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Our Journal is Moving Forward  
 

 
Happy New Year to all enthusiastic authors and editorial team members. The 

Trends in Renewable Energy (TRE) successfully concluded the second volume, and 

heading to another year. We deeply appreciate your support, and are looking forward to 

continuously working with all colleagues around the world.  

 

The 2016 TRE Author of the Year Award goes to Dr. Athanasios G. Lazaropoulos 

at the National Technical University of Athens, Greece. Dr. Lazaropoulos contributed 
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The 2016 TRE Paper of the Year goes to “A Review of Hydrothermal 
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showed impacts to the renewable energy field.  

 

During last two years, we have been accumulating knowledge of running a 

scientific journal. Now is the time to move forward. We are pursuing to be indexed in 

renowned indexes, such as the Directory of Open Access Journals (DOAJ), the Science 

Citation Index (SCI of Web of Science Core Collection), and Ei Compendex.  

 

To prepare this journal to pass the evaluations conducted by multiple indexes, the 

journal is now an open accessed, peer-reviewed semi-annual journal with completely 

Free-of-Charge publication policy (i.e. no cost to authors and readers). We will continue 

the TRE’s mission to publish quality reviews, original research, and application-oriented 

papers, providing a communication platform that is run exclusively by scientists working 

in the renewable energy field. Papers are invited on any individual topic related to 

renewable energy or those that are interdisciplinary.  

 

 

Bo Zhang 

Editor in Chief 
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This first paper assesses the performance of three well-known piecewise 
monotonic data approximations (i.e., L1PMA, L2WPMA, and L2CXCV) 
during the mitigation of measurement differences in the overhead  
medium-voltage broadband over power lines (OV MV BPL) transfer 
functions. 
The contribution of this paper is triple. First, based on the inherent 
piecewise monotonicity of OV MV BPL transfer functions, L2WPMA and 
L2CXCV are outlined and applied during the determination of theoretical 
and measured OV MVBPL transfer functions. Second, L1PMA, L2WPMA, 
and L2CXCV are comparatively benchmarked by using the performance 
metrics of the percent error sum (PES) and fault PES. PES and fault 
PES assess the efficiency and accuracy of the three piecewise 
monotonic data approximations during the determination of transmission 
BPL transfer functions. Third, the performance of L1PMA, L2WPMA, and 
L2CXCV is assessed with respect to the nature of faults —i.e. faults that 
follow either continuous uniform distribution (CUD) or normal distribution 
(ND) of different magnitudes—. 
The goal of this set of two papers is the establishment of a more effective 
identification and restoration of the measurement differences during the 
OV MV BPL coupling transfer function determination that may 
significantly help towards a more stable and self-healing power system. 
 

 
Keywords:  Smart Grid; Intelligent Energy Systems; Broadband over Power Lines (BPL) networks; 

Power Line Communications (PLC); Faults; Fault Analysis; Fault Identification and Prediction; Power 

System Stability; Distribution Power Grids 

 

 
1. Introduction 
 In recent years, the broadband over powerlines (BPL) technology has attracted 

significant popularity as a connectivity solution in homes and a provider of various smart 

grid related applications [1]. More specifically, the deployment of BPL networks across 

the vintage transmission and distribution power grids transforms them into an intelligent 

IP-based communications network further enhancing power system stability [2], [3]. 

Among the characteristics of this communications network, its low-cost deployment and 

potential of broadband last mile access through its wired/wireless interfaces render the 
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BPL technology both as a useful power grid complement and a strong 

telecommunications competitor to wireless networking solutions [4]. 

 Thanks to the HomePlug Powerline Alliance, which is leading the standardization 

process of the BPL technology, more than 100 million BPL devices with an annual 

growth rate of 30% have already been deployed and are able to deliver high-bandwidth 

applications (e.g., HD video streaming and VoIP) with data rates that exceed 1Gbps [5]-

[7]. To achieve these data rates, various inherent BPL deficiencies, such as high and 

frequency-selective channel attenuation and noise, should be overcome [8]-[13]. 

 As the determination of the transfer functions of overhead medium-voltage  

(OV MV) BPL networks is concerned in this paper, the well-established hybrid method, 

which is employed to examine the behavior of various multiconductor transmission line 

(MTL) structures, is also adopted in this paper [2], [8]-[12], [14]-[25]. Given the OV MV 

BPL network topology, OV MV MTL configuration, and the applied coupling scheme as 

inputs, the hybrid method gives as an output the corresponding transfer function.  

Despite the theoretical accuracy of the hybrid method during the determination of 

OV MV BPL transfer functions, a number of practical reasons and “real-life” conditions 

may create measurement differences between experimental and theoretical results. On the 

basis of six measurement difference categories, which are analyzed in [2], [24], [25],  

OV MV BPL transfer functions are significantly distorted critically affecting the 

monitoring and surveillance of the distribution power grid. To mitigate the 

aforementioned measurement differences and restore the undistorted OV MV BPL 

transfer function, a piecewise monotonic data approximation is applied [26]-[33].  

Until now, only L1PMA has been applied and examined in transmission and distribution 

BPL networks [2], [24], [25]. Here, another two piecewise monotonic data 

approximations by Demetriou are first applied and comparatively benchmarked in 

comparison with the already validated L1PMA; say, L2WPMA [34] and L2CXCV [35]. 

The rest of this paper is organized as follows: In Sec. II, the OV MV MTL 

configuration and the respective indicative OV MV BPL topologies are presented.  

Sec. III synopsizes the principles of BPL signal propagation and transmission across  

OV MV BPL topologies. In Sec. IV, a brief presentation of the L1PMA is given.  

Also, L2WPMA and L2CXCV are analytically outlined. In the same Section, the percent 

error sum (PES) and fault PES, which are applied in order to benchmark L1PMA, 

L2WPMA, and L2CXCV, are reported. Sec. V discusses the simulations of various  

OV MV BPL networks intending to mark out the efficiency of L1PMA, L2WPMA, and 

L2CXCV and to mitigate the occurred measurement differences. Sec.VI concludes this 

paper. 

 

 

2. Distribution Power Grids 
2.1 OV MV MTL Configuration 
 The overhead MV distribution lines, which are examined in this paper, are shown 

in Fig. 1(a) of [2]. Overhead MV distribution line consists of: 

 Phase lines: These lines with radii pMV,r  are hung at typical heights hMV above 

ground. The three phase conductors of the OV MV MTL configuration are further 

spaced by ΔΜV.  

 Neutral conductors: There are no neutral conductors in the examined OV MV 

MTL configuration.  
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As regards the overhead MV distribution line configuration, it consists of ACSR  

three-phase conductors [8], [9], [17]. Exact values concerning conductor properties and 

configuration geometries are reported in [19]. 

 In accordance with [21], [36]-[38], the ground with conductivity  

g =5mS/m and relative permittivity 
rg =13 is considered as the reference conductor.  

The aforementioned ground parameters define a realistic scenario during the following 

analysis while the impact of imperfect ground on broadband signal propagation via  

OV MV power lines was analyzed in [8], [9], [17], [19], [21], [39]-[41]. 

 

 

2.2 Indicative OV MV BPL Topologies 
 In accordance with [8]-[12], [14]-[22], [36], [42]-[44] and with reference to  

Fig. 1, average path lengths of the order of 1,000m are considered in OV MV BPL 

topologies. Hence, the following four indicative OV MV BPL topologies, concerning 

end-to-end connections of average path lengths, are examined, namely:  

1. A typical urban topology (OV MV urban case) with N=3 branches 

(L1=500m, L2=200m, L3=100m, L4=200m, Lb1=8m, Lb2=13m, Lb3=10m). 

2. A typical suburban topology (OV MV suburban case) with N=2 branches 

(L1=500m, L2=400m, L3=100m, Lb1=50m, Lb2=10m). 

3. A typical rural topology (OV MV rural case) with only N=1 branch  

(L1=600m, L2=400m, Lb1=300m).  

4. The “LOS” transmission along the same end-to-end distance 

L=L1+…+LN+1=1000m when no branches are encountered. This topology 

corresponds to Line of Sight transmission in wireless channels.  

The four indicative OV MV BPL topologies are going to be used so that the accuracy of 

L1PMA, L2WPMA, and L2CXCV is evaluated in Sec. V. 

The assumptions for the circuital parameters of OV MV BPL topologies, which 

are concerned in this paper, are the same as [2], namely: (i) The branch lines are assumed 

identical to the transmission ones; (ii) The interconnections between the transmission and 

branch conductors of the lines are fully activated; (iii) The transmitting and the receiving 

ends are assumed to match the characteristic impedance of the modal channels; and (iv) 

The branch terminations are assumed to be open circuits. 

 

 

 
 

Figure 1. General OV MV BPL topology [2]. 
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3. A Briefing of BPL Propagation and Transmission Analysis 
 
3.1 Hybrid Method and Channel Transfer Function 

The well-established hybrid method, which has been tested successfully in 

various transmission and distribution BPL networks [8]-[12], [14]-[23], [40]-[42], is also 

applied in this paper. Consisting of: (i) a bottom-up approach that is based on the MTL 

theory, eigenvalue decomposition (EVD), and singular value decomposition (SVD); and  

(ii) a top-down approach that is denoted as TM2 method and based on the concatenation 

of multidimensional chain scattering matrices, the hybrid method gives as an output the 

corresponding transfer function when the OV MV BPL network topology,  

OV MV MTL configuration and the applied coupling scheme are given as inputs. 

 

3.2 MTL Theory, EVD and Channel Transfer Functions 
 As it has already been mentioned in [8]-[12], [14]-[18], [21], [36],  

the standard TL analysis can be extended to the MTL case through a matrix approach. 

Since the nOVMV+1 conductors of the OV MV MTL configuration are laid parallel to the z 

axis, nOVMV modes are supported by the MTL configuration. Through TM2 method, their 

spectral behavior is described by the 
OVMVOVMV nn   EVD modal transfer function matrix 

m
H  whose elements m

, jiH , OVMV,,1, nji   are the EVD modal transfer functions 

where 
m

, jiH denotes the element of matrix m
H  in row i of column j.  

 Since the EVD modal transfer function matrix is already evaluated, the 
OVMVOVMV nn   channel transfer function matrix H  is determined by 

  1 V

m

V THTH                  (1) 

where VT  is a
OVMVOVMV nn   matrix that depends on the frequency, the OV MV MTL 

configuration and the physical properties of the cables [8]-[12], [14]-[18], [21], [36], [45]. 

 

3.3 Coupling Schemes and Coupling Transfer Functions 
 According to how signals are injected into OV MV lines, two categories of 

coupling schemes are mainly supported by the OV MV BPL networks, namely [2], [16], 

[18], [24], [25], [46]-[48]: (i) Wire-to-Ground (WtG) coupling schemes; and  

(ii) Wire-to-Wire (WtW) coupling schemes. Since the main interest of this paper is the 

comparative benchmark of the piecewise approximation methods, only one of the 

previous coupling schemes is going to be applied in the following analysis for the sake of 

clarity and terseness; say, WtG coupling scheme. 

 In the case of WtG coupling schemes, the coupling WtG channel transfer function 


sWtGH is given from 

    WtG1TWtGWtGs

CTHTC  

V

m

VH                (2) 

where WtGC  is a 3×1 coupling column vector with zero elements except in row s where 

the value is equal to 1. Note that WtG coupling schemes inject the signal onto the 

conductors, s=1,...,3 while the signal returns via the ground. WtG coupling between 

conductor s and ground will be denoted as WtGs, hereafter. 
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4. Presentation of L1PMA, L2WPMA, and L2CXCV 
 
4.1 Introduction to Piecewise Monotonic Data Approximation Methods of 
Demetriou 
 Similarly to L1PMA, various monotonic data approximation methods have been 

proposed by Demetriou, such as L2WPMA and L2CXCV. Their application, which is 

theoretically presented and experimentally verified in [2], [24]-[31], successfully copes 

with problems that are derived from the presence of measurement differences during the 

OV MV BPL transfer function determination. Until now, only the efficiency of the best 

L1PMA to mitigate measurement differences during the determination of OV MV BPL 

transfer functions has been assessed [2], [24], [25]. In this paper, L2WPMA and 

L2CXCV are comparatively benchmarked against L1PMA when the mitigation of the 

occurred measurement differences during the OV MV BPL transfer function 

determination is required. 

 

4.2 L1PMA 
 L1PMA exploits the piecewise monotonicity property that always occurs in 

transmission and distribution BPL transfer functions [2], [24], [25]. Actually, L1PMA 

decomposes the BPL transfer function into separate monotonous sections between its 

adjacent turning points (primary extrema) [28], [29]. Since the separate monotonous 

sections are identified, L1PMA separately handles them. On the basis of the minimization 

of the moduli sum of the measurement differences, L1PMA achieves to mitigate the 

uncorrelated measurement differences by neglecting the existence of few large ones [2], 

[49]. A detailed analysis concerning the application of L1PMA to distribution and 

distribution BPL transfer functions is given in [2], [24], respectively.  

Apart from its sound theoretical background, another strong point of L1PMA is 

its easy and online software availability. In fact, the Fortran software package that is 

applied to implement the L1PMA has extensively been verified in various scientific fields 

[29], [31], [50]-[52] and is freely available online in [53]. In general terms, L1PMA 

software receives as inputs the measured OV MV BPL coupling transfer function, the 

measurement frequencies and the number of monotonic sections (i.e., either user- or 

computer-defined) and gives as outputs the optimal primary extrema and the best fit of 

the measured OV MV BPL coupling transfer function. 

 

4.3 L2WPMA 
 In accordance with [34], L2WPMA decomposes the examined BPL transfer 

function, which is contaminated by measurement differences, into separate monotonous 

sections between its primary extrema. Then, L2WPMA minimizes the weighted sum of 

the square of the measurement differences by requiring specific number of sign changes 

in the first divided measurement differences of the approximation. The number of sign 

changes is equal to the number of monotonic sections minus one where the number of 

monotonic sections is either user- or computer-defined. 

 Similarly to L1PMA, the Fortran software package that is applied to implement 

L2WMPA is freely available online in [34]. In fact, Fortran software employs a dynamic 

programming technique that divides the BPL transfer function data into disjoint sets of 

adjacent data and solves a problem of monotonic fit or isotonic regression for each set. 

The number of disjoint sets is at most equal to the defined number of monotonic sections. 

In comparison with the Fortran software of L1PMA, L2WPMA is characterized by 
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shorter computation times due to its lower complexity. In general terms, L2WPMA 

software receives the same inputs with the L1PMA one and gives as outputs a spline 

representation of the solution, the corresponding Lagrange multipliers and the best fit of 

the measured OV MV BPL coupling transfer function. 

 

4.4 L2CXCV 
 In accordance with [35], L2CXCV smooths the OV MV transfer function data (in 

the least square error sense), which are contaminated with measurement differences. In 

fact, L2CXCV smoothing is subject to one sign change in the second divided differences 

of the smoothed values. In contrast with L1PMA and L2WPMA, the number of 

monotonic sections is neither user- nor computer-defined since L2CXCV partitions the 

data into two disjoint sets of adjacent data and calculates the required fit by solving a 

strictly convex quadratic programming problem for each set. The quadratic programming 

technique makes use of active sets and takes advantage of a B-spline representation of the 

smoothed values [35]. 

 Similarly to L1PMA and L2WPMA, the entire Fortran code that is required to 

implement L2CXCV is freely available online in [54]. In general, L2CXCV receives as 

input the measured OV MV BPL coupling transfer function and gives as output the fit of 

the measured OV MV BPL coupling transfer function. 

 

4.5 The Nature of Measurement Differences and the Mathematics of Piecewise 
Monotonic Data Approximation Methods 
 As already been mentioned, a set of practical reasons and “real-life” conditions 

create significant differences between experimental measurements and theoretical results 

during the transfer function determination of BPL networks. The reasons for these 

measurement differences can be grouped into six categories that are analytically reported 

in [2], [24], [25], [55]-[57]. The measured OV MV BPL coupling transfer function 

WtGH  is then determined by 

     iii fefHfH  WtGWtG
, i=1,…,u                       (3) 

where fi,i=1,…,u denotes the measurement frequency, e(fi) synopsizes the total 

measurement difference due to the aforementioned six categories and u is the number of 

subchannels in the examined frequency range. 

Generalizing eq. (3), the measured OV MVBPL coupling transfer function 

column vector
WtG

H is then determined by 

`         TWtGWtG

1

WtGWtGWtG

ui fHfHfH  fHH   (3) 

where  T1 ui fff f  is the measurement frequency column vector and  

fi, i=1,…,u are the measurement frequencies. Similarly to the measured OV MV BPL 

coupling transfer function column vector
WtG

H , the theoretical OV MV BPL coupling 

transfer function column vector
WtG

H  can also be defined. 

With reference to Secs. IV B-D, the measured OV MV BPL coupling transfer 

function column vector, the measurement frequency column vector and the number of 

monotonic sections (only for L1PMA and L2WPMA) are received by the three examined 

piecewise monotonic data approximation methods. With reference to Secs. IV B-D, each 

monotonic data approximation methods processes its inputs and gives as output the 
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approximated OV MV BPL coupling transfer function column vector  fHWtG
 by 

applying its algorithm. 

 

4.6 PES and Fault PES for L1PMA, L2WPMA and L2CXCV 
As it has already been mentioned in Sec. IV E, to evaluate the approximation 

accuracy of the piecewise monotonic data approximation methods of this paper and, thus, 

to comparatively benchmark them, the performance metrics of [2] are used.  

More specifically, the PES expresses as a percentage the total sum of the relative 

differences between the approximated coupling transfer function and the theoretical 

coupling transfer function for all the used frequencies, namely  
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With respect to eq. (4), to assess the mitigation efficiency of the piecewise monotonic 

data approximation methods towards the faults, PES is compared against the fault PES 

that is given by 
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5. Numerical Results and Discussion 
 
5.1 Simulation Goals and Parameters  
 Various topologies of OV MV BPL networks are simulated with the purpose of 

comparatively benchmarking the approximation efficiency of the piecewise monotonic 

data approximation methods that are examined in this paper when various faults occur. 

As regards the simulation specifications, those are the same with [2], [24], [25]. 

More specifically, the BPL frequency range and the flat-fading subchannel frequency 

spacing are assumed equal to 1-30MHz and 1MHz, respectively. Therefore, the number 

of subchannels in the examined frequency range is equal to 30. Arbitrarily, the WtG3 

coupling scheme is applied during the following simulations. As it is usually done [12], 

[14], [15], [17], [19], [58], the selection of representative coupling schemes is a typical 

procedure for the sake of reducing manuscript size. 

 

5.2 Theoretical and Approximated OV MV BPL Transfer Functions by Applying 
L1PMA, L2WPMA and L2CXCV 
 Prior to comparatively benchmarking L1PMA, L2WPMA, and L2CXCV, their 

overall performance against the mitigation of measurement differences during the 

determination of the OV MV BPL coupling transfer functions is presented in this 

subsection. 

