temperature in Nigeria is about 1.4°C for 

the period 1981-2018. With an estimated increase in mean trend magnitude of about 

0.035 °C/year for mean annual air surface  maximum temperature and an estimated 

increase in mean trend magnitude  in mean annual air surface  minimum temperature of 

about 0.036 °C/year, the estimated mean magnitude increase for both mean annual air 

surface  maximum and minimum temperatures is about 0.036°C/year (i.e., 0.36 

°C/decade). This study, then gives a projected estimated mean linear trend magnitude 

increase of about 4.3°C in mean annual air surface temperature by year 2100 in Nigeria. 

This is 0.2°C less than the highest regime and within the range of the projected global 

increase of about 1.5 to 4.5°C in air surface temperature up to year 2100 by the IPCC 

2007 report. 

 The observed trends in this study indicates changes in the net balance between the 

downwelling solar and the upwelling thermal infrared radiation from the earth’s surface 

and lower atmosphere due to radiative forcing caused by increasing concentrations of 

greenhouse gases (GHG’s) and aerosols, land surface properties changes, urbanization 

and increasing population. The manifestation of long-term significant temporal trend in 

the mean annual air surface temperatures at the 99% and 95% confidence intervals (i.e., 

0.01 and 0.05 significance levels, respectively) over the period covered by this study 

provides a clear evidence of possible future increase in air surface temperature and a 

strong indication of the tendency for the occurrence of climate-related hazards and their 

resulting adverse impacts in Nigeria. The results have serious consequences for Nigeria, a 

developing country with a large population. There is cogent need to respond proactively 

rather than reactively, so as to tackle the attendant resulting adverse impacts of increasing 

air surface temperatures in Nigeria before they become overwhelming.  
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