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The performance of two useful piecewise monotonic data approximation 
(PMA) applications that are Topology Identification Methodology (TIM) 
and Fault and Instability Identification Methodology (FIIM) is investigated 
in this paper for the overhead medium-voltage broadband over power 
lines (OV MV BPL) networks. TIM and FIIM are applied to OV MV BPL 
networks when measurement differences, faults and instabilities occur. 
By exploiting the L1PMA optimal number of monotonic sections, 
advanced TIM and FIIM are also proposed and applied to OV MV BPL 
networks. The results of the four PMA applications are compared and it 
is found that advanced TIM and FIIM achieve higher computational 
speeds and almost equivalent identification performance in comparison 
with the respective original TIM and FIIM. Exploiting the better 
performance metrics of advanced TIM and FIIM, PMA applications 
provide a stable step towards the real time surveillance and monitoring of 
transmission and distribution power grid. 
 
 

Keywords:  Smart Grid; Intelligent Energy Systems; Broadband over Power Lines (BPL) Networks; 

Power Line Communications (PLC); Faults; Fault Analysis; Fault Identification and Prediction; 

Distribution Power Grids 

 

 
1. Introduction 
 The power stability of transmission and distribution power grids relies on the 

increasing aging electrical grid systems worldwide, some of which originated from the 

earlies of 20th century. Nowadays, the power stability can be enhanced through the 

deployment of the broadband over powerlines (BPL) networks across this vintage power 

grid infrastructure. In fact, BPL technology can transform the traditional transmission and 

power grids into an integrated intelligent IP-based communications network with a 

myriad of smart grid applications [1]-[4].  

 In order to be able to deliver high-bandwidth applications  

(e.g., HD video streaming and VoIP) with data rates that exceed 1Gbps, various inherent 

deficiencies of the BPL networks, such as the high and frequency-selective channel 

attenuation and noise, should be overcome now so that BPL networks can become both a 
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useful power grid complement and a strong telecommunications competitor to the other 

wireless networking solution [5]-[13]. 

 As the determination of the transfer functions of overhead medium-voltage  

(OV MV) BPL networks is concerned in this paper, the well-established hybrid method, 

which is employed to examine the behavior of various multiconductor transmission line 

(MTL) structures, is also adopted in this paper [5]-[9], [14]-[25]. Given as the inputs the 

OV MV BPL network topology, OV MV MTL configuration and the applied coupling 

scheme, the hybrid method gives as the output the corresponding transfer function.  

 Because of a number of practical reasons and “real-life” conditions, measurement 

differences between the experimental and theoretical results occur during the transfer 

function determination of OV MV BPL network topologies [2], [24]-[27]. To mitigate the 

aforementioned measurement differences and restore the theoretical BPL transfer 

function, piecewise monotonic data approximations (PMAs) have been successfully 

applied either in transmission or in distribution BPL networks [2], [24]-[27]. Among the 

available PMAs, L1PMA with optimal number of monotonic sections, which has been 

thoroughly analyzed and assessed in [2], [27], is proven to best approximate the 

theoretical OV MV BPL transfer functions regardless of the examined OV MV BPL 

network topology and the applied coupling scheme even if measurement differences 

ranging from 1 to 10dB are imposed. 

On the basis of the aforementioned PMA benchmark results, two of the most 

useful PMA applications that are Topology Identification Methodology (TIM) of [24] 

and Fault and Instability Identification Methodology (FIIM) of [25] can