 In Figs. 2(a)-(d), the theoretical coupling transfer function is plotted versus 

frequency for the four indicative OV MV BPL topologies, respectively, when WtG3 
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coupling scheme is applied. In each figure, L1PMA result is also plotted for a number of 

representative monotonic sections (i.e., ksect=2, ksect=5, and ksect=20). In Figs. 3(a)-(d) and 

Figs. 4(a)-(d), similar curves with Figs. 2(a)-(d) are shown for L2WPMA (same cases of 

monotonic sections) and L2CXCV (no monotonic sections), respectively.  
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Figure 2. OV MV BPL Coupling transfer function when L1PMA is applied for three representative 
cases of monotonic sections. (a) Urban case. (b) Suburban case. (c) Rural case. (d) “LOS” case. 
 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.1, 2-32. doi: 10.17737/tre.2017.3.1.0029 11 

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.1, 2-32. doi: 10.17737/tre.2017.3.1.0029 12 

 

 
Figure 3. Same curves with Fig.2 but for L2WPMA for three representative cases of monotonic 
sections. 
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Figure 4. Same curves with Fig.2 but for L2CXCV. 
 
 

 From Figs. 2(a)-(d), 3(a)-(d), and 4(a)-(d), it is evident that L1PMA and 

L2WPMA very accurately approximate all the examined coupling transfer functions of 

the indicative OV MV BPL topologies while the number of monotonic sections remains 

high. As the number of monotonic sections decreases so does the accuracy of the 

approximation of L1PMA and L2WPMA. When the number of monotonic sections falls 

below three, all the three piecewise monotonic data approximations (i.e., L1PMA, 

L2WPMA, and L2CXCV) present comparable results. In fact, if the number of 
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monotonic sections is equal to one or two, all the piecewise monotonic data 

approximations tend to approximate the coupling transfer function data closely to the 

linear approximation.  

 As it’s already been mentioned in [2], the presence of branches along the end-to-

end transmission path causes signal reflections, thus, creating a richer multipath 

environment that adds new spectral notches (extrema) across the coupling transfer 

function of “LOS” case. The new extrema that appear in the coupling transfer functions 

of these topologies (i.e., urban case) differ in depth and extent while they require 

additional monotonic sections so that the approximation may be accurate. Thanks to their 

adjustable number of monotonic sections, L1PMA and L2WMPA can improve their 

approximations so that a better accuracy is achieved and these new extrema can be 

embodied in their approximations –see approximations of ksect=20 of Figs. 2(a) and 3(a). 

Indeed, not even one coupling transfer function data is outside the L1PMA and 

L2WPMA approximations of 20 monotonic sections in the two aforementioned figures. 

Conversely, L2CXCV approximates the coupling transfer function data without the use 

of monotonic sections having several approximations of low accuracy as a result when 

OV MV BPL topologies are examined. As a matter of fact, L2CXCV creates a general 

approximation rather than an approximation that tries to embody all the coupling transfer 

function data. To assess the performance of L1PMA, L2WPMA, and L2CXCV, their 

PES is reported in Table 1 for the four indicative OV MV BPL topologies when different 

numbers of monotonic sections are applied and no measurement differences are assumed.  
 
 

TABLE 1 

PES between Theoretical and Approximated Coupling Transfer Functions when  

L1PMA, L2WPMA, and L2CXCV Are Applied 

 

 PES 

(%) 

Number of 

Monotonic 

Sections 

Urban case Suburban case Rural case “LOS” case 
L1PMA L2WPMA L2CXCV L1PMA L2WPMA L2CXCV L1PMA L2WPMA L2CXCV L1PMA L2WPMA L2CXCV 

1 37.53 48.02 34.55 44.10 74.16 36.64 24.68 30.54 9.45 29.51 40.74 11.39 
2 27.06 41.05 34.55 22.45 38.66 36.64 3.79 3.92 9.45 3.93 3.99 11.39 
3 15.14 16.57 34.55 22.45 37.04 36.64 3.79 3.92 9.45 3.93 3.99 11.39 
4 8.50 9.60 34.55 6.00 6.44 36.64 1.24 1.36 9.45 0.77 0.83 11.39 
5 8.50 9.60 34.55 6.00 6.44 36.64 1.24 1.36 9.45 0.77 0.83 11.39 
6 3.37 4.26 34.55 4.38 4.81 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
7 3.37 4.26 34.55 4.38 4.81 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
8 0.35 0.35 34.55 3.35 3.59 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
9 0.35 0.35 34.55 3.35 3.59 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 

10 0.07 0.07 34.55 2.56 3.01 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
11 0.07 0.07 34.55 2.56 3.01 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
12 1.21×10-5 1.17×10-5 34.55 1.79 2.11 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
13 1.21×10-5 1.17×10-5 34.55 1.79 2.11 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
14 1.21×10-5 1.17×10-5 34.55 1.21 1.57 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
15 1.21×10-5 1.17×10-5 34.55 1.21 1.57 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
16 1.21×10-5 1.17×10-5 34.55 0.67 0.67 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
17 1.21×10-5 1.17×10-5 34.55 0.67 0.67 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
18 1.21×10-5 1.17×10-5 34.55 0.31 0.31 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
19 1.21×10-5 1.17×10-5 34.55 0.31 0.31 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
20 1.21×10-5 1.17×10-5 34.55 7.16×10-6 7.28×10-6 36.64 7.36×10-6 7.47×10-6 9.45 7.37×10-6 7.59×10-6 11.39 
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The previous remarks concerning Figs. 2(a)-(d), 3(a)-(d), and 4(a)-(d) are 

reflected on the results of Table 1. Actually, the number of monotonic sections 

determines the approximation accuracy of L1PMA and L2WPMA to the coupling 

transfer functions of OV MV BPL networks. In contrast, L2CXCV performance remains 

stable and relatively poor regardless of the number of monotonic sections since this 

piecewise data approximation method does not include this property during the 

computation of its approximation. Further comparing L1PMA and L2WPMA 

performance, their approximation behavior remains nearly the same when different OV 

MV BPL topologies are examined and different number of monotonic sections is 

assumed. Actually, L1PMA presents slightly lower PES results than the respective ones 

of L2WPMA in the majority of the cases examined. 

 Already been identified for L1PMA in [2], there is an optimal number of 

monotonic sections above which the PES improvement remains marginal and uniquely 

describes the pattern of an OV MV BPL topology. This optimal number mainly depends 

on the OV MV BPL topology and remains the same either for L1PMA or for L2WPMA. 

In fact, as the OV MV BPL topology comprises more branches the optimal number of 

monotonic sections generally increases. From Table 1, the optimal number of monotonic 

sections is equal to 12, 20, 6, and 6 for the urban, suburban, rural, and “LOS” case, 

respectively.  

On the basis of its identity characteristics, the optimal number of monotonic 

sections also acts as an efficient countermeasure technique against the measurement 

differences. Since the optimal number of monotonic sections remains the same for given 

OV MV BPL topology, the presence of measurement differences can be mitigated for the 

sake of the preservation of the number of monotonic sections. To validate this concept, 

the performance of L1PMA, L2WPMA, and L2CXCV is assessed as a measurement 

difference mitigation technique in the following subsection. 

 

5.3 L1PMA, L2WPMA and L2CXCV against Measurement Differences 
In accordance with [2], [24], [25], the six categories of measurement differences 

can create significant differences between experimental measurements and theoretical 

results during the determination of OV MV BPL coupling transfer functions. The total 

measurement difference can be assumed to follow either CUD with minimum value  

-𝛼CUD and maximum value 𝛼CUD or ND with mean 𝜇ND and standard deviation 𝜎ND.  

Since the conclusions concerning the performance of piecewise monotonic data 

approximations have been verified to remain almost the same either CUD or ND is 

applied [2], [25], only one of the previous measurement difference distributions is 

adopted in the following analysis; say, CUD. 

 Piecewise monotonic data approximations achieve to mitigate the additive 

measurement differences by simply maintaining the monotonicity pattern of each OV 

MV BPL coupling transfer function. To examine the impact of measurement differences 

on the determination of OV MV BPL coupling transfer functions and the potential of 

counterbalancing the measurement differences, in Figs. 5(a)-(d), the theoretical and 

measured coupling transfer functions are plotted versus frequency for the four indicative 

OV MV BPL topologies, respectively. Note that the measured coupling transfer function 

corresponds to CUD of 𝛼CUD=6dB when the corresponding optimal number of monotonic 

sections for each OV MV BPL topology is assumed. In each figure, the approximated 

coupling transfer function of the measured one is also drawn when L1PMA is applied.  
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In Figs. 6(a)-(d) and 7(a)-(d), same plots are given with Figs. 5(a)-(d) but for the 

application of L2WPMA and L2CXCV, respectively. 
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Figure 5. Theoretical, measured, and approximated OV MV BPL coupling transfer function when 
L1PMA is applied for the indicative measurement difference CUD ofαCUD=6dB. (a) Urban case 
–the optimal number of monotonic sections is equal to 12–. (b) Suburban case –the optimal 
number of monotonic sections is equal to 20–. (c) Rural case –the optimal number of monotonic 
sections is equal to 6–. (d) “LOS” case –the optimal number of monotonic sections is equal to 6–. 
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Figure 6. Same curves with Fig.5 but for L2WPMA. 
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Figure 7. Same curves with Fig.2 but for L2CXCV. 

 

 

From Figs. 5(a)-(d), 6(a)-(d), and 7(a)-(d), it is clearly demonstrated that all the 

examined piecewise monotonic data approximations are attempting to identify the 

primary extrema of the measured OV MV BPL transfer functions and, then, interpolate 

the coupling transfer function data at these extrema. In the case of L1PMA and 

L2WPMA, the low optimal number of monotonic sections poses restrictions so that high 

fluctuations due to the high magnitudes of measurement differences, which distort the 
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monotonicity pattern and exceed the optimal number of monotonic sections, can be 

mitigated. Hence, both L1PMA and L2WPMA very efficiently approximate the OV MV 

BPL coupling transfer functions of rural and “LOS” cases. However, when aggravated 

OV MV BPL topologies are examined (e.g., urban and suburban case), the need for high 

number of monotonic sections is required so that the depth and the extent of spectral 

notches of the theoretical OV MV BPL coupling transfer function are successfully 

included. The high optimal number of monotonic sections gives sufficient freedom to fit 

the measured OV MV BPL coupling transfer function data without excluding 

measurement differences of high magnitude. Conversely, L2CXCV creates an average 

approximation that remains almost stable reducing the influence of gross measurement 

differences. Exploiting the CUD measurement difference nature, L2CXCV 

approximation generally follows the theoretical OV MV BPL coupling transfer functions 

in all the indicative OV MV BPL topologies examined.  

To comparatively benchmark L1PMA, L2WPMA, and L2CXCV when 

measurement differences of different maximum CUD values occur, PES of each 

piecewise data approximation method as well as the PESfault of indicative urban OV MV 

BPL topology are demonstrated in Table 2 when different maximum CUD values are 

applied. In Table 3, 4, and 5, same reports with Table 2 are presented but for the 

suburban, rural, and “LOS” case, respectively. Note that the optimal number of 

monotonic sections, which is presented in Table 1, is used for each indicative OV MV 

BPL topology. 
 
 

TABLE 2 

PESfault and PES for the Indicative Urban OV MV BPL Topology when  

L1PMA, L2WPMA, and L2CXCV Are Applied for Different Maximum CUD Value 

 

 Urban Topology 

Maximum 

CUD 

Value 

(dB) 

 

PESfault 

(%) 

PES 

(%) 

L1PMA L2WPMA L2CXCV 

1 3.51 3.51 3.51 34.65 

2 7.51 7.61 7.03 35.91 

3 9.63 9.79 9.39 35.35 

4 13.27 13.86 12.94 35.58 

5 16.27 15.72 16.30 36.58 

6 18.76 18.68 17.95 34.51 

7 20.22 20.17 20.22 38.06 

8 24.70 24.59 24.67 36.72 

9 27.31 27.15 27.15 37.66 

10 36.17 34.64 36.89 41.56 
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TABLE 3 

PESfault and PES for the Indicative Suburban OV MV BPL Topology when  

L1PMA, L2WPMA, and L2CXCV Are Applied for Different Maximum CUD Value 

 

 Suburban Topology 

Maximum 

CUD 

Value 

(dB) 

 

PESfault 

(%) 

PES 

(%) 

L1PMA L2WPMA L2CXCV 

1 5.74 5.74 5.74 36.77 

2 12.27 12.27 12.27 36.71 

3 15.74 15.74 15.74 36.21 

4 21.69 21.69 21.69 37.46 

5 26.61 26.56 25.13 38.27 

6 30.68 30.68 30.68 36.01 

7 33.07 33.07 33.07 40.07 

8 40.39 40.39 40.39 39.78 

9 44.66 44.66 44.66 40.60 

10 59.14 59.14 59.14 58.34 

 

 

 

 
 

TABLE 4 

PESfault and PES for the Indicative Rural OV MV BPL Topology when  

L1PMA, L2WPMA, and L2CXCV Are Applied for Different Maximum CUD Value 

 

 Rural Topology 

Maximum 

CUD 

Value 

(dB) 

 

PESfault 

(%) 

PES 

(%) 

L1PMA L2WPMA L2CXCV 

1 14.00 11.27 8.97 11.49 

2 29.92 24.28 22.93 18.18 

3 38.38 34.01 29.50 26.35 

4 52.87 49.09 39.60 36.22 

5 64.86 53.43 67.39 35.09 

6 74.79 56.11 81.51 35.34 

7 80.60 73.22 100.46 34.22 

8 98.45 85.31 187.02 49.86 

9 108.85 101.03 184.77 60.06 

10 144.16 145.50 300.00 75.71 
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TABLE 5 

PESfault and PES for the Indicative “LOS” OV MV BPL Topology when  

L1PMA, L2WPMA, and L2CXCV Are Applied for Different Maximum CUD Value 

 

 “LOS” Topology 

Maximum 

CUD 

Value 

(dB) 

 

PESfault 

(%) 

PES 

(%) 

L1PMA L2WPMA L2CXCV 

1 15.57 11.66 9.74 13.45 

2 33.28 25.90 26.67 20.77 

3 42.69 37.87 32.82 29.80 

4 58.82 54.80 50.82 40.76 

5 72.16 59.28 86.18 39.34 

6 83.21 60.95 108.25 39.51 

7 89.68 91.99 123.44 38.58 

8 109.52 95.25 276.60 55.97 

9 121.10 112.46 228.31 66.99 

10 160.38 161.53 413.36 84.38 

 

 

 From Tables 2-5, a plethora of interesting conclusions can be revealed as follows: 

 When the PES of a piecewise monotonic data approximation is lower than the 

respective PESfault of the examined OV MV BPL topology for a given maximum 

CUD value, this implies that the approximated OV MV BPL coupling transfer 

function resembles more to the corresponding theoretical OV MV BPL transfer 

function than the measured one. Therefore, the mitigation of measurement 

differences may occur in the cases where the examined piecewise monotonic data 

approximations present lower PES than the corresponding PESfault. Indeed, 

comparing PESfault with PES of L1PMA, L2WPMA, and L2CXCV, at least one of 

the aforementioned piecewise monotonic data approximations achieves to 

mitigate the occurred measurement differences in 33 of the 40 cases examined, 

which is equivalent to 82.5%. Schematically, these 33 cases are illustrated with 

green background color in Tables 2-5. 

 Further analyzing the cases where a measurement difference mitigation can be 

achieved, the following analytics can be pointed out: 

o L1PMA presents the best PES in 4 of the 33 examined cases, say 12.12%. 

o L2WPMA presents the best PES in 6 of the 33 examined cases, say 

18.18%. 

o L2CXCV presents the best PES in 22 of the 33 examined cases, say 

66.67%. 

o L1PMA and L2WPMA present the same best PES in 1 of the 33 examined 

cases, say 3.03%. 

 Correlating the previous piecewise monotonic data approximation analytics with 

the examined OV MV BPL topologies, it is observed that: 

o During the OV MV BPL coupling transfer function approximation of 

topologies with low number of branches, such as “LOS” and rural cases, 

the spectral notches that observed in coupling transfer functions are 
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shallow and rare. Hence, OV MV BPL coupling transfer functions present 

wide ranges of flat spectral behavior while the optimal number of 

monotonic sections remains low. The measurement differences create 

fluctuations that can be counterbalanced by a simple approximation 

method, such as L2CXCV, that maintains a steady monotonicity pattern. 

Therefore, it is obvious that L2CXCV presents the best PES in comparison 

with L1PMA and L2WPMA when “LOS” and rural cases are examined.  

o As the branch complexity of the OV MV BPL topologies raises so does 

the extent and the depth of spectral notches across the coupling transfer 

functions. Since an intense multipath environment is investigated, the need 

for including more primary and secondary extrema requires higher optimal 

number of monotonic sections. In these cases, the simple approximations, 

such as L2CXCV, fail to describe the richness of the notches cancelling 

the efficiency of these approximations. Here, L1PMA and L2WPMA are 

able to catch the complexity of the OV MV BPL coupling transfer 

functions. Indeed, L1PMA and L2WPMA can almost equivalently 

mitigate the measurement differences of the examined urban OV MV BPL 

topology. 

 Relating the previous piecewise monotonic data approximation analytics with the 

different applied maximum CUD values, it can be pointed out that: 

o When the maximum CUD value remains low, i.e., below 6-7dB, the 

measured OV MV BPL coupling transfer functions little differ from the 

theoretical ones due to the weak fluctuations. Based on the optimal 

number of monotonic sections, L1PMA and L2WPMA approximate the 

measured OV MV BPL coupling transfer functions near the theoretical 

one by omitting the weak fluctuations. 

o As the maximum CUD value increases, the measurement differences 

become important and comparable to the spectral notches of OV MV BPL 

coupling transfer functions. On the basis of the optimal number of 

monotonic sections, L1PMA and L2WPMA approximate the data through 

the prism of specific monotonic sections. Here, the high optimal number 

of monotonic sections may permit the overfit of L1PMA and L2WPMA 

during the approximations rendering unable the rejection of the extrema 

due to measurement differences. Conversely, L2CXCV produces a simple 

approximation, which tries to create an average fit neglecting the general 

fluctuations, that avoids the deficiency of the overfit of L1PMA and 

L2WPMA. 

 To exploit the strong points of each of the aforementioned piecewise monotonic 

data approximations, an adaptive countermeasure technique against measurement 

differences should be proposed, as follows: 

o When the examined OV MV BPL topology is characterized by significant 

number of branches of short length (i.e., urban topologies), L1PMA and 

L2WPMA should be adopted due to their proneness to easily adapt to the 

versatility of the coupling transfer functions of these topologies.  

o In contrast, when the examined OV MV BPL topologies consist of few 

long branches, a simple approximation, such as L2CXCV, is required to 

give an overall and more general picture of the measured OV MV BPL 

coupling transfer function. Since the theoretical OV MV BPL coupling 
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transfer functions present shallow spectral notches, their behavior is close 

to the approximation generated by the L2CXCV. 

 The most crucial role during the comparative benchmarking of the previous 

piecewise monotonic data approximations plays the selection of the optimal 

number of monotonic sections. In fact, the optimal number of monotonic sections 

determines: (i) the accuracy of L1PMA and L2WPMA that is expressed by PES; 

and (ii) the result of the comparison between piecewise monotonic data 

approximations of monotonic sections (e.g., L1PMA and L2WPMA) and the 

approximations without monotonic sections (e.g., L2CXCV). Also, comparing 

PES results of this paper with those of [2], it is obvious that even if same OV BPL 

topologies are examined the PES results are differentiated because of the different 

applied coupling schemes and the optimal number of monotonic sections. Here, 

additional investigation should be made in order to clarify the impact of specific 

factors, such as the applied coupling scheme, the examined OV MV BPL 

topology, and maximum CUD value, on the optimal number of monotonic 

sections. Identifying this need for PES performance improvement of piecewise 

monotonic data approximations that are based on the number of monotonic 

sections, a detailed analysis of the influence of the previous factors on the PES 

performance of OV MV BPL topologies is given in the companion paper of [59]. 

 

 

Conclusions 
 In this paper, the performance of L1PMA, L2WPMA, and L2CXCV against the 

measurement differences, which can occur during the determination of OV MV BPL 

coupling transfer functions, has been assessed in terms of PES and PESfault. 

 From the various PES comparisons among the examined piecewise monotonic 

data approximations and the measurement differences, it has been pointed out that the 

mitigation of measurement differences is possible in the vast majority of the OV MV 

BPL cases examined regardless of the occurred magnitudes of the measurement 

difference distributions. In fact, piecewise monotonic data approximations that are based 

on the optimal number of monotonic sections (i.e., L1PMA and L2WPMA) better cope 

with the measurement differences in OV MV BPL topologies of intense multipath 

environments (i.e., urban topologies) whereas piecewise monotonic data approximations 

without monotonic sections better deal with the measurement differences of OV MV 

BPL topologies of “quiet” multipath environments (i.e., suburban, rural, and “LOS” 

topologies). Depending on the examined OV MV BPL topology, a versatile 

measurement difference mitigation technique, which is going to use: (i) L2CXCV for the 

rural and “LOS” cases; and (ii) L1PMA or L2WPMA for the suburban and urban cases; 

could exploit all the 82.5% potential of mitigating measurement differences. 

 However, L1PMA and L2WPMA may further be enhanced if the selection of the 

optimal number of monotonic sections is further studied. The companion paper of [59] 

strengthens the PES efficiency of L1PMA and L2WPMA of this paper.  
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This second paper investigates the role of the number of monotonic 
sections during the mitigation of measurement differences in overhead  
medium-voltage broadband over power lines (OV MV BPL) transfer 
functions. The performance of two well-known piecewise monotonic data 
approximations that are based on the number of monotonic sections (i.e., 
L1PMA and L2WPMA) is assessed in comparison with the occurred 
measurement differences and L2CXCV, which is a piecewise monotonic 
data approximation without considering monotonic sections. 
The contribution of this paper is double. First, further examination 
regarding the definition of the optimal number of monotonic section is 
made so that the accuracy of L1PMA can be significantly enhanced.  
In fact, the goal is to render piecewise monotonic data approximations 
that are based on the optimal number of monotonic sections as the 
leading approximation against the other ones without monotonic sections. 
Second, a generic framework concerning the definition of an adaptive 
number of monotonic sections is proposed for given OV MV BPL 
topology. 
 
 

Keywords:  Smart Grid; Intelligent Energy Systems; Broadband over Power Lines (BPL) networks;  

Power Line Communications (PLC); Faults; Power System Stability; Fault Analysis; Fault Identification 

and Prediction; Distribution Power Grids 

 

 
1. Introduction 
 More than 100 million BPL devices with annual growth rate of 30% have already 

been deployed, being able to deliver high-bandwidth applications (e.g., HD video 

streaming and VoIP) with data rates that exceed 1Gbps [1]-[3]. However, higher data 

rates can be achieved if the inherent BPL deficiencies, such as high and  

frequency-selective channel attenuation, noise, faults and measurement differences, are 

counterbalanced [4]-[9]. 

 As the determination of channel attenuation and the identification of faults and 

measurement differences are concerned [10], the well-established hybrid method is 

employed as the suitable theoretical basis for describing BPL signal propagation and 
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transmission [4]-[8], [11]-[23]. Actually, the hybrid method, which is employed to 

examine the behavior of various multiconductor transmission line (MTL) structures, 

gives as output the corresponding transfer function for given OV MV BPL network 

topology, OV MV MTL configuration, and applied coupling scheme. 

 Although the hybrid method is notably accurate, a number of practical reasons 

and “real-life” conditions create measurement differences between experimental and 

theoretical results influencing the broadband performance of BPL networks and affecting 

the overall network design. On the basis of six measurement difference categories, which 

are analyzed in [21]-[23], piecewise monotonic data approximations can be applied in 

order to mitigate the measurement differences and restore the broadband performance 

[10], [22]-[31]. So far, three piecewise monotonic data approximations have been 

examined that are divided into two groups: (i) Piecewise monotonic data approximations 

with predefined monotonic sections: L1PMA and L2WPMA have been defined in [26], 

[27], [32] and their performance regarding the mitigation of measurement differences in 

transmission and distribution BPL networks has been assessed in [10], [21]-[23].  

Already been identified, the performance of L1PMA and L2WPMA mainly depends on 

the predefined number of monotonic sections. In fact, the best performance against 

measurement differences is achieved when a specific number of monotonic sections is 

identified and applied; and (ii) Piecewise monotonic data approximations without 

predefined monotonic sections: L2CXCV has been defined in [33] and its performance 

concerning the mitigation of measurement differences in transmission BPL networks has 

been assessed in [10]. L2CXCV performance depends neither on user- nor on  

computer-defined number of monotonic sections. In accordance with [10], the right 

selection of the number of monotonic sections plays the key role during the application of 

L1PMA and L2WPMA and the comparative benchmark analysis between the 

aforementioned groups. In this companion paper, the selection of an adaptive number of 

monotonic sections is extended from the traditional definition of the optimal number of 

monotonic sections [10], [21]-[23] to the proposed adaptive one with regards to the 

maximization of the percent error sum (PES), which is treated as a metric of the 

mitigation performance of piecewise monotonic data approximations against 

measurement differences [10], [21]. 

The rest of this paper is organized as follows: In Sec. II, a brief presentation of 

L1PMA, L2WPMA, and L2CXCV is given as well as the suitable metrics of PES and 

fault PES, which are applied in order to identify the optimal number of monotonic 

sections. Sec. III discusses the simulations of various OV MV BPL networks intending to 

identify the generic framework concerning the definition of an adaptive number of 

monotonic sections to mitigate the occurred measurement differences. Sec. IV concludes 

this paper. 

 

 

2. Brief Presentation of L1PMA, L2WPMA, L2CXCV and PESs 
 A set of piecewise monotonic data approximations has already been 

comparatively benchmarked concerning its mitigation behavior against measurement 

differences during the OV MV BPL transfer function determination [10], [21]-[23]. 

L1PMA, L2WPMA, and L2CXCV have been assessed with regards to: (i) their relative 

PES; and (ii) their PES against fault PES. As already been shown in [10], piecewise 

monotonic data approximations that are based on the optimal number of monotonic 

sections (i.e., L1PMA and L2WPMA) better cope with the measurement differences in 
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OV MV BPL topologies of intense multipath environments (i.e., urban topologies) 

whereas piecewise monotonic data approximations without predefined monotonic 

sections (i.e., L2CXCV) better deal with the measurement differences of OV MV BPL 

topologies of “quiet” multipath environments (i.e., suburban, rural, and “LOS” 

topologies). However, significant PES improvement of L1PMA and L2WPMA can be 

achieved if a careful study concerning the optimal number of monotonic sections is 

carried out. 

 

2.1 Piecewise Monotonic Data Approximations with Predefined Monotonic 
Sections (L1PMA and L2WPMA) 
 L1PMA and L2WPMA exploit their piecewise monotonicity property by 

decomposing BPL coupling transfer function data into separate monotonous data sections 

between adjacent turning points (primary extrema). Then, L1PMA and L2WPMA 

separately handle the monotonous sections by proposing suitable regression 

approximation [21]-[23]. In general terms, L1PMA and L2WPMA software receives as 

inputs the measured OV MV BPL coupling transfer function data, the measurement 

frequencies and the number of monotonic sections (i.e., either user- or computer-defined) 

and gives as outputs the optimal primary extrema and the best fit of the measured OV 

MV BPL coupling transfer function data. The mitigation performance of L1PMA and 

L2WPMA against measurement differences mainly depends on the number of monotonic 

sections while the best performance is achieved when a critical number of monotonic 

sections is adopted. 

 

2.2 Piecewise Monotonic Data Approximations without Predefined Monotonic 
Sections (L2CXCV) 
 L2CXCV smooths the OV MV transfer function data in the least square error 

sense by assuming one sign change in the second divided differences of the smoothed 

values [33]. In contrast with L1PMA and L2WPMA, the number of monotonic sections is 

neither user- nor computer-defined since L2CXCV computes the required fit by solving a 

strictly convex quadratic programming problem for each set. Since L2CXCV better deals 

with the measurement differences of OV MV BPL topologies of “quiet” multipath 

environments, it acts as the benchmark for the evaluation of the improved L1PMA  

(see Sec. III). 

 

2.3 PES, Fault PES and ΔPES 
As it has already been mentioned in [10] and [21], to evaluate the mitigation 

performance of the piecewise monotonic data approximation methods against the 

presented measurement differences, the performance metrics of PES, fault PES, and 

ΔPES are applied.  

More specifically, PES expresses as a percentage the total sum of the relative 

differences between the approximated coupling transfer function and the theoretical 

coupling transfer function for all the used frequencies, namely  
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where  if
WtG

H  is the u×1 theoretical OV MV BPL coupling transfer function column 

vector for given WtG coupling scheme and measurement frequency fi, i=1,…,u, 

 if
WtGH  is the respective measured OV MV BPL coupling transfer function,  if

WtGH  

is the respective approximated OV MV BPL coupling transfer function and u is the 

number of the assumed flat-fading subchannels in the examined frequency band of 

operation. With respect to eq. (1), to evaluate the mitigation efficiency of the piecewise 

monotonic data approximation methods towards the measurement differences, PES of 

eq.(1) is compared against the fault PES that is given by 
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 Indeed, with reference to eq. (1) and (2), the proposed ΔPES metric that is 

determined by  

 faultPESPESPES      (3) 

expresses the difference between PES and fault PES. ΔPES achieves to assess the 

mitigation efficiency of the examined piecewise monotonic data approximation method; 

if ΔPES is positive then the piecewise monotonic data approximation method 

counterbalances the measurement differences. Note that the measurement differences, 

which are applied during the simulations of Sec. III, follow continuous uniform 

distributions (CUDs) with variable maximum value aCUD as already done in [10], [21]. 

 

 

3. Numerical Results and Discussion 
 Various configurations of OV MV BPL networks are simulated with the purpose 

of assessing the mitigating performance of the piecewise monotonic data approximation 

methods of this paper against the occurred measurement differences. In fact, different OV 

MV BPL topologies and WtG coupling schemes are tested for various maximum CUD 

values. 

As the simulation specifications are regarded, those are the same with [10];  

the BPL frequency range and flat-fading subchannel frequency spacing are assumed to be 

equal to 1-30MHz and 1MHz, respectively. Therefore, the number of subchannels in the 

examined frequency range is equal to 30. The OV MV BPL topologies, which have been 

presented in Sec. IIB of [10], are also used in this paper while all the available WtG 

coupling schemes, say WtGi, i=1,…,3, that may be supported by the OV MV MTL 

configurations are investigated during the following simulations. Finally, the maximum 

CUD values that are examined range from 0dB to 10dB with 1dB step. 

 

3.1 Optimal Number of Monotonic Sections and Different OV MV BPL Topologies 
and Coupling Schemes 
 In Fig. 1(a), ΔPES is plotted versus the maximum CUD value and the number of 

monotonic sections. In this figure, urban case is examined when WtG1 coupling scheme 

and L1PMA are applied. The optimal number of monotonic sections that is analytically 

reported in [10], which is equal to 12 for the indicative urban case, is also drawn in the 

figure as a vertical line. In Figs. 1(b)-(d), same plots with Fig. 1(a) are given but for the 
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case of suburban, rural, and “LOS” case. Figs. 1(e)-(h) are the same with the respective 

Figs. 1(a)-(d) but for the application of L2WPMA. In Figs. 2(a)-(h) and Figs. 3(a)-(h), 

same plots with Figs. 1(a)-(h) are drawn but for WtG2 and WtG3 coupling schemes, 

respectively. 
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Figure 1. ΔPES is plotted for various indicative OV MV BPL topologies with respect to the 
maximum CUD value and number of monotonic sections (WtG1 coupling scheme is applied and 
the vertical line of the optimal number of monotonic sections is shown). (a) Urban case / L1PMA. 
(b) Suburban case / L1PMA. (c) Rural case / L1PMA. (d) “LOS” case / L1PMA. (e) Urban case / 
L2WPMA. (f) Suburban case / L2WPMA. (g) Rural case / L2WPMA. (h) “LOS” case / L2WPMA. 
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Figure 2. Same with Fig. 1 but for the WtG2 coupling scheme. 
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Figure 3. Same with Fig. 1 but for the WtG3 coupling scheme. 
 

 

 From Figs. 1(a)-(h), 2(a)-(h) and 3(a)-(h), several interesting remarks can be 

pointed out: 

 ΔPES presents significant fluctuations in the 24 cases examined in the 

aforementioned figures. In fact, its values approximately range from -1600% to 

180%. However, positive ΔPES values may occur in all the cases examined 

indicating that there is always a careful selection of the number of monotonic 

sections that can mitigate possible measurement differences. 
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 L1PMA and L2WPMA present significant ΔPES differences even if the same  

OV MV BPL topology is examined, namely: 

o In the rural and “LOS” cases, L1PMA presents significantly better ΔPES 

results in comparison with L2WPMA ones regardless of the applied WtG 

coupling scheme and maximum CUD value. ΔPES differences between 

two piecewise monotonic data approximations may reach up to 180%. 

Also, analyzing the morphology of the isodynamic regions, the nature of 

the approximation procedure remains different between the two 

investigated approximations in the rural and “LOS” cases; L1PMA best 

approximates the data by requiring low number of monotonic sections 

while L2WPMA steadily approximates the same data regardless of the 

number of monotonic sections. 

o In urban and suburban cases, ΔPES results of L1PMA marginally exceed 

the respective ones of L2WPMA. Actually, the ΔPES differences between 

the application of L1PMA and L2WPMA may reach up to 15%.  

Here, both the applied methods approximate the coupling transfer function 

data by requiring a number of monotonic sections that ranges between a 

lower and an upper limit. Below the lower limit, L1PMA and L2WPMA 

are unable to approximate the rich multipath environments of urban and 

suburban cases whereas above the upper limit, L1PMA and L2WPMA 

cannot distinguish spectral notches from severe measurement differences 

due to the overfit. 

 For given piecewise monotonic data approximation and OV MV BPL topology, 

ΔPES results remain almost the same regardless of the applied WtG coupling 

scheme. This is a rational event since the coupling transfer function differences 

among the supported WtG coupling schemes remain small due to the strong 

presence of the common mode [8], [14], [34]. 

 The definition of the optimal number of monotonic sections that has been 

described in [10], [21]-[23] provides an average approximation whether the 

maximum CUD value is known or not. As described in [10], the optimal number 

of monotonic sections for the indicative urban, suburban, rural, and “LOS” 

topologies is equal to 12, 20, 6, and 6, respectively. The line of the optimal 

number of monotonic sections of [10] is plotted in each figure while it runs 

through the areas of best ΔPES values in the vast majority of the cases examined 

either for L1PMA or L2WPMA.  

 Also, in the vast majority of the cases examined, L1PMA can better approximate 

OV MV BPL coupling transfer function data than L2WPMA. This is a result that 

comes from: (i) the comparison of the respective colorbars next to plots;  

(ii) the comparison of the optimal ΔPES areas in figures; and  

(iii) the ΔPES results of the optimal number of monotonic sections. Hence, the 

main interest of the Sec. IIIB, which deals with the concept of an adaptive 

behavior against the measurement differences, is focused on L1PMA. 

Although the improvement margins for the ΔPES values of L1PMA remain low 

in urban and suburban topologies when the optimal number of monotonic sections of [10] 

is adopted, the respective margins in rural and “LOS” cases can become significant. 

These latter improvements can allow L1PMA to become competitive against L2CXCV in 

rural and “LOS” cases where piecewise monotonic data approximations with monotonic 
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sections present certain approximation difficulties, which have been described in [10]. 

The solution of fully exploiting L1PMA potential passes through the proposal of an 

adaptive number of monotonic sections by taking under consideration an estimation of 

the maximum CUD value of the surrounding OV MV BPL network environment. 

 

3.2 L1PMA with Adaptive Number of Monotonic Sections versus L1PMA with 
Optimal Number of Monotonic Sections and L2CXCV 
 If an accurate estimation of the maximum CUD value can be provided, then the 

potential ΔPES improvements of L1PMA through the adaptive number of monotonic 

sections can be significant. In fact, the adaptive number of monotonic sections comes 

from the localization of the best ΔPES value from the Figs. 1(a)-(h), 2(a)-(h), and 3(a)-(h) 

given the maximum CUD value, the examined OV MV BPL topology and the applied 

WtG coupling scheme. Note that greater ΔPES values imply that smaller PES can also be 

achieved. 

In order to demonstrate the improvement potential, L1PMA ΔPES is reported in 

Table 1 when the optimal number of monotonic sections of [10] and the proposed 

adaptive number of monotonic sections are applied. To compare the performance 

improvement, L2WPMA ΔPES and L2CXCV ΔPES are also presented.  

Finally, In Table 1, all the indicative OV MV BPL topologies are examined when the 

WtG1 coupling scheme is applied. 

 

 
TABLE 1 

ΔPES of L1PMA with Optimal Number of Monotonic Sections, L1PMA with Adaptive Number 

of Monotonic Sections, L2WPMA and L2CXCV for the Indicative Urban OV MV BPL 

Topology when Different Maximum CUD Values Are Applied 

(Blue Font: The Best ΔPES Among the Different Piecewise Monotonic Data Approximations  

for Given Maximum CUD Value) 

Indicative 

OV MV 

BPL 

Topology 

Maximum 

CUD  

Value 

L1PMA /  

Optimal Number of 

Monotonic Sections  

[10] 

L2WPMA L2CXCV L1PMA /  

Adaptive Number of 

Monotonic Sections 

Number of 

Monotonic 

Sections 

ΔPES  

(%) 

Number of 

Monotonic 

Sections 

ΔPES  

(%) 

ΔPES  

(%) 

Number of 

Monotonic 

Sections 

ΔPES  

(%) 

Urban 0 12 -9.25×10-6 12 -9.70×10-6 -34.55 12 – 20 -9.25×10-6 

1 12 -2.01×10-6 12 -2.13×10-6 -31.13 8 – 9 1.29×10-1 

2 12 -1.08×10-1 12 0.48 -28.41 10 – 11 3.20×10-1 

3 12 -1.65×10-1 12 0.24 -25.72 8 – 9 7.58×10-1 

4 12 -5.93×10-1 12 0.33 -22.32 10 – 11 2.79×10-1 

5 12 5.53×10-1 12 -0.02 -20.30 8 – 9 9.44×10-1 

6 12 8.77×10-2 12 0.81 -15.74 8 – 9 1.71 

7 12 5.15×10-2 12 -5.43×10-4 -17.83 8 – 9 1.31 

8 12 1.06×10-1 12 0.03 -12.02 8 – 9 7.36×10-1 

9 12 1.59×10-1 12 0.16 -10.35 8 – 9 4.99×10-1 

10 12 1.53 12 -0.72 -5.39 4 7.75 

Suburban 0 20 -5.36×10-6 20 -5.65×10-6 -36.64 20 -5.36×10-6 

1 20 2.36×10-6 20 1.85×10-6 -31.03 16 – 20 2.36×10-6 
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2 20 -5.39×10-6 20 -4.44×10-6 -24.43 6 – 7 3.09 

3 20 2.60×10-6 20 1.34×10-6 -20.47 18 – 19 1.33×10-1 

4 20 -1.39×10-6 20 -2.04×10-6 -15.77 4 2.57 

5 20 4.96×10-2 20 1.48 -11.66 10 3.11 

6 20 4.48×10-6 20 4.93×10-6 -5.33 4 4.90 

7 20 2.50×10-6 20 1.87×10-6 -7.00 4 9.06 

8 20 -4.01×10-6 20 -2.64×10-6 0.61 4 7.24 

9 20 -7.02×10-6 20 6.10×10-6 4.05 4 – 5 4.75 

10 20 -6.34×10-6 20 -6.27×10-6 0.80 1 10.14 

Rural 0 6 -5.40×10-6 6 -5.16×10-6 -9.45 6 – 20 -5.40×10-6 

1 6 2.72 6 5.02 2.50 6 2.72 

2 6 5.44 6 6.99 11.74 2 11.41 

3 6 4.36 6 8.87 12.03 2 20.86 

4 6 3.78 6 13.28 16.66 2 28.40 

5 6 11.43 6 -2.53 29.77 1 28.83 

6 6 18.68 6 -6.71 39.46 1 47.26 

7 6 7.39 6 -19.85 46.39 2 55.65 

8 6 13.14 6 -88.57 48.59 1 68.01 

9 6 7.82 6 -75.91 48.79 1 68.18 

10 6 -1.33 6 -155.84 68.45 1 106.96 

“LOS” 0 6 -5.18×10-6 6 -5.24×10-6 -11.96 6 – 20 -5.18×10-6 

1 6 3.91 6 5.83 2.12 6 3.91 

2 6 7.38 6 6.62 12.51 2 12.81 

3 6 4.82 6 9.88 12.90 2 23.66 

4 6 4.02 6 8.00 18.06 2 33.57 

5 6 12.88 6 -14.02 32.82 2 39.35 

6 6 22.26 6 -25.05 43.70 1 52.55 

7 6 7.69 6 -33.76 51.10 2 61.84 

8 6 14.27 6 -167.07 53.55 1 73.11 

9 6 8.64 6 -107.21 54.11 1 80.72 

10 6 -1.15 6 -252.97 76.01 1 122.29 

 

 

From Table 1, it is evident that L1PMA with the adaptive number of monotonic 

sections achieves better ΔPES against either L1PMA with the optimal number of 

monotonic sections or L2WPMA or L2CXCV in 38 of 44 cases examined while ΔPES 

improvement exceeds 15% in the majority of the cases reaching up to 46.28% from the 

next best approximation.  

In addition, it is clearly indicated that even an average estimation of the maximum 

CUD value can allow better L1PMA approximations. For example, in suburban case, if 

the occurred maximum CUD value is equal to 6dB and an estimation of the maximum 

CUD value ranges from 4 to 8dB, the application of less than 10 monotonic sections 

achieves better ΔPES values than the application of 20 monotonic sections.  

Besides, the adaptive number of monotonic sections decreases as the maximum 

CUD value increases for given OV MV BPL topology and coupling scheme. This is a 

reasonable result, since the need for a more general approximation is required as the 
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measurement differences start to create great deviations between the theoretical and 

measured coupling scheme transfer function data. Anyway, this is the main reason for the 

approximation success of L2CXCV in rural and “LOS” case where the CUD 

measurement differences are added around quasi-steady OV MV BPL coupling transfer 

function lines.  

Here, it should be noted that the adaptive number of monotonic sections depends 

not only on the maximum CUD value but on the CUD itself. It is expected that the 

adaptive number of monotonic sections will little change when maximum values of other 

CUDs remain below 5dB. However, the robustness of the concept of the adaptive number 

of monotonic sections against different CUDs of the same maximum CUD value is 

investigated in the following Sec.IIIC. 

Finally, recognizing the previous decreasing trend of the number of monotonic 

sections with the respective increase of maximum CUD value, this observation may also 

improve the performance of L1PMA and L2WPMA when the optimal number of 

monotonic sections is adopted [21]-[23]. Actually, during the selection of the optimal 

number of monotonic sections when maximum CUD value is assumed equal to 0, the 

optimal number of monotonic sections is equal to the minimum value of the values that 

achieve the same ΔPES. For example, in urban, rural, and “LOS” cases, if the optimal 

number of monotonic sections was assumed equal to 20, 20, and 20, respectively, then 

ΔPES would be worse for the other maximum CUD values. This comes from the 

observation that the latter values are far from the respective values of 12, 6, and 6 that are 

closer to the adaptive number of monotonic sections. Anyway, this remark has already 

been adopted in [21]-[23]. 

 

3.3 L1PMA with Adaptive Number of Monotonic Sections for Different CUDs 
 The application of L1PMA with the adaptive number of monotonic sections has 

been examined for a specific set of CUDs in Sec. IIIB. In order to assess the ΔPES 

performance of L1PMA with the adaptive number of monotonic sections and to 

generalize the utility value of the adaptive number of monotonic sections shown in Table 

1, at least one different set of CUDs with maximum CUD values ranging from 0 to 10dB 

should be examined.  

In order to examine the performance of the adaptive number of monotonic 

sections, L1PMA ΔPES is reported in Table 2 when the adaptive numbers of monotonic 

sections of Table 1 are applied. Also, ΔPES of L1PMA with optimal number of 

monotonic sections, L2WPMA ΔPES and L2CXCV ΔPES are also presented. 

Furthermore, in Table 2, all the indicative OV MV BPL topologies are examined when 

the WtG1 coupling scheme is applied and a different set of CUDs is available. 
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TABLE 2 

Same as Table1 but when the L1PMA Adaptive Number of Monotonic Sections of  

Table 1 and Different CUD Set Are Assumed 

(Blue Font: The Best ΔPES Among the Different Piecewise Monotonic Data 

Approximations for Given Maximum CUD Value) 

Indicative 

OV MV 

BPL 

Topology 

Maximum 

CUD  

Value 

L1PMA /  

Optimal Number of 

Monotonic Sections  

[10] 

L2WPMA L2CXCV L1PMA /  

Adaptive Number of 

Monotonic Sections 

Number of 

Monotonic 

Sections 

ΔPES  

(%) 

Number of 

Monotonic 

Sections 

ΔPES  

(%) 

ΔPES  

(%) 

Number of 

Monotonic 

Sections in 

accordance 

with  

Table 1 

ΔPES  

(%) 

Urban 0 12 -9.25×10-6 12 -9.70×10-6 -34.55 12 -9.25×10-6 

1 12 5.92×10-7 12 2.13×10-7 -31.29 8 -2.10×10-1 

2 12 -6.01×10-7 12 -1.08×10-6 -27.21 10 -6.01×10-7 

3 12 -0.11 12 0.002 -23.96 8 3.84 

4 12 0.59 12 1.09 -20.43 10 0.23 

5 12 0.02 12 0.02 -18.92 8 0.85 

6 12 1.05 12 0.95 -17.14 8 3.21 

7 12 0.41 12 -0.40 -9.17 8 -4.71×10-2 

8 12 0.44 12 0.86 -12.93 8 3.02 

9 12 0.36 12 -0.29 -5.13 8 1.58 

10 12 2.02 12 -2.72 -4.60 4 7.76 

Suburban 0 20 -5.37×10-6 20 -5.65×10-6 -36.64 20 -5.37×10-6 

1 20 2.67×10-6 20 1.90×10-6 -30.31 16 1.61×10-1 

2 20 1.15×10-6 20 1.39×10-6 -24.02 6 -1.81 

3 20 -1.62×10-6 20 -2.90×10-6 -17.43 18 -1.62×10-6 

4 20 -5.35×10-6 20 -5.11×10-6 -14.19 4 1.54×10-1 

5 20 0.09 20 0.0092 -10.80 10 5.29×10-1 

6 20 3.39×10-6 20 4.21×10-6 -7.40 4 6.74 

7 20 -8.42×10-6 20 -7.92×10-6 -1.29 4 3.78 

8 20 3.44×10-6 20 4.20×10-6 -14.22 4 4.84 

9 20 3.65×10-6 20 3.59×10-6 15.99 4 11.75 

10 20 -7.73×10-7 20 -9.60×10-7 12.75 1 14.01 

Rural 0 6 -5.40×10-6 6 -5.16×10-6 -9.45 6 -5.40×10-6 

1 6 1.80 6 4.61 2.52 6 1.80 

2 6 1.12 6 14.68 10.36 2 7.67 

3 6 8.34 6 8.31 24.86 2 22.33 

4 6 14.90 6 6.18 36.42 2 41.63 

5 6 0.10 6 -12.16 33.26 1 36.76 

6 6 13.91 6 -19.70 46.90 1 53.02 

7 6 -3.99 6 -47.91 37.42 2 4.55 

8 6 19.46 6 0.95 59.28 1 54.27 

9 6 13.62 6 -56.98 81.93 1 61.88 
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10 6 18.72 6 -478.80 63.82 1 62.07 

“LOS” 0 6 -5.19×10-6 6 -5.24×10-6 -11.96 6 -5.19×10-6 

1 6 1.92 6 4.81 2.09 6 1.92 

2 6 1.91 6 15.54 11.49 2 8.73 

3 6 8.78 6 5.87 27.21 2 24.89 

4 6 17.95 6 -1.73 40.70 2 47.23 

5 6 -0.21 6 0.10 36.94 2 9.44 

6 6 14.53 6 -43.35 48.60 1 57.51 

7 6 -4.73 6 -93.50 41.57 2 2.51 

8 6 21.35 6 -14.51 65.35 1 62.47 

9 6 15.02 6 -122.39 91.15 1 67.07 

10 6 20.23 6 -178.44 70.56 1 66.92 

 

 

 Comparing the ΔPES results of Table 2 with the respective ones of Table 1 and 

PES results of [10], several general thoughts concerning the concept of the adaptive 

number of monotonic sections can be expressed: 

 It is clearly shown that the performance of L1PMA has significantly been 

enhanced since the adoption of the concept of the adaptive number of monotonic 

sections. Indeed, L1PMA with adaptive number of monotonic sections presents 

better ΔPES results in comparison with the respective ones of L1PMA with the 

optimal number of monotonic sections even though an arbitrary set of CUDs has 

been chosen for the evaluation. The performance increase of L1PMA with 

adaptive number of monotonic sections is based on the need for more general 

approximations as the maximum CUD value increases and the examined OV MV 

BPL topology lacks of frequent and short branches across its BPL transmission 

path. 

 Comparing the performance of piecewise monotonic data approximations in 

Table 1 and 2 with Table 2-5 of [10], the performance improvement of L1PMA 

with the adaptive number of monotonic sections is evident. In fact, L1PMA with 

the adaptive number of monotonic sections achieves to give the best 

approximations in urban and suburban cases while manages to enhance its 

approximation efficiency in rural and “LOS” cases. Especially, in the case of 

indicative rural and “LOS” BPL topologies, it should be noted that L2CXCV was 

competing without an opponent when L2WPMA and L1PMA with the optimal 

number of monotonic sections were applied. Anyway, L2CXCV better mitigates 

measurement differences of rural and “LOS” cases when maximum CUD value 

exceeds 6dB. 

Schematically, the highest mitigating performance of L1PMA with the adaptive 

number of monotonic sections is presented in Figs. 4(a)-(d) where ΔPES is plotted versus 

the maximum CUD value and the number of monotonic sections for the indicative urban, 

suburban, rural and “LOS” case, respectively. In these figures, WtG1 coupling scheme is 

as well as the optimal number of monotonic sections in each case is drawn as black stars 

in accordance with Table 2. 
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Figure 4. ΔPES is plotted for various indicative OV MV BPL topologies with respect to the 

maximum CUD value and number of monotonic sections for the CUD of Table 2 (WtG1 coupling 

scheme is applied). The black stars indicate the adaptive number of monotonic sections for given 

OV MV BPL topology and maximum CUD value. (a) Urban case / L1PMA. (b) Suburban case / 

L1PMA. (c) Rural case / L1PMA. (d) “LOS” case / L1PMA.  
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 The improved ΔPES performance of L1PMA with the adaptive number of 

monotonic sections is also illustrated by the distribution of the number of monotonic 

sections in Figs. 4(a)-(d). Even though the adaptive number of monotonic sections comes 

from the numerical analysis of ΔPES results for the set of CUDs of Table 1, the 

distribution of the adaptive number of monotonic sections, which is illustrated in  

Figs. 4(a)-(d) with the black stars, is proven to be very accurate for the set of CUDs of 

Table 2. Indeed, black stars are located in the isodynamic regions of the best ΔPES in the 

majority of the cases examined. Especially, the adaptive number of monotonic sections in 

rural and “LOS” cases are in the center of the best ΔPES isodynamic regions, which have 

significant and frequent changes, exploiting all the mitigating potential of L1PMA 

against the occurred measurement differences. 

 Among the future steps of the research concerning the application of piecewise 

monotonic data approximations in BPL networks, the efficiency of  

Topology Identification Methodology (TIM) of [22] and Fault and Instability 

Identification Methodology (FIIM) of [23] needs to be reviewed by taking into account 

the new findings during the application of L1PMA. Also, other piecewise data 

approximation methods can be comparatively benchmarked so that better mitigation 

performance against measurement differences can be established in the future works. 

Finally, further research and new solutions regarding L1PMA application need to be 

released in order to explain the better L2CXCV mitigation behavior in rural and “LOS” 

cases when maximum CUD values exceed 6dB. 

 

 

Conclusions 
 In this companion paper, L1PMA efficiency against the measurement differences, 

which occur during the determination of OV MV BPL coupling transfer functions, has 

significantly been improved through the adoption of the adaptive number of monotonic 

sections concept. The behavior of measurement differences has been modeled by 

continuous uniform distributions (CUDs) with various maximum CUD values. 

 Although the adaptive number of monotonic sections had been defined in an 

initial arbitrary CUD set with maximum CUD values ranging from 0 to 10dB, the 

L1PMA mitigation performance against measurement differences has critically been 

enhanced even though a different arbitrary CUD set has been chosen for the ΔPES 

evaluation. In fact, the concept of the adaptive number of monotonic sections is based on 

the need for more general approximations as the maximum CUD value increases and the 

examined OV MV BPL topologies lack of frequent and short branches. 

 The comparative ΔPES benchmark among L1PMA with adaptive number of 

monotonic sections, L1PMA with optimal number of monotonic sections, L2WPMA with 

optimal number of monotonic sections and L2CXCV has revealed that the concept of the 

adaptive number of monotonic sections improves the overall L1PMA performance as 

follows: (i) L1PMA achieves the best measurement difference mitigation in urban and 

suburban case without competition. (ii) L1PMA dynamically deals with the measurement 

differences in rural and “LOS” case when their maximum CUD values remain below 6dB. 

(iii) Although the performance difference between L1PMA and L2CXCV has drastically 

been reduced by the use of the adaptive number of monotonic sections, L2CXCV still 

better approximates rural and “LOS” cases when maximum CUD values exceed 6dB. 
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 Finally, the more effective identification and restoration of the measurement 

differences during the OV MV BPL coupling transfer function determination may 

significantly help towards a more stable and self-healing power system. 
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We analyzed the operation of a typical agricultural biogas plant in 
Hungary. Our aim was to optimize the composition of substrates for the 
biogas production and make a correct recommendation for completing 
feedstock recipes by considering the raw materials and technologies 
analyzed. The calculations were based on a very detailed database 
(including the daily operating data of 1673 days). Distribution of the 
biogas yields in summer and winter periods was normal based on the 
One-Sample Kolmogorov-Smirnov test, while the variance of data was 
homogeneous based on the Levene-test. Factor analysis of the biogas 
yield was performed with the Kaiser-Meyer-Olkin Measure of Sampling 
Adequacy probe (0.616) and the Bartlett's Test. According to the 
objectivity of our LP (linear program) model, we believe that a significant 
excess biogas yield (18-66%) could be achieved by the use of our model 
compared to the actual measured data. Although the amount of corn 
silage, grass silage, and the extract – as variables – was minimal in the 
recipe, they played a crucial role in the total biogas yield of the recipe 
because of their significantly higher organic matter contents and specific 
biogas yields. Our results could provide a reliable foundation for 
optimizing of the recipe in biogas plants with raw material base similar to 
the analyzed plants. 

 
Keywords:  Biogas; Optimization; Heterosis Effect; Feedstock; Substrate 

 

 
Introduction  
 

Agriculture faces some major inter-connected challenges in delivering food 

security at a time of increasing pressures from population growth, changing consumption 

patterns and dietary preferences, and post-harvest losses. At the same time, there are 

growing opportunities and demands for the use of biomass to provide additional 

renewables, energy for heat, power and fuel, pharmaceuticals and green chemical 

feedstocks [1]. However, the worldwide potential of bioenergy is limited, because all 

land is multifunctional, and the land is also needed for food, feed, timber and fiber 

production, and for nature conservation and climate protection [2].  

Fuchsz and Kohlheb (2015) [3] examined the environmental effects of anaerobic 

digestion (AD) plants, which operate with the same power production capacity, but use 

different raw materials during the full life circle. Their results showed that, from the 

perspective of greenhouse gas (GHG) emission, biogas production from energy crops 
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cannot be regarded negatively, and having the lowest CO2 emissions (CO2 absorber: -188 

g/kWhe) of the three investigated AD plants. At the same time, energy-crop-only-based 

biogas production has the worst acidification potential because of the high fossil fuel 

demand in growing and transporting the raw materials. In addition, agricultural waste 

utilization for energy purposes is not always the best solution because of its high GHG 

emission; therefore, for environmental reasons, it is not always worth high-tech 

investment. The biogas plant that processes low-energy-density agricultural wastes 

produced 7.7% of its full-life-cycle CO2 emissions during its construction phase, 

compared with a 0.9% ratio for the biogas plant processing only energy crops. 

Interestingly, co-fermentation turned out to be the best option with regard to the energy 

efficiency, although its environmental consequences are moderate. 

Present agricultural GHG reduction projects in Hungary cannot contribute to 

achieving long term GHG reduction goals to the same degree as that can be experienced 

in other sectors due to food market insecurities, food production limitations, and 

decreasing exchange quotation of GHG emissions. Consequently, climate-friendly 

agricultural investments have more advantageous returns than in other sectors [4]. 

The construction and operation of a biogas plant is a combination of economic 

and technical considerations [5]. Environmental conditions such as pH, temperature, 

substrate type, total solid (TS) and volatile solid (VS) content of the substrate, hydraulic 

retention time (HRT), and acclimation periods, are the main factors affecting both the 

inhibition level in an anaerobic process under different total ammonium nitrogen (TAN) 

concentrations and the rate of biogas production [6]. 

Obtaining the maximum biogas yield, by fully digesting the biogas substrate, 

would require a long retention time of the substrate inside the digester and a 

correspondingly large digester size. It is thus important to ensure a stable and continuous 

supply of feedstock with suitable quality and quantities. Feedstock conditioning offers the 

significant potential for process optimization, and increases digestion rates and biogas 

yields [5]. Co-digestion of different materials may enhance the anaerobic digestion 

process due to better carbon and nutrient balances, and applying organic wastes also 

provides nutrients in excess [7].  

The most used substrate in co-fermentation with biogas crops is pig or cow 

manure [8]. Grasses, including straws from wheat, rice, and sorghum, are a plentiful 

supply of biomass, most of which is produced as a waste product by food production [9]. 

Harvesting time can also significantly affect the composition of the substrate, and thus 

impact the biogas yield of plants [10, 11]. Co-digestion of animal manure with various 

biomass substrates increases the biogas yield and offers a number of advantages for the 

management of manure and organic wastes [12] and for mitigation of greenhouse gas 

(GHG) emissions [13]. Wu et al. (2010) [14] concluded that significant increases in 

volumetric biogas production can be achieved by adding carbon rich agricultural residues 

to the co-digestion process with swine manure. Cuetos et al. (2008) [15] observed that 

co-digestion of mixtures stabilizes the feed to the bioreactor, thereby improving the C/N 

ratio and decreasing the concentration of nitrogen. Cavinato et al. (2010) [16] studied the 

co-digestion of cattle manure, agricultural waste, and energy crops, where 1.10 l/day 

biogas production rate and 179 l/kg VS methane yield were detected and significant 

increase in biogas production from the co-digestion was observed. Other studies analyzed 

the methanogenesis processes during anaerobic digestion at different moisture levels (60-

80%), it has been reported that the highest methane production rates occurred at 60–80% 

of humidity [17] and [18]. An important parameter in determining the size of the biogas 
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digester is the hydraulic retention time (HRT). The HRT is the average time interval 

when the substrate is kept inside the digester tank [5].  

HRT is the average period that a given quantity of input material remains in the 

digester to be acted upon by the methanogens [19]. The disadvantage of a longer 

retention time is the increasing reactor size needed for a given amount of substrate to be 

treated [20]. A short HRT provides a good substrate flow rate, but a lower gas yield [5] 

and lower overall degradation [20]. Another problem for a short HRT is, that the bacteria 

in the digester are “washed out” faster than they can reproduce. It is therefore important 

to adapt the HRT to the specific decomposition rate of the used substrates. Knowing the 

targeted HRT, the daily feedstock input and the decomposition rate of the substrate, it is 

possible to calculate the necessary digester volume. The average HRT is usually varies 

from 20 to 40 days [5], under other results from 10 to 30 days [21], depending on the type 

of substrate and digestion temperature [5]. Kaosol and Sohgrathok (2012) [22] analyzed 

the effect of HRT on biogas production in a 15 L reactor with 10 L working volume for 

10 days, 20 days, and 30 days. The results during the whole process showed that the 20-

day and 30-day HRT reactors can remove COD in the range of 92.28%-94.54%, while 

the 10-day HRT reactor showed the lowest removal performance (i.e., 71.21%). The 

COD removal performances of the 20-day HRT and the 30-day HRT reactors showed no 

significant difference.  

In practice, the anaerobic degradation rate of organic matters from animal manure 

and slurries is about 40% for cattle slurry and of 65% for pig slurry, respectively. The 

degradation rate depends at large on the feedstock type, HRT, and process temperature. 

The organic load is an important operational parameter, which indicates how much 

organic dry matter can be fed into the digester per volume and time unit [5]). 

Braun et al. (2006) [23] examined more than 40 agricultural biogas plants in his 

study. The plant sizes changed between 50 kWel and 1672 kWel, the reactor volume 

varied between 1,000 and 17,000 m3. Therefore, the HRT changed significantly with the 

analyzed agricultural biogas plants. The organic load varied from 2.92 to 4.61 m3/Vr*day.  

Menardo et al. (2011) [24] analyzed four mesophilic (41°C) agricultural biogas 

plants. The digester volume changed between 4990 and 12000 m3, HRT varied from 51 

to 105 days, while organic loading rate (OLR) was between 0.85 and 2.25 kgVs/m3*day. 

The potential biogas yield relies not only on the VS  content, but also on the 

degradability of those solids in an anaerobic environment [25]. Furthermore, both of 

these VS parameters depend on the OLR  and HRT [26]. Menardo et al. (2011) [24] 

applied Pearson “R” correlation coefficient analyses in his study and showed the 

parameters that were most correlated to the biogas yields of digestate samples were the 

OLR of the original biogas plant and the samples’ TS and VS contents.  

Many anaerobic digesters have various feedstock sources, which can cause 

fluctuations of the chemical composition in the reactor. As a result from poorly 

monitored systems, most anaerobic digesters are currently run at a less-than-optimum 

loading rate to prevent instability occurring in the digester. This instability often inhibits 

methanogens [27] and results in a decrease of the biogas yields. 

Our hypothesis was that the quantity and quality of raw materials (dry or wet, 

organic material content, etc.) have an impact on the biogas and methane yields. We 

would like to prove the connection and correlation between the feedstock and the biogas 

yields, and to take into account the constraints often encountered in practice. We also 

analyzed the effect of seasonal differences on biogas yields. Our aim was to optimize the 

composition of substrates for biogas production and make a correct recommendation for 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.1, 61-75. doi: 10.17737/tre.2017.3.1.0031 64 

 

completing feedstock recipes based on based on the raw materials and technologies 

analyzed. 

Regarding the comparative analysis of actual and optimized feedstock recipes, our 

aim was to analyze the recipe’s exact composition and biogas yield, based on the 

different feedstock quantities. We aimed to determine via linear program (LP) modelling 

(1) the recipes’ potential reserves which can be suitable for yield-boosting effect and (2) 

the level of heterosis effect during co-fermentation compared to the biogas yield of single 

raw material.  

 
 
Materials and Methods 
 

The most important feature of the biogas plant studied between 2012-2016, is that 

it uses predominantly by-products generated in a nearby farm, providing a significant 

advantage for the feedstock management due to the predictable quantity and quality, and 

cost saving. Currently, the farm produces crops on 4,000 hectares of arable land including 

raw materials usable for biogas production (such as corn silage and grass silage). 

However, the main goal of the production is to provide food for the animal sector. The 

latter includes 2,000 dairy caws and almost 1,200 sows with progeny (~20,000 

piglets/year).  

The raw material base for the mesophilic fermentation in the biogas plant is made 

up of various materials. The liquid part of the substrate consists of pig and cattle waste 

slurry, in addition to the whey and dairy sludge from the nearby cheese factory to be 

disposed in the biogas plant. The purpose of the biogas plant is the disposal of these 

continually generated unmarketable and environmentally dangerous products. In the 

remaining fermentation space of the fermenter – in order to enhance the biogas yield –

corn silage, grass silage, solid separated digestate, and manure are added, which have a 

significant dry matter content. 

The majority of the raw materials fed daily consists of four liquid components: 

cattle slurry, pig slurry, whey, and sludge. The utilization of the total amount of these 

materials is especially important because of storage limits, and thus the limiting factors of 

their daily consumption must be taken into account during optimizing the process. 

Technical problems that were caused by the slurry happened a few times. The amount of 

incoming slurry had the significant fluctuations, causing either reduced amount fed in or 

(usually) higher proportion added.  

Most biogas plants utilizing agricultural by-products use different recipes for the 

winter and summer periods, because the two-phase feeding of ruminants results in raw 

materials with different quality and quantity for each period. However, the plant analyzed 

in this study does not prevail this seasonality. According to its operating data, 

approximately 94% of the summer recipe and 92% of the winter recipe were composed of 

the four aforementioned liquid materials (Table 1.), resulting in balanced feeds and 

higher biogas yields compared to the changing recipes. 

The raw materials were fed in the three mesophilic digesters of total 4,500 m3 

capacity from the mixers between 2012 and 2016. The amount of material fed daily 

varied between 55.5 and 232.5 m3, and the average daily amount of feedstock substrate 

was 178 m3, which was equivalent to 18.8 t/day.  
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Table 1. Composition of feedstock-recipe for biogas production in summer and 

winter periods 

Used feedstocks 
Summer period Winter period 

Average (±SD) Average (±SD) 

Cattle slurry (%) 56.26±6.57 51.76±12.01 

Pig slurry (%) 24.95±5.40 27.71±8.37 

Silo maize (%) 1.92±1.33 2.47±1.57 

Grass silage (%) 0.75±0.69 0.95±0.85 

Solid separated digestate (%) 2.26±1.36 2.33±1.16 

Whey (%) 6.48±2.74 5.94±2.62 

Dairy sludge (%) 6.54±1.78 6.35±2.24 

Cattle manure (%) 0.83±0.87 0.47±0.73 

SD: standard derivation 

 

The average amount of biogas produced monthly was 171 thousand Nm3, while 

the daily biogas production varied between 3,638-7,265 Nm3. The daily average of the 

produced biogas was 5,988.3 Nm3, and the average methane yield was 3,310.8 Nm3, from 

which electricity of 11,305.7 kWh/day was generated in the biogas plant. The biogas 

production was calculated according to the gas flow meters of the digesters to figure out 

the overall daily gas yield in Nm3. The quality of biogas (CH4, CO2, H2S, NH4) was 

analyzed with a ENVIRO-100 type gas analyzer. The average value of the methane 

concentration in biogas was 55%, but the maximal value (76%) indicated that a great 

potential is available, which can be achieved by a well-balanced, less various raw 

materials (Table 2.). 

 

Table 2. Biogas quality parameters by the examined biogas plant 

Biogas quality CH4 (%) CO2 (%) H2S (mg/kg) O2 (%) 

Average (±SD) 55.16±4.82 30.73±3.18 123.04±122.18 1.64±1.20 

Min. 42.34 24.07 0.67 0.04 

Max. 75.69 53.08 699.50 8.98 

 

The average hydrogen-sulphide content of the biogas was 123 mg/kg after sulphur 

removal. The desulfurization was conducted with oxygen dozing, FeCl2 addiction, and 

biological processes. Preißler et al. (2010) [28] determined more rapid reduction of the 

H2S content in the case of the iron (III) chloride variant. A 60% reduction of hydrogen 

sulphide content was achieved with the stoichiometric equal addition of iron in the case 

of the chlorides and the hydroxide compared with the control [28]. Based on the results, 

the combined sulphur-removal methods resulted in a very low (200 mg/kg >) hydrogen-

sulphide content in the produced biogas. 

The daily organic load (kg/d*m3) was calculated from the following equation: 

OLR = m * c/Vr [5]. The average hydraulic retention time (HRT) was calculated from the 

maximal volume of the digesters (Vr)(m3) and the amount of daily fed materials 

according to the following equation: HRT=Vr/V, where HRT=hydraulic retention time 

[days], Vr=digester volume [m3], and V=volume of substrate fed per time unit [m3/d] 

[19].  

The operation of the plant from the biogas production point of view can be 

divided into three phases (Figure 1.).  
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Figure 1. Biogas yields, methane yields, and electricity production in the analyzed biogas plant 

 

During the first phase of operation (1-652. days), 59% of the daily biogas yields 

exceeded 7,000 m3 per day, which was basically due to the 1.5-2 times larger amount of 

annual consumption of corn silage and whey as raw materials. The average daily biogas 

production in this period was 7,007 ± 951 m3. The average daily proportion of corn silage 

and whey fed together was 11%, which is higher than the combined rate of 7% for the 

third stage. 

In the second phase of the operation of biogas plant (653-793. days), an intense 

decrease was observed in production. This was due to a malfunction that forced 

renovation of three fermenters, only limited quantities of raw materials could have been 

fed and fermented during this six month. 

During the third phase (794-1694. days), 94% of the daily biogas production was 

less than 7,000 m3 per day, and an average of 6,050 ± 708 m3/day biogas was produced. 

Comparing the raw material consumption to that of the first period, the use of cattle 

slurry, the extract, and the grass silage increased by 2.5%, 1.1%, and 0.4 %, respectively, 

and the use of manure did not change. Accordingly, the proportion of raw materials with 

higher biogas yield decreased significantly (whey: -2.4%, corn silage: -1.6%, pig slurry: -

0.1%, dairy sludge: -0.1%). The annual changes of the recipes are shown in Table 3. 

Weiland evaluated German biogas plants in 2004 [29] and 2009[30], and most 

plants used manure-based mixtures with a range of crops (such as maize, grass, and 

cereals) as the substrate. Food and vegetable wastes, potato processing residues, whey 

and fat trap contents were also used as co-substrates with manure. In the 2004 study, 

manure was the dominant substrate (75-100% share) for nearly 50% of the plants 

considered. About 83% of the new German agricultural biogas plants operate with a 

mixture of crops and manure; 15% use crops only and just 2% were operated with 

manure only. In this study, the biogas plant used in average 82% of animal slurry and 
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manure, 3% of silo maize and grass silage, 12% of food industrial wastes, and 2% of 

solid separated digestate. 

 

Table 3. The quantitative distribution of raw materials used in the biogas plant 
Years 2012 2013 2014 2015 2016 Aug. 

Raw 

materials 

(m3) 

Daily 

average 

(m3) 

% 

Daily 

average 

(m3) 

% 

Daily 

average 

(m3) 

% 

Daily 

average 

(m3) 

% 

Daily 

average 

(m3) 

% 

Cattle slurry 89.02 51% 94.14 57% 103.64 56% 108.53 56% 101.52 55% 

Pig slurry 46.58 27% 41.95 25% 48.33 26% 52.99 27% 49.83 27% 

Silo maize 5.89 3% 4.26 3% 3.1 2% 2.96 2% 2.52 1% 

Grass silage 1.22 1% 0.93 1% 1.92 1% 2.59 1% 1.08 1% 

Solid 

separated 

digestate 

3.35 2% 2.21 1% 3.82 2% 4.99 3% 7.22 4% 

Whey 16.15 9% 9.94 6% 10.09 5% 10.01 5% 1002 5% 

Dairy sludge 11.88 7% 10.01 6% 11.71 6% 12.14 6% 13.16 7% 

Cattle 

manure 
0.00 0% 2.15 1% 2.43 1% 0.67 0% 0.33 0% 

Summary 174.09 100% 165.59 100% 185.04 100% 194.88 100% 185.68 100% 

 

Optimization 
The comparative analysis of the optimized and actual recipes examined the 

composition and the biogas yield of the recipes by varying the quantities of different raw 

material feeds. The starting value of this changed between 180 m3 (long term constantly 

enterable quantity) and 210 m3 (maximum fed actual quantity) with 10 m3 stages. The 

effect of raw materials on the biogas yield – according to the technology – was calculated 

with a HRT of 25 days. 

Our calculations aimed to show that the biogas potential behind the recipes and 

the significance of the heterosis effect by using LP modelling, compared to the biogas 

yield of single raw material. The fact, which the body of literature that we know do not 

contain reliable estimates on the extent of the latter mentioned effect, underlines the 

significance of this analysis. LP is the most appropriate tool to determine the recipe 

providing the maximum biogas yield by given recipe ingredients, taking into account the 

specific unit yields [31]. 

Since the exact composition of tested individual raw material is unknown and 

most likely not constant, the calculation used the typical values found in the literature 

(presented in Table 4.). The biogas yields and the yields of a single feedstock, which can 

be considered as characteristics, were calculated with means. 

The limiting terms of the model were as follows: the specific biogas plant 

receives daily 100 t cattle slurry, 50 t pig slurry, and 10-10 t whey and dairy sludge, 

which were rounded to meet the typical daily delivery value. The other three components 

were the mean values of the collected daily data that increased or reduced with the 

variance. Another limiting condition was the maximum daily capacity of the fermenter 

(an average of 180 m3, maximum 210 m3). The objective function was to maximize the 

biogas production. The problem was solved with the use of Solver add-in software of MS 

Excel. 
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Table 4. The quality of different raw materials  

Raw materials 

Dry 

matter 

cont. 

(DM) 

% 

Organic 

matter 

cont. (OM) 

%* 

Biogas yields 

m3/t OM 

Biogas yields m3/t 

feedstock 

Density 

t/m3 

Cattle slurry  3.55(2) 75(5) 200-300(1) 6.66 1 

Pig slurry 4(1) 75(1) 300-800(3) 16.50 1 

Silo maize 26.09(2) 72(4) 600-700(3) 122.10 0.77(5) 

Grass haylage 24.77(2) 85(4) 560(1) 117.89 0.6(5) 

Dairy sludge 1.98(2) 85(4) 800-950(1) 124.94 1 

Whey 3.51(2) 80(4) 500-900(3) 19.63 1 

Solid separated digestate 26.02(2) 85(4) 350-780(1) 14.74 0.50(6) 

Cattle manure 21.18(2) 85(4) 600-800(3) 126.02 0.75(7) 

(1) [32] 

(2) [33] 

(3) [34] 

(4) [32] and [33] 

(5) [34] and [33]  

(6) [33]  

(7) [35] 

 

The model – because of its optimizing feature and the consideration of mono-

digestion biogas yields – did not consider the heterosis effect, the extent of which was 

calculated by dividing the theoretical (mono-digestion) biogas yield of the actual recipe 

pasted in the model by the measured yields of the same recipe, after classifying 1,673 

pieces of data into quantitative categories and averaging them. The average of the 

quantitative categories corresponded to the optimized flow rates (180, 190, 200, and 210 

m3). 

The data have been evaluated and analyzed with the computer programs of MS 

Excel and SPSS 23 statistical software package. In order to test the normal distribution of 

the data, one-sample Kolmogorov-Smirnov test and Lilliefors-probe were used. For the 

simultaneous comparison of the mean values, analysis of variance was used. The 

significance differences between the winter and summer periods, - with and without 

Stage 2 phase - were analyzed by one-way analysis of variance (ANOVA) using Tukey b 

and Duncan tests at P>0.05 significant level. Factor analysis, - based on Kaiser-Meyer-

Olkin Measure of Sampling Adequacy probe (0.616) and Bartlett's test - was applied to 

analyze different components under linear relationship, and to reduce the number of 

studied components. The relationship between the main raw materials and the biogas 

production was detected by a linear regression analysis. In the linear regression model, 

biogas yields without Stage 2 phase were considered as Y (i.e. dependent factor). 

 
 
Results and Discussion 
 

Technology and operational parameters of the studied biogas plant 
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This interval indicates the degradability of the given raw material, and the time 

needed for gas production to be commenced. The following are the main operational 

parameters of the studied agricultural biogas plant: 

 Temperature: 32.0 °C 

 Capacity (V): 179.8 m3/d 

 Reactor value (Vr): 4,500 m3 

 Hydraulic retention time (HRT) (Gruber, 2006): 25.0 d (Vr m3/Input m3*d) 

 Biogas quantity: 5,988.3 Nm3/d 

 Biogas quantity: 2,052,000 Nm3/a 

 Amount of oTS: 0.71 Input t oTS/d 

 Organic loading rate (OLR): 0.16 kg oTS* /(Vr m3*d) 

 Dry matter load: 0.24 kg TS (dry matter content)/ (Vr m3*d) 

 Methane concentration in biogas: 55.2 % 

 Biogas productivity: 1.32 Nm3/(Vr m3*d) 

 Specific biogas production: 33.3 Nm3/(Input m3*d) 

 Specific biogas yield: 8.39 Nm3/(kgVs*d) 

 Electricity production: 4,214,620 kWh/a 

 Electricity production: 11,305.7 kWh/d 

 

In case of the organic load, our results were lower (0.16 kg oTS /Vr m³ *d) than 

the average ORT in Braun et al. (2006) [23]. It’s proven to be effective for the biogas 

productivity in the studied biogas plant, compared to Braun et al. (2006) [23] results. 

However, the average methane content of biogas was lower within the studied period 

(2012-2016).  

The hydraulic retention time (HRT) had been established as 25 days based on 

Gruber (2006) [19] study, which is lower than the optimal value based on other 

publications. The Biogas Handbook suggested a minimum retention time of 30 to 40 days 

under mesophilic conditions. Mendaro et al. (2011) [24] analyzed four digestate samples 

in batch reactors. The methane yield was shown to be highly influenced by OLR and by 

feedstock quality of the biogas plant, but the HRT only showed limited effects. 

 

Optimization of raw material composition 
Descriptive statistic of biogas yields in summer and winter is shown in Table 5. 

Distribution of the biogas yields in summer and winter periods was normal based on One-

Sample Kolmogorov-Smirnov test. 

 

Table 5. Descriptive statistic of biogas yields in winter and summer periods 

Biogas 

yields 

(m3/d) 

N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 
Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

Winter 

period 
1528 6442.75 942.53 24.11 6395.45 6490.04 56.96 8481.00 

Summer 

period 
877 6427.73 964.78 32.58 6363.78 6491.66 56.96 8481.00 

Total 2405 6437.27 950.53 19.38 6399.26 6475.28 56.96 8481.00 
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Based on Levene-test, the variance of data was homogeneous. No significance 

differences were detected at P>0.05 significant level by ANOVA analysis for the biogas 

yields between the winter and summer periods, because the significance level of F-probe 

was 0.709. In case of the fed amount (oTS (kg/d)), no significance differences (Sig. 0.6<) 

was detectable between the winter and summer periods, therefore permanent and stable 

quality of feedstock and OLR was found in the studied agricultural biogas plant. The 

daily fed amount of total animal slurry and manure, silo maize, grass silage, and milk 

industrial wastes (m3) differed significantly in the summer and winter periods, which was 

based on variance analysis (Sig. 0.00). In case of solid separated digestate (Sig. 0.494) 

the fed amounts were similar in all seasons. 

The Stage 2 data series were excluded from the database, because it was identified 

as a technical error. Factor analysis and linear regression analysis were performed and 

then applied. Distribution of quantity of used raw materials was normal based on the 

Kolmogorov-Smirnov test.  

Factor analysis based on the Kaiser-Meyer-Olkin Measure of Sampling Adequacy 

probe (0.616) and the Bartlett's Test was well applicable. Based on principal Component 

Analysis and Rotated Component Matrix, the biogas yields, quantity of silo maize, solid 

digestate, and total slurry and manure (m3/d) could be separated in the first group. These 

components were determined as the biogas yield factors. The second group were 

classified as the acidity factors like amount of oTS (kg/d) and pH. Milk industrial wastes 

(m3/d) were classified as a third group. The most important factor was the silo maize, 

which showed a strong linear correlation with the biogas yield. An inversely proportional 

relationship could be detected between the biogas yield and the quantity of solid digestate, 

slurry, and manure. The more slurry, manure, and digestate used in the biogas plant as 

raw material, there was less biogas production, and therefore decreased effectiveness of 

the plant.  Higher ratio of organic matter content in the fed raw materials often cased 

lower pH, therefore increased the acidity in the digester. Factor analysis of feedstock, 

biogas yield, oTS, OLR and pH are detailed below: 

 

Components 

1. Biogas yield factor: 

 Silo maize (m3/d) (-0.757) 

 Solid digestate (m3/d) (0.671) 

 Biogas yields (m3/d) (-0.650) 

 Total slurry and manure (m3/d) (0.609) 

 

2. Acidity factor:  

 Amount of oTS (kg/d) (0.803) 

 pH (-0.675) 

 

3. Milk industrial wastes (m3/d) (0.862) 

 

Based on the regression analysis of biogas yields (m3/d) and silo maize (m3/d), we 

can build up a linear regression equation with low dependability (R=0.38; R2=0.145). 

Weak correlation was observed between the biogas yields and total amount of slurry and 

manure (m3/d) with linear regression analysis (R =0.371, R2=0.137) at P>0.05 significant 
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level. In case of applied solid digestate the dependency was also week (R=0.217, R2= 

0.047). 

An average difference of 2.1 times was observed between the model and the 

measured values by a relative low standard deviation (R=0.40), however, with very 

different extreme values (minimum of 0.02 to a maximum of 3.07). 

Taking into account the daily accurately measured values, the objectivity of the 

LP model, and the model considering only the individual (mono-digestion) biogas yield 

of the single raw materials, we believe that the heterosis effect in this recipe could result 

in a 110% excess yield. However, this value is only the best possible approximation, 

since the actual composition of raw materials used in the given biogas plant – thus their 

biogas yields – is not precisely known, and it may not correspond to the used average 

values. Considering the average standard deviation, it can be stated that the heterosis 

effect results in a 1.7-2.5-fold yield increase under the test conditions. 

Although the amount of corn silage, grass silage and the extract – as variables – 

was minimal in the recipe, they played a crucial role in the total biogas yield of the recipe 

because of their significantly higher organic matter content and specific biogas yield 

(Figure 2.). 

  

 

 
Figure 2. The correlation between organic material content and specific biogas yield 

 

 

The recipe composition and the actual daily biogas yields based on the operational 

measures are detailed in the upper part of Table 6, while the same parameters as results of 

the optimization are shown in the lower part of the table. The biogas yield of the model at 

180 m3 daily input level was 16% lower, while at higher input levels it was 18-66% 

higher than the average of the yields measured in the plant. 
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Table 6. The real (measured) and the optimized values regarding the recipe 

Daily 

feedstock 

(m3) 

Cattle 

slurry 

Pig 

slurry 

Silage 

maize 

Grass 

silage 

Solid 

separate 

digestate 

Whey 
Dairy 

sludge 

Cattle 

manure 

Biogas 

yield 

(m3) 

Real values, measured in the biogas plant 

175-185 98.9 48.6 7.2 2.3 9.6 11.2 10.8 0.8 6496 

185-195 106.2 50.9 5.5 3.8 9.5 10.3 11.9 1.1 6193 

195-205 112.5 52.5 4.5 5 9.5 10.5 12.2 2.1 6110 

205-215 115.1 56 4.5 4.9 8.9 10.3 14.3 2.6 6042 

Results and values by the optimization 

180 100 50 2.9 0.2 3 10 10 0 5425 

190 100 50 9.1 1.4 3 10 10 0 7308 

200 100 50 9.1 5.1 4.9 10 10 0 8731 

210 100 50 9.1 5.1 9.9 10 10 0 10046 

 

In case of the 180 m3 per day input level, the actual recipe contained a 

significantly smaller proportion of the substrate with the lower biogas yield compared 

with the optimized 180 m3 per day capacity. Consequently corn silage, grass silage, and 

digestate were present in a 3.15-fold proportion (19 % compared to 6 %), so the 

difference of the proportion of valuable substrates was much higher than of biogas yields 

(6496 m3 per day compared to 5425 m3 per day). 

Assuming that the raw material in the plant had more favorable parameters (like 

organic matter content and biogas yield) than the average, the degree of the heterosis 

effect was corrected upwards with the standard deviation (to 2.50). The measured and the 

optimized daily yield was practically identical (6496 m3 or 6445 m3), despite the 

divergence of the more valuable components. 

The considerable surplus yield (18-66%) of the optimized recipe in case of the 

190 to 210 m3 per day input volume was due to the decreased proportion of ingredients 

with high biogas yield in the higher input volume under the actual operating conditions 

and the increase of their proportion in the model. The most recommended of these was 

the feeding of corn silage; the LP model increased first the volume of this ingredient to 

the maximum level (in addition to leaving the other two substrates on minimum level), 

than the volume of grass silage and finally the volume of extract. Our calculations 

suggested that the maximum limit could be reached at 213 m3 daily input volume. If there 

was no limits for the variables, the model would have recommended the solely feeding of 

corn silage – in addition to a minimal feeding of grass silage and extract – at 210 m3 daily 

input level with an estimated biogas yield of 12,637 Nm3/day, which is more than double 

of the relevant operating data. 

Against this background, we believe that a significant excess yield could be 

achieved with the use of our model compared to the actual measured data. 

It is important to point out, that even a relatively small over-sizing of the 

fermenter capacity could result in a significant yield increase. In this case study, a 5.5% 

increase of the input volume (from 180 to 190 m3) resulted in a 35% increase of the 

biogas yield when using optimized recipe. However, the increasing rate of the yield – 

according to the law of diminishing returns – decreased significantly in case of further 

similar capacity increases. In turn, the actual operating data displayed the opposite 
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tendency, which is probably due to the fact that after recovering the breakdown in 

livestock farms, the operators tried to dispose the most possible volume of the 

accumulated slurry in the biogas plant, resulting in a higher proportion of slurry in the 

greater input volume. However, large-scale or long-term decline in livestock can be a 

serious threat not only for the security of the raw material basis, but for the utilization of 

unmarketable by-products of the biogas production (primarily waste heat). 

 
 
CONCLUSIONS 

Biogas plants serving for disposal of the slurry from livestock farms have 

relatively modest possibilities for increasing yield, since they are scaled for constantly 

processing hardly storable raw materials with modest biogas yields (a variety of slurry 

and food processing by-products). Optimization of this kind of feedstocks is possible, but 

combines with significant limitations. Because these feedstocks make up the vast 

majority of the recipe, the seasonality is much less important compared to other types of 

biogas plants. However, substrates with the high organic content (silage maize, grass 

silage, solid separate digestate) are responsible for most of the biogas production, so they 

should be considered when scaling up the fermenter. 

A temporary or permanent, minor decrease in the feedstock from the livestock can 

make the recipe use a higher proportion of energy crops, resulting in a significant 

increase in the biogas production. Energy crops also have the land demand, but it’s 

significant smaller than the crop production for feeding. 
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The energy requirements for converting one tonne (1,000 kg) of Chlorella 
slurry of 20 wt% solids via fast pyrolysis, microwave-assisted pyrolysis 
(MAP), and hydrothermal liquefaction (HTL) were compared. Drying 
microalgae prior to pyrolysis by using a spray drying process with a 50% 
energy efficiency required an energy input of 4,107 MJ, which is higher 
than the energy content (4,000 MJ) of raw microalgae. The energy inputs 
to conduct fast pyrolysis, MAP, and HTL reactions were 504 MJ (50% 
efficient), 1,057 MJ (~25% efficient), and 2,776 MJ (50% efficient), 
respectively. The overall energy requirement of fast pyrolysis is 
theoretically about 1.6 times more than that of HTL. The energy recovery 
ratios for fast pyrolysis, MAP, and HTL of microalgae were 78.7%, 57.2%, 
and 89.8%, respectively. From the energy balance point of view, 
hydrothermal liquefaction is superior, and it achieved a higher energy 
recovery with a less energy cost. To improve the pyrolysis process, 
developing drying devices powered by renewable energies, optimizing the 
pyrolysis process (specifically microwave-assisted), and improving the 
energy efficiency of equipment are options.   
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Introduction  
  

 Thermochemical conversion of microalgae can be divided into pyrolysis of dry 

algae and hydrothermal liquefaction (HTL) of algal slurries [1]. Usually, the microalgal 

culture has a very dilute concentration of 0.1-1% dry solids. Currently, the proposed 

harvesting process is using a series of mechanical unit operations to dewater the microalgae 

media to a level of ~20% dry solids, which is considered as a less energy intensive 

processing option than completely drying microalgae for pyrolysis purpose. Drying is one 

of most dominant costs for algae harvest and may account for 30% of the total product 

costs, and the power consumption was equivalent to 15.8% of the energy of the recovered 

hydrocarbon [2]. Because of this energy consumption barrier, pyrolysis is considered as a 

kind of hopeless technologies for microalgae and only limited to laboratory investigations 

[3]. Meanwhile, researchers also recognized the advantages of the pyrolysis of microalgae 

(such as higher quality of pyrolytic bio-oil than that of cellulosic biomass) [4] and the 

merits of pyrolysis technology (such as lower capital cost than HTL) [5, 6]. 

 This paper provides a simple comparison between the energy consumptions in 

pyrolysis of microalgae and hydrothermal liquefaction of microalgae. The purpose is not 

to provide a complete evaluation to these conversion technologies, but to give an idea how 

the energy consumption impacted the conversion processes of microalgae, and what would 

be the possible solutions.  

 

 

Methodology 
 

Microalgae 
 The composition analysis and properties of Chlorella sp. are summarized in Table 

1. An engineered Chlorella sp. was assumed to be grown autotrophically, and had 

following components: 25% fatty acids, 50% protein, 15% polysaccharide, and 10% ash. 

For calculation, one tonne (1,000 kg) of Chlorella slurry at 20°C with 20 wt% solids and 

80 wt% water (i.e. 200 kg dry algal cells and 800 kg water) was selected as the baseline. 

Cell concentration of 20 wt% has been used in multiple technical reports published by US 

national laboratories [7, 8]. This kind of algal slurries can be obtained via a series of 

dewatering unit operations such as settling, dissolved air flotation, and centrifugation. The 

energy content of microalgae is ~20 MJ/kg, so this microalgal slurry carried 4,000 MJ. 

 

Table 1. Composition analysis and properties of C. vulgaris [9-12] 
Protein (wt%) 34-58.1 Specific heat (kJ/kg·K)* 1.57 

Polysaccharide (wt%) 9.42-15.5 
Molecular weight 

(g/mol)* 
360 

Lipid (wt%) 1.04-15.6 HHV (MJ/kg) 19.3-21.2 

C (wt%) 44.5-50.2 Volatile matter (wt%) 51.8-75.2 

H (wt%) 6.2-7.2 Fixed carbon (wt%) 9-32.1 

N (wt%) 6.4-10.9 Ash (wt%) 9.6-11.4 

O (wt%) 24.6-40.7   

* [13] 
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Fast pyrolysis and microwave-assisted pyrolysis processes 
 Prior to pyrolysis, the microalgal slurry (1,000 kg) was dried with a spray dryer to 

220 kg with a 9.1% moisture. Spray drying could generate Chlorella powders consisted of 

globular particles with a diameter of approximately 50-80 m (i.e. 0.05-0.08 mm, 

approximately 270- 200 mesh) [14], which is fine enough for fast pyrolysis. Fast pyrolysis 

of microalgal powders were conducted in a fluidized bed reactor at 500°C with a heating 

rate of 600 °C/s. Pyrolytic product yields were assumed to be following: the bio-oil yield 

was 50 wt%, the yield of water solubles was 15 wt%, gaseous products counted for 4 wt%, 

and the biochar yield was 28 wt%. The gaseous products consisted of 22.2 vol% H2, 34.9 

vol% CH4, 38.6 vol% CO2, and 4.3 vol% C2H6 [11].  

For microwave-assisted pyrolysis, microalgae could be air-dried by using solar 

dryers (Figure 1), because microwave pyrolysis doesn’t require the finely ground feed [15, 

16]. Microwave-assisted pyrolysis was assumed to be conducted in a pilot scale system, 

which could process large chunks of dry microalgae [17]. Pyrolytic product yields were 

assumed to be following: the bio-oil yield is 26 wt%, the yield of water solubles was 24 

wt%, gaseous products counted for 22 wt%, and the biochar yield is 28 wt% [10].  

 

 

A B 

  
Figure 1. Naturally dried microalgae (A) and ground microalgae (B) 
 

 

Hydrothermal liquefaction (HTL) 
 The microalgal slurry of 20 wt% solids was pumped to the HTL reactor, and 

hydrothermally treated in subcritical water at 2,500-3,000 psia and 350°C. The HTL 

process yielded 4 wt% gases, 51 wt% bio-crude oil, and 43 wt% aqueous organics and ash 

[5]. The non-condensable gases had following composition: 42 vol% CO2, 50 vol% NH3, 

7 vol% CH4, and 1 vol% ethane [18]. The non-condensable gases were mixed with natural 

gas and sent to a steam boiler for power generation. The predominately organic liquid phase 

is sent to catalytic upgrading, and the predominately aqueous phase is sent to wastewater 

cleanup for carbon recovery. Solids that can be removed by filtration might be recycled 

back to the algae ponds as nutrients [14]. The conditions and product yields for pyrolysis 

and HTL processes used in this study are summarized in Table 2.  
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Table 2. Conditions and product yields of pyrolysis and hydrothermal liquefaction 
of microalgae  

 Fast Pyrolysis (500°C) Microwave-assisted 

Pyrolysis  

HTL (350°C) 

Reaction temperature 500°C - 350°C 

Pressure  Atmospheric pressure Atmospheric pressure 2500-3000 psia 

Bio-oil (wt%) 50 26 51 

Water (wt%) 15 24 - 

Biochar yield (wt%) 28 28 - 

Gaseous products (wt%) 4 22 4 

 

Calculation 
Specific heat of microalgae 

 According to a scientific report that studied the thermo-chemical properties of six 

species of microalgae, the specific heat (cp) of microalgae was determined as 1.2 - 2 

kJ/kg·K [13]. Meanwhile, to calculate the specific heat of microalga from its composition, 

following assumptions were applied: ash is SiO2 with a specific heat of 733 J/kg·K or 0.175 

cal/g·°C, the specific heat of polysaccharides is same as that of glucose (0.3 cal/g·°C), the 

specific heat of fatty acids is same as that of stearic acid (0.55 cal/g·°C), and the specific 

heat of protein is same as that of quinolone (0.352 cal/g·°C). Thus, the specific heat of 

Chlorella sp. was determined via Eqn. 1 as 0.376 cal/g·°C or 1.57 kJ/kg·K.  

Specific heat of microalga (cp, microalgae) 

=10%×0.175+25%×0.55+50%×0.352+15%×0.3=0.376 cal/g∙°C  Eqn. 1 

 

Energy for thermal drying of microalgal slurry 

 The feedstock for pyrolysis is typically quoted at <10 wt% moisture and requires 

thermal drying. To thermally dry one tonne of microalgal slurry (20°C) to 9.1% moisture, 

780 kg water needs to be evaporated at 100°C. Water has a specific heat of 4.187 kJ/kg·K 

and latent heat (at 100°C) of 2256.9 kJ/kg [19]. 

Energy required for water evaporation: 

=780×4.187x(100-20)+780×2256.9=2,022MJ     Eqn. 2 

To evaporate 780 kg water from 1 tonne algal slurry, it will require at least 

2,021,650 kJ, which is approximately 2,022 MJ or 562 kWh. This energy consumption is 

about 18.6 days of electricity usage of an American household [20]. Because the whole 

slurry shall be heated by the thermal dryer, the energy input for heating up rest water and 

microalgae can be calculated via following equations: 

Energy required for heating 20 kg water to 100°C: 

=20×4.187x(100-20)=6,699.2kJ=1.86kWh     Eqn. 3 

Energy required for heating 200 kg microalgae to 100°C: 

=200×1.57x(100-20)=25,120kJ=6.98kWh     Eqn. 4 

The total energy for thermal drying of 1,000 kg microalgal slurry shall be equal to 

the sum of equations 2 through 4.   

The total energy for thermal drying of 1,000 kg microalgal slurry: 

=2,021,650.8kJ+6,699.2kJ+25,120kJ=2,053MJ=570kWh   Eqn. 5 

However, the overall thermal efficiency of spray dryers is only 20-50% [21]. Hence, 

if a dryer with 50% efficiency was used for drying the microalgal slurry, the total energy 

input for the drying process is 4,107 MJ or 1140 kWh. If the thermal efficiency can be 

improved to 75% [22], the energy requirement reduced to 2,737,960 kJ (2738 MJ) or 760 

kWh.  
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Energy required for fast pyrolysis of microalgae 

It’s reported that the energy required to achieve thermal conversion (i.e. pyrolysis) 

of six different microalgae at 500°C was found to be approximately 1 MJ/kg [13]. Because 

only dry microalgal samples were used in their study, the energy required to evaporate 

moisture must be considered too.   

Energy required for evaporation of 20 kg water: 

=20×4.187×(100-20)+20×2256.9=51,837kJ=23.6kWh   Eqn. 6 

Energy required for pyrolyzing 200 kg microalgae: 

=200×1MJ/kg=200MJ=200,000kJ=55.6kWh     Eqn. 7 

Total energy required for pyrolysis of 220 kg microalgae 

=51,837kJ+200,000kJ=251,837kJ=252MJ=70kWh    Eqn. 8 

If a pyrolyzer with 50% energy efficiency was used, the total energy input for the 

pyrolysis of microalgae rose to: 

=251,837 kJ÷50%=503,674kJ=504MJ=140kWh    Eqn. 9 

 

Energy output from fast pyrolysis products 

Pyrolyzing 200 kg dry microalgae yielded 100 kg bio-oil, 30 kg water, 8 kg gases, 

and 56 kg biochar. The microalgal bio-oil was assumed to have a higher heating value of 

30 MJ/kg, so the energy output from the bio-oil is 3,000 MJ (3,000,000 kJ = 833 kWh). 

According to the composition of the gaseous products (22.2 vol% H2, 34.9 vol% CH4, 38.6 

vol% CO2, and 4.3 vol% C2H6), the gas phase had an average molecular weight: 

MW = 2 × 0.222 + 16 × 0.349 + 44 × 0.386 + 30 × 0.043 = 24 g/mol            

Eqn. 10 

So, total gaseous products were 333.3 mol and 7,466.7 L (7.5 m3) at normal 

temperature & pressure conditions, including 1.665 m3 H2, 2.61 m3 CH4, 2.89 m3 CO2, and 

0.32 m3 C2H6. The higher heating values of H2, CH4, and C2H6 are 12.769 MJ/m3, 39.781 

MJ/m3, and 69.693 MJ/m3 [23]. The energy output from the gases: 

= 12.769 × 1.665 + 39.781 × 2.61 + 69.693 × 0.32 = 147.4MJ = 41kWh          Eqn. 

11 

Because microalgal biochar is normally used as the soil amendment, total energy 

output from pyrolysis of 200 kg microalgae is 3,147.4 MJ (3,147,400 kJ or 874 kWh). 

 

Energy required for microwave-assisted pyrolysis of microalgae 

Energy requirement for microwave-assisted pyrolysis was only experimentally 

determined for a benchtop system that converted 30-60 g dry microalgae. Based on their 

results, it required 317 kJ to pyrolyze 60 g microalgae to the bio-oil with a 404 kJ energy 

content and gases with a 283 kJ energy content [24]. The experiments in  [24] were  

performed in a microwave oven, which normally is less than 60% efficient [25]. If scaling 

up this microwave oven linearly to a system processing 200 kg microalgae with the same 

efficiency, the microwave-assisted pyrolysis requires an energy input of 1,056,667 kJ 

(1,057 MJ or 293.5 kWh), producing the bio-oil of 52 kg with a 1346,666 kJ (1347 MJ or 

374 kWh) energy content and gases of 44 kg with a 943,333 kJ (943 MJ or 262 kWh) 

energy content.  

 

Energy required for HTL of microalgae 

One tonne (1,000 kg) of microalgal slurry was processed via HTL at 350°C. 

According to the steam table, the specific enthalpies of water (saturated liquid) at 20°C and 
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350°C (~17 MPa/2,500 psia) are 83.9 kJ/kg and 1,690 kJ/kg, respectively [26]. Energy 

required for heating 800 kg water from 20°C to 350°C: 

= 800 × (1690 − 83.9) = 1,284,880kJ = 1,285MJ = 357kWh             Eqn. 12 

Energy required for heating 200 kg microalgae from 20°C to 350°C: 

= 200 × 1.57 × (350 − 20) = 103,620kJ = 104MJ = 29kWh             Eqn. 13 

The total energy required for heating this 1,000 kg microalgal slurry to 350°C is 

1,389 MJ or 386 kWh. If an electric heater with a 50% efficiency was used for this duty, 

the total energy required for HTL of microalgae is 2,778 MJ (772 kWh). If a 75% thermal 

efficiency can be applied, the total energy required for HTL is 1,851 MJ or 514 kWh.  

 

Energy output from HTL products 

Since the yield of bio-crude oil was 51%, and thus the process yielded 102 kg bio-

crude with a 35 MJ/kg heating value [27]. Total energy recovered in the bio-crude oil was 

3,570 MJ.  

The gaseous products (42 vol% CO2, 50 vol% NH3, 7 vol% CH4, and 1 vol% ethane) 

had an average molecular weight: 

MW = 44 × 0.42 + 17 × 0.5 + 16 × 0.07 + 30 × 0.01 = 28.1g/mol                       

Eqn. 14 

So, total gaseous products were 285 mol and 6,377 L (6.4 m3) at normal temperature 

& pressure conditions, including 2.7 m3 CO2, 3.2 m3 NH3, 0.45 m3 CH4, and 0.06 m3 C2H6. 

The higher heating values of CH4, and C2H6 are 39.781 MJ/m3 and 69.693 MJ/m3. The 

energy output from the combustible gases: 

= 39.781 × 0.45 + 69.693 × 0.06 = 22MJ = 6kWh                       Eqn. 15 

 
 
Results and Discussion 
 

 To compare the energy consumption of different conversion technologies for 

microalgae, a 1,000 kg microalgal slurry was used as the baseline, and assumed to be 

processed with fast pyrolysis, microwave-assisted pyrolysis, and hydrothermal 

liquefaction processes. The energy requirements for the drying process and conversion 

reactors are summarized in Table 3. The energy present in original microalgae, the bio-oil 

or bio-crude, and gases is also summarized in Table 3.  

 

Table 3. Breakdown of energy consumption during pyrolysis and liquefaction  of 
microalgae (1,000 kg slurry with 20% solids at 20°C) 

Energy (MJ) Fast Pyrolysis 

(500°C) 

Microwave-assisted 

Pyrolysis  

HTL (350°C) 

Energy in microalgae (20 

MJ/kg) 

4,000 4,000 4,000 

Drying  4,107a 4,107 a N/A 

Supporting conversion 

reaction  

504 a 1,057 b 2,778 a 

Total energy input 4611 5,164 2,778 

Bio-oil 3000 1347 3570 

Gas 147 943 22 

Total energy in products 3147 2290 3592 

Energy recovery 78.7% 57.2% 89.8% 

a: 50% efficiency 

b: 25% efficiency 
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The original 1,000 kg microalgal slurry with 200 kg dry microalgal cells carried 

4,000 MJ energy. If drying this slurry to a moisture content of 9.1% by using a spray dryer 

with a 75% efficiency, the energy requirement for the dryer was 2,738 MJ. One advantage 

of spray drying for microalgae is to directly generate find powders for the need of pyrolysis. 

However, the spray dryers generally have 20-50% efficiency, resulting in increased energy 

inputs of 4,107-10,267 MJ. Obviously, the efficiency of the drying system plays a very 

important role. If a drying system powered by renewable energies could be introduced into 

this process, the pyrolysis of microalgae will be more attractive.  

The energy requirements for microalgae conversion were various for different 

techniques. Fast pyrolysis required the lowest amount of heat, because the process was 

considered to be conducted under the optimal conditions. Microwave-assisted pyrolysis 

was scaled up from a bench-top system with a low energy efficiency, and showed an energy 

requirement of ~1,000 MJ for converting 200 kg dry microalgae. Because pyrolyzing 200 

kg microalgae requires an energy input of 252 MJ, the actual efficiency of this microwave 

pyrolysis system was approximately 25%. Meanwhile, hydrothermally liquefying 1,000 kg 

microalgal slurry needed ~2,778 MJ (50% efficient). The energy need for HTL was less 

than that of drying wet microalgae, because the evaporation process was avoided and HTL 

reactions happened in saturated water.  

 The product yields of fast pyrolysis and HTL were optimal numbers, which were 

projected from recent experimental studies and shall be realized in the near future. Both 

optimized pyrolysis and HTL processes should produce ~50 wt% bio-oil or bio-crude oil 

with a higher heating value of 30-30 MJ/kg, which is the main energy carrier for both 

processes. The combustible gas yields from both processes were relatively low and less 

than 4 wt%. The energy recovery ratios from microalgae were 78.7% and 89.8% for fast 

pyrolysis and HTL, respectively. Because microalgae have a high ash content, resulting in 

a significant amount of ash and metals in the microalgal biochars. Normally, the microalgal 

biochars are considered as a good soil amendment.  

 The microwave-assisted pyrolysis process used for this study was not optimized, 

and produced large quantities of gases and less bio-oil products than fast pyrolysis or HTL. 

The energy recovery ratio for microwave-assisted pyrolysis was only 57.2%. Microalgae 

are a poor microwave absorber too, so other materials like char and activated carbon are 

often added to help microwave absorption [28]. 

From the energy balance point of view, hydrothermal liquefaction is superior, and 

it could achieve the higher energy-recovery ratio with a lower energy cost.  

Meanwhile, the pyrolysis of microalgae might still have its chance. The major 

advantage of microwave-assisted pyrolysis is that it can process feedstock with a large 

particles size even chunks, because of the unique heating approach. If the efficiency of 

microwave-assisted pyrolysis can be improved to that of fast pyrolysis, and solar drying 

can be applied to solve the negative energy issue (as shown in Figure 2), the pyrolysis of 

microalgae will be more promising.   
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Figure 2. Proposed ideal pyrolysis process for microalgae  

 

CONCLUSIONS 
 

The energy requirements for converting one tonne (1,000 kg) of Chlorella slurry of 

20 wt% solids via fast pyrolysis, microwave-assisted pyrolysis (MAP), and hydrothermal 

liquefaction (HTL) were compared. Drying microalgae prior to pyrolysis by using a spray 

drying process with 20%, 50%, and 75% energy efficiency required energy inputs of 

10,267 MJ, 4,107 MJ, and 2,738 MJ, respectively. The energy inputs to conduct fast 

pyrolysis, MAP, and HTL reactions were 504 MJ (50% efficient), 1,057 MJ (~25% 

efficient), and 2,776 MJ (50% efficient), respectively. The microalgal feed contained 4,000 

MJ, and the energy recovery ratios for fast pyrolysis, MAP, and HTL of microalgae were 

78.7%, 57.2%, and 89.8%, respectively. From the energy balance point of view, 

hydrothermal liquefaction is superior, and it achieved a higher energy recovery with a less 

energy cost. To improve the pyrolysis process, developing drying devices powered by 

renewable energies, optimizing the pyrolysis process, and improving the energy efficiency 

of equipment are options.   
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Biomass can be converted to biofuels and bioproducts via 
thermochemical processes. Biochar is one of the major products of 
thermochemical conversion of biomass. The efficient use of biochar is 
critical to improving the economic viability and environmental 
sustainability of biomass conversion technologies. Applications of 
biochar for both agricultural and environmental benefits (e.g. as soil 
amendment, for inorganic pollutant removal) have been studied and 
reviewed extensively. However, biochar for energy storage materials and 
catalytic applications has not been widely reviewed in the recent past. 
This review aims to present the more significant recent advances in 
several biochar utilizations such as catalysts and supercapacitors. 
Discussions on biochar production technologies, chemistry, properties, 
characteristics, and advanced functionalization techniques are provided. 
It also points out barriers to achieving improvements in the future. 
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Introduction  
  

 Energy crisis, environmental pollution, and global warming are serious problems 

that are of great concerns throughout the world. Sustainable development requires 

discovering economically viable and environmentally friendly energy sources with the 

aim of solving these problems. 

 One important aspect of such research is to synthesize a range of materials that 

can be used to resolve many of the challenges encountered (e.g., environmental pollution 

and global warming). For example, materials with catalytic functionalities can be 

developed to convert renewable sources to fuel or chemicals. Absorbents or catalytic 

materials can be developed to capture CO2 or remove pollutants. Materials with high 

storage capacities can be produced for the storage of low-cost clean renewable energy 

(such as solar, wind, and bioenergy) [1]. Carbon-based materials have attracted 

considerable interest in many energy-related applications, such as energy storage in 

supercapacitors and Li-ion batteries, catalysis/electrocatalysis, absorption, and gas 

separation and storage, due to their abundance, chemical and thermal stability, 

processability, and the possibility of tuning their textural and structural characteristics to 

fulfill the requirements of specific applications.  
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 Different routes have been used to synthesize carbon-based materials, such as 

chemical vapor deposition, arc discharge synthesis, and carbonization of synthetic or 

natural polymers. However, these methods usually require tedious synthetic methods as 

well as organic solvents and electrochemical treatment. In addition, they often rely on 

relatively expensive fossil fuel-based precursors, the use of metal catalysts, and 

complicated apparatus involving high processing temperatures, none of which are 

environmentally and economically sustainable. These drawbacks lead to high production 

cost and limit the large-scale production and commercialization of such carbon materials. 

Alternatively, thermochemical conversion (e.g. pyrolysis and hydrothermal carbonization) 

of biomass is a promising route, offering low-cost, low temperature, and environmentally 

friendly production of novel carbon materials from natural precursors without the need to 

use toxic chemicals [2].  

 Biomass is a naturally abundant renewable resource that has great potential as a 

raw carbon material for synthesizing various carbon materials [2]. Considerable attention 

has been given to lignocellulosic biomass such as agricultural residues, woody biomass 

and energy crops [3]. Recently, biochar, a product from biomass thermochemical 

conversion, has received increasing attention for the use in several applications due to the 

cheap, abundant, and sustainable advantages. The most common biochar application is 

soil amendment to mitigate greenhouse gas emission and improve soil health. Recent 

developments in activation procedures and/or precursors allow a better control over the 

pore structure and surface property. These characteristics have widened the use of 

biochar to more demanding applications, including use biochar as a precursor for making 

catalysts, energy storage, gas storage and contaminant adsorbents. These new high-value 

applications are still in their infancy, and further research and development are needed to 

reach commercialization.  

 This review addresses the opportunities and advantages of using new technologies 

to convert biomass into biochar-based functional materials with applications in energy 

storage and catalysis. Discussions on biochar production technologies, chemistry, 

properties, characteristics and advanced methods to modify its structure and properties 

are also provided. 

 

Biochar Production 
 
Overview of the biochar production technologies  
 Research to date has shown biochar to be a carbonaceous solid consisting of an 

aromatic, furanic, and aliphatic backbone and numerous oxygen defects. The 

international Biochar Initiative defines biochar as “a solid material obtained from the 

thermochemical conversion of biomass in an oxygen-limited environment” [4]. Biochar 

is produced in solid form by dry carbonization, pyrolysis or gasification of biomass, and 

in slurry form by hydrothermal carbonization (HTC) of biomass under pressure. Typical 

operating conditions and char yields of different thermochemical processes are shown in 

Table 1 [5]. An advantage of the thermochemical process is that it is relatively simple, 

usually requiring only one reactor, thus having a low capital cost. 

 Pyrolysis is the most common method to produce biochar, which can be 

categorized into slow pyrolysis and fast pyrolysis depending on the heating rate and 

residence time. Slow pyrolysis, also called conventional carbonization, produces biochar 

by heating biomass at a low heating rate for a relatively long residence time (up to several 
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days). According to the literature, the production of biochar from carbonization of 

biomass can be dated back for centuries [6].  

 

Table 1. Different thermochemical processes and typical char yields from these 
processes 

Process Temperature (°C) Residence Time Char Yield (wt%) 

Slow Pyrolysis 400-600 min to days 20-50 

Fast Pyrolysis 400-600 ~1 s 10-20 

Gasification 800-1000 5-20 s ~10 

Hydrothermal Carbonization 160-350 1-12 h 30-60 

  

On the other hand, fast pyrolysis involves the rapid thermal decomposition of 

organic compounds by heat in the absence of oxygen, which results in the production of 

biochar, bio-oil, and gaseous products. Fast pyrolysis produces biochar at a high heating 

rate (above 200 °C/min) and short residence time (less than 10 s). The major differences 

between the two pyrolysis methods are the yields of biochar and bio-oil: Fast pyrolysis 

favors a high yield of bio-oil, while slow pyrolysis favors a high yield of biochar. 

 Gasification is different from general pyrolysis processes. For gasification, the 

biomass is converted into primarily a gaseous mixture (containing CO, H2, CO2, CH4, 

and smaller quantities of higher hydrocarbons) by supplying a controlled amount of 

oxidizing agent under high temperature (greater than 700°C). The resulting gas mixture is 

known as synthetic gas or syngas. The typical biochar yield of gasification averages 

about 10 wt% of biomass [7]. 

 Hydrothermal carbonization (HTC) is also called wet pyrolysis, direct 

liquefaction, hydrothermal upgrading/pyrolysis, and solvolysis. The use of water as a 

solvent obviates the need to dry biomass and permits reactions to be carried out at lower 

temperatures in comparison with pyrolysis. HTC of biomass takes place in water at 

elevated temperatures (160–350 °C). Since the water temperature is above 100°C, the 

reaction pressure also must be elevated (more than 1 atm) to maintain the water in a 

liquid form. Low-temperature HTC can mimic the natural coalification of biomass, 

although the reaction rate is higher and the reaction time is shorter compared to the 

hundreds of years of slow natural coalification of biomass. Char yield of low-temperature 

biomass HTC varies from 30% to 60% depending on the feedstock properties, reaction 

temperature, and pressure [8]. Since HTC requires water, this may be a cost-effective 

biochar production method for feedstocks with high moisture content.    

 The char produced from HTC often is called hydrochar. It is important to 

differentiate biochar from hydrochar because the chemical and physical properties differ 

significantly from each other. Chemical properties of biochars from gasification or 

pyrolysis were compared to hydrochars from HTC in the publication of [9]. The 

observations showing that hydrochars have lower proportions of aromatic compounds 

than biochars (less stable) but are rich in functional groups (higher cation exchange 

capacity) than biochars [9]. 
 

Mechanism of biochar formation in the biomass thermochemical conversion 
process 
 Biomass undergoes series of chemical reactions that are highly complicated and 

partially understood during the biochar or hydrochar production. The understanding of 
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the mechanism involved in biochar formation is essential in order to make it possible to 

tune the morphology, functionality, and porosity of the resulting biochar.  

 The overall mechanism of biochar formation consists indirectly of the 

pyrolysis/HTC mechanisms of the main biomass components, namely, cellulose, 

hemicellulose, and lignin. However, the reaction mechanisms of these two processes are 

different, which have been studied by many investigators [10, 11]. The HTC occurred in 

an aqueous medium which involves complex sequences of reactions including solvolysis, 

dehydration, decarboxylation, hydrogenation of functional groups, etc. The 

hemicelluloses were partly undergoing hydrolysis at lower temperatures and results in the 

formation of biochar/hydrochar through polymerization (water solubility homogenous 

reaction). For pyrolysis, the reaction mechanism is characterized by decreasing degrees 

of polymerization through homogeneous reactions in the gas phase. A number of 

pyrolysis mechanisms of cellulose, hemicellulose, and lignin have been proposed in [12, 

13].  

 Several factors can influence the production and properties of biochar, of which 

the reaction temperature and the nature of biomass feedstock are the main factors [14]. 

The properties of biochar can be tuned by modifying the thermochemical operating 

conditions such as temperature, substrate concentration, residence time, and catalysts. 

Further studies are required to develop efficient catalysts for the conversion of biomass to 

biochar with the desired functional groups and porous structure.  

 
Feedstock for biochar production 
 A number of lignocellulosic biomass materials have been used as feedstocks for 

pyrolysis and HTC. For example, Minowa et al. [15] tested twenty species of forest and 

agricultural residues with different lignin, hemicellulose, and cellulose contents. However, 

animal wastes and aquatic materials with low lignin and cellulose contents have not been 

studied as extensively as the high lignin and cellulose content biomass due to their 

difficult handling conditions. Besides, Giant Miscanthus as a bioenergy feedstock has 

gained importance in the recent few years [16]. 

 Managing animal and crop wastes from agriculture poses a significant 

environmental burden that leads to pollution of ground and surface waters [17, 18]. These 

wastes, as well as other biomass, are usable resources for biochar production. Not only 

can energy be obtained in the production process, but the volume and weight of these 

wastes are significantly reduced, which is an important aspect of managing agricultural 

wastes [19].  

 Biomass with different chemical compositions (i.e. different contents of 

hemicellulose, cellulose, and lignin) are thought to have a significant impact on the 

biochar surface composition, reactivity with the chemical activating agent, and yields. A 

detailed comparative study on biochar produced from different feedstocks will be of great 

importance to identify common features and develop appropriate protocols for biochar-

based materials production. Furthermore, it will be of immense interest to develop a 

correlation between the surface characteristics of biochar and composition of starting 

material with the change in thermochemical parameters.  
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Biochar Characterization 
 

 Physical, chemical, and mechanical properties of biochars can vary with 

production conditions and raw feedstock. It is very important to characterize biochar 

because its characterization plays a vital role in determining their applications in industry 

and environment.   

 

Proximate, elemental composition and Inorganic fraction characterization 
 The proximate analysis can provide the weight fractions of moisture, volatile 

mater, ash, and fixed carbon. There are standardized methods for performing a proximate 

analysis (ASTM, ISO, DIN, and SB) [20]. Apart from the proximate analysis, the 

elemental composition of biochar are usually determined using analytical devices, such as 

an elemental analyzer. The principal elements of biochar are C, H, and O, with N 

sometimes included. The exact content differs greatly depending on the nature of the 

biomass feedstock. Usually, the carbon content of a typical biochar is in the range of 45-

60 wt %, the hydrogen content 2-5 wt %, and the oxygen content about 10-20% [21].  

 In addition to the proximate and the bulk elements, various inorganic elements 

present in biochar also substantially influence its properties. Several analytical techniques 

can be applied to characterize the inorganic elements: inductively coupled plasma atomic 

emission spectroscopy (ICP-AES), X-ray fluorescence (XRF), and X-ray diffraction 

(XRD). ICP-AES can be used to determine the absolute concentrations of the inorganic 

elements (K, Mg, Ca, Na, Si, Al, Fe, Mn, etc.). XRF is often used to determine the 

inorganic (ash) compositions in terms of weight fraction of oxides and XRD can be used 

to identify the crystalline minerals in ash [22, 23]. The contents and species of inorganic 

elements are highly dependent on the nature of the biomass feedstock and reaction 

conditions (e.g., temperature). 

 

Textural characterization and morphology 
 The structure of biochar can be analyzed using a broad suite of analytical 

techniques. Scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) are techniques commonly used for the general characterization of biochar (e.g., 

particle structure and surface topography) [24]. X-ray diffraction (XRD), Raman 

spectroscopy, and energy dispersive X-ray (EDX) spectroscopy are the most widely used 

methods for the characterization of the biochar microstructure [25]. Surface area and pore 

structure can be analyzed by using the Brunauer, Emmett, and Teller (BET) method, in 

which N2 and CO2 are the most widely used sorbate gas [20]. It is also suitable for the 

characterization of the biochar textural features, such as surface area and porosity. In 

addition to the above-mentioned routine characterization methods, there are also some in-

depth characterization techniques used to understand the biochar fine structure. For 

example, solid-state 13C nuclear magnetic resonance (NMR) is a commonly used 

technique for carrying out comparisons that do not rely on peak ratios [26, 27]. As it has 

already been mentioned in the earlier sections, the biochars produced in pyrolysis usually 

exhibit very different structures than those obtained from the HTC process.   

 

Surface functionality characterization 
 The surface functionality can be characterized by X-ray photoemission 

spectroscopy (XPS), FTIR, and temperature programmed desorption (TPD) techniques 

[28- 30]. The detailed surface chemistry of biochar, surface functionalities, and 
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composition can be obtained from these technologies. Surface functional groups play an 

important role in the application of biochars as functional materials, e.g., catalysts, 

adsorbents, and electrode materials. The surface chemistry of biochar is very variable due 

to its highly heterogeneous composition. The main contribution to the reactivity of 

biochar is the fact that the surface usually exhibits a range of hydrophilic and 

hydrophobic functional groups both acidic and basic [31]. 

 Although substantial progress has been made in the development of different 

techniques for the analyses of the structure, composition, and surface chemistry of 

biochar, future research efforts are required in order to explore the existence of various 

categories of biochar with unique molecular compositions and physical architectures. 

Future investigation into the effects of both charring conditions, such as charring duration 

and heating rates, as well as the nature of biomass (wood and grass) on the properties and 

yields of individual biochar categories may help refine the present classification scheme. 

 

 

Biochar Modification 
 
Tuning of surface properties  
 Typical biochars produced from a thermochemical conversion process present 

limited polar oxygenated surface groups such as C−O, C=O, and OH and possess very 

limited porosity and surface area (usually <150 m2/g) [32]. These inherent disadvantages 

limit the wide application of biochar as a useful functional material. For example, an 

abundant surface functionality is highly desirable for biochar destined to be used as a 

catalyst or adsorbent, because it may provide more active sites for catalysis or pollutant 

adsorption. Porosity and large surface areas are favorable for biochar used as an energy 

storage material or catalyst because they facilitate high mass transfer fluxes and high 

active loading.      

 Therefore, in order to enhance the performance of functionalized biochar 

materials, a suitable modification process is essential. The flexibility of biochar materials 

is that such groups can be easily tuned, and this offers a promising platform for 

synthesizing various functional materials. A number of functional materials synthesized 

through the functionalization/modification of the biochar materials are shown in Table 2.  

 

Table 2. Typical functionalization/modification processes for tuning surface 
properties of biochar materials 
Functionalization 

/Modification 

process 

Surface functional group 

(characteristics) 

Applications 

Surface Oxidation C=O, OH, and COOH Pollutant removal; soil remediation 

Surface Amination NH2 Pollutant removal; CO2 capture 

Surface 

Sulfonation 

SO3H Solid acid catalyst 

Surface and Pore 

structure 

modification 

Porous biochar materials Energy storage; CO2 capture; catalyst 

support 

Surface 

recombination 

Biochar support nanostructure Energy storage; CO2 capture; catalyst 
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 Surface oxidation is the most widely used method for creating oxygenated 

functional groups on the surface of biochar. Several types of oxygenated functional 

groups, such as carboxyl, phenolic hydroxyl, lactones, and peroxides, can be formed by 

surface oxidation treatments [33]. Oxygenated functional groups such as C=O, OH, and 

COOH are important for enhancing biochar performance in various applications. For 

example, Xu et al. found that surface OH and COOH groups can greatly enhance the 

adsorption capacity when biochar is used as an adsorbent for heavy-metal removal [34]. 

Hydrogen peroxide (H2O2), ozone (O3), potassium permanganate (KMnO4), and nitric 

acid (HNO3) are the most frequently used surface oxidation reagents [35-37].  

 Besides oxygenated functional groups, basic amino groups on the surface of 

biochar have also been shown to greatly improve its performance in applications such as 

CO2 capture and pollutant adsorption [38]. Surface amination is one of the most widely 

used methods to introduce amino groups into biochar. Ammonia (NH3) treatment at high 

temperatures is a conventional surface amination technique that has been used 

extensively for decades [39]. Alternatively, chemical modification using some amino 

containing reagents is an environmentally friendly method also used for the surface 

amination of biochar. Compared to NH3 treatment and chemical modification, the direct 

pyrolysis/HTC of nitrogen-rich biomass is a more sustainable method for the preparation 

of N-enriched biochar, because it does not require the use of NH3 or expensive chemical 

reagents.  

 Sulfonic groups (SO3H) are the main functional group in solid acidic materials. 

These are widely used as alternatives to liquid acids for the catalyzation of many 

chemical reactions [40]. Surface sulfonation of biochar using concentrated sulfuric acid 

or its derivatives (e.g., oleum and chlorosulfonic acid) is the most commonly used 

method for the preparation of biochar-based solid acids [41]. 

 

Pore structure tailoring 
 One limitation of the biochar materials is that they often possess only a small 

number of micropores with a small surface area compared to conventional activated 

carbon. For applications in energy storage in supercapacitor, catalysis/electrocatalysis, 

and CO2 capture or H2 storage, controlled porosity and a high surface area are highly 

desirable. Thus, to facilitate their application in these fields, a variety of techniques have 

been developed to control the porosity and increase the surface area of biochar.         

 One of the most commonly used techniques for tuning the pore structure of 

biochar is in situ catalytic pore formation during biomass pyrolysis. The process is 

catalyzed by certain chemicals typically an acid, strong base or a salt, such as ZnCl2 and 

H3PO4 [42-44]. The chemicals are impregnated into the biomass prior to pyrolysis at a 

temperature of 450-900 °C. H3PO4 activation can not only introduce microspores but also 

P-containing functional groups into biochar, which can greatly improve the performance 

of the biochar materials in electrochemical energy storage. It has been found that ZnCl2 

can greatly increase the surface area and porous volume of the biochar produced [43]. 

 In addition to in situ catalytic pore formation during biomass pyrolysis, pore 

structure tailoring through post activation also were used to tailor the pore structure. Two 

steps are commonly involved in the post activation process: (1) direct pyrolysis/HTL of 

the biomass to produce original biochar with a very low pore volume and surface area 

and (2) activation of the biochar using physical or chemical methods to improve its 

porous structure and surface area. Post activation mainly includes physical activation 

with different oxidizing gases (e.g., air, O2, CO2, steam or their mixtures) and chemical 
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activation with KOH, NaOH, H3PO4 or ZnCl2. In the physical activation process, a 

carbon precursor is first exposed to pyrolysis in an inert atmosphere at 400-900 °C to 

eliminate the bulk of volatile matter, followed by partial gasification using an oxidizing 

gas at 350-1000 °C. The chemical activation process consists of the heat-treatment of a 

mixture of the carbon precursor and the activating agent at a temperature normally in the 

450-900 °C range [45]. In addition to conventional physical and chemical activation, 

some other approaches, such as templating, also have the potential to introduce porosity 

into biochar, although to date no such reports on biochar pore structure tailoring have 

appeared [46]. Two stage activation processes consisting of chemical activation step 

followed by physical activation have also been used to further enhance the porosity 

development and tune the pore structure [47].     

 

Biochar nanocomposites 
 Controlled synthesis of carbonaceous nanocomposites has become a hot research 

area, due to their improved hybrid properties with high potential values in many fields.  

As a result of the recombination of specific nanostructures on their surfaces, biochar-

based nanocomposites can be imparted with hybrid properties that in turn open up 

potential applications in many fields. The finial nanocomposites have been shown to be 

utile in many application fields, including catalysis, fuel cells, drug delivery, and bio-

imaging [48].  

 Two main methodologies are identified for the synthesis of such biochar-based 

nanocomposites: post-modification and in situ synthesis. The post-modification method 

implies coating of performed nanostructures (e.g., silica sphere, Fe3O4) or incorporation 

of inorganic nanostructures onto biochar materials (e.g., Ag, Au, Pt, and Pd) [48-51]. The 

in situ synthesis method implies of loading of metal nanoparticles directly to the biochar 

via a simple one step approach [8].  
 

 

Application of Biochar Materials 
 
 The most promising feature of the biochar-based material is that it’s sustainable 

and easily scalable allowing the production of different functionalized carbon and hybrid 

nanostructures with a range of practical applications. To date, the application of biochar 

was primarily focused on using biochar as a soil amendment. New state of the art 

applications of biochar is emerging, although most of the applications are still in their 

infancy. These applications include but not limited to energy production, agriculture, 

carbon sequestration, wastewater treatment, biorefinery, etc. Since many of the review 

articles have summarized the advances of activated carbon or biochar materials in 

environmental protection, and agriculture applications, we will not cover this topic in 

detail in this review. Here, we briefly summarize recent progress and the state of art in 

applications of biochar in catalysis and energy storage.  

 

Catalytic application  
 Biochar containing SO3H groups, also called biochar-based solid acids, represents 

a type of metal-free catalyst that is ubiquitously used in a wide variety of chemical 

reactions. The biochar-based solid acids have been demonstrated to be efficient catalysts 

for various acid-catalyzed reactions, such as the esterification of organic acids in an 

aqueous medium, acylation of alcohols and amines, and the alkylation of aromatics, as 
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well as the hydrolysis of biomass itself [52]. Biodiesel production through esterification 

is a typical reaction catalyzed by solid acids.  

 It is well-known that the performance of metal nanoparticle catalysts is greatly 

affected by their supporting materials. Biochar materials have been straightforwardly 

studied as supports to stabilize metal nanoparticles for different catalytic applications due 

to their high surface areas and functionalities, such as syngas cleaning and conversion of 

syngas into liquid hydrocarbons via Fischer-Tropsch synthesis [53]. Table 3 summarizes 

the recent studies on biochar catalytic applications.  

 
Table 3. Biochar unitization for catalytic applications   

Application Biochar type Effect Reference 

Syngas cleaning Pine bark (950°C) Tar reduction [54] 

Syngas cleaning Ni-Fe catalyst 
supported on rice husk 
biochar 

In-situ catalytic conversion of tar [55] 

Syngas cleaning Acidic surface 
activated carbon from 
switchgrass 

Tar, NH3, H2S removal [56] 

Fischer-Tropsch 
synthesis of 
syngas into liquid 
hydrocarbons 

Biochar-based iron 
nanoparticle from pine 
wood pyrolysis 

High efficiency of converting syngas 
into liquid hydrocarbon 

[57] 

Methane 
reforming 

Pt-Ru alloy 
nanoparticles 
supported on HTC 
biochar of furfural 

Hydrocarbon catalytic oxidations; 
heterogeneous catalysis 

[58] 

Biodiesel 
production 

Biochar-derived acid 
catalyst prepared by 
sulfonating biochar 
with concentrated 
sulfuric acid 

Transesterification of canola oil with 
alcohol and oleic acid due to high 
surface area and acid density 

[59] 

Biodiesel 
production 

Biochar-based catalysts 
made from peanut 
hulls, pine residues, 
and wood chips 

High efficiency in esterification of free 
fatty acids of vegetable oil and animal fat 
with methanol and high reusability due 
to their particle strength hydrophobicity, 
high surface area, and sulfonic acid 
group density. 

[60] 

Hydrolysis of 
biomass 

Biochar sulfonic acid 
catalysts prepared from 
bamboo, cotton, and 
starch 

High turnover number values for 
cellulose hydrolysis due to the 
multifunctional action of strong –SO3H,-
COOH, and-OH groups 

[61] 

Catalysis of 
various oxidation 
and reduction 
reactions 

Carbonaceous 
nanofibers (CNFs) 
prepared through a 
template-directed HTC 
process 

Displayed the persistent catalytic ability 
in a continuous-flow mode 

[62] 

Acylation reaction Starch biochar-silica 
composites bearing 
SO3H as the 
heterogeneous catalysts 

Reactants with NH2, OH, SH groups can 
be quickly acylated to yield target 
products with very high yields. 

[63] 
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 As shown in Table 3, biochar-based catalysts demonstrate favorable catalytic 

performance in various reactions. Besides, it can be recycled for several runs without 

significant loss of activity. However, it has relative low efficiency and low abrasive 

resistance compared with the commercial catalyst. In addition, the inorganic species in 

biochar may cause catalyst poisoning, thus decreasing the catalytic activity in some 

organic or electrochemical reactions [64]. Therefore, there is a need to develop new and 

sustainable ways to tailor the physicochemical properties of such catalysts in order to 

adopt them for specific applications.  

 

Energy storage application (Supercapacitor) 
 Supercapacitor, an energy storage device, has received attention to harvest energy 

due to its high-power density, long cycle life, and quick charge/discharge capability [65]. 

Supercapacitor can be used as uninterruptible power sources in electric vehicles, digital 

communications system, etc. The microstructure of supercapacitor electrodes has a great 

influence on supercapacitor performance. Carbon material with high surface area and rich 

porous structure are the primary raw materials for making supercapacitors due to its wide 

availability and low environmental impacts [66]. Producing attractive, high quality 

carbon material at low cost is critical for the development of the supercapacitor industry 

[67]. Table 4 listed some recent research activities regrading to the fabrication of 

supercapacitors using biochar from different feedstocks.  

 
Table 4. Supercapacitor performance of electrodes made from various 
precursors 

Material Surface 
area 

(m2/g) 

Capacitance 
(F/g) 

Reference 

Activated carbon from rubber wood sawdust <920 8-139 [68] 

Carbon nanotubes(CNTs) from oil palm fruit 
bunches 

1656 111 [69] 

Nanoporous carbons from sunflower seed shell 2509 311 [70] 

Functional microporous conducting carbon from 
dead leaves 

3404 273 [71] 

Templated carbon from acrylonitrile 1680 340 [72] 

 

Results indicated that the use of biochar is promising as an electrode due to its 

low cost and satisfactory performance. One of the great challenges in the development of 

supercapacitor technology is the relatively high cost when compared to other energy 

devices. Thus, future research should be directed towards the development of biochar-

based functional materials with high charge capacity and minimum equivalent series 

resistance in a cost-effective way. One-step synthesis without an additional activation 

process to obtain high density carbon or composite materials would be beneficial for the 

compact design of high power energy sources.  
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CONCLUSIONS 
 

            Recent advances in the biochar production, formation mechanism, and 

characterization are discussed in detail in this review. It is essential to modify the surface 

functionality and the porosity of biochar in order to enhance the performance of biochar 

materials for various applications. Processes used for turning the surface functionalities and 

pore structure of biochar, including surface oxidation, amination, sulfonation, pore structure 

modification, and recombination, are summarized and discussed. Abundant functional groups 

(e.g., C=O, -COOH, NH2, and SO3H), metal nanoparticles and inorganic nanostructures can 

be introduced onto the biochar surface. This allows the production of materials with different 

functionalized carbon and hybrid nanostructures for a range of practical applications. Recent 

progress and the state of art in applications of biochar in catalysis and energy storage are 

reviewed. Biochar-based catalysts exhibit favorable catalytic properties in a variety of 

reactions. In addition, the development of novel biochar materials, such as carbon 

nanotubes, functional microporous carbon, and activated carbons remain a primary 

choice for the construction of electrodes for commercial supercapacitor due to its low 

cost and satisfactory performance. Overall, the use of biochar as sustainable high-value 

materials seems to have a very promising future, and biochar properties need to be further 

improved and tailored for the appropriate applications.  
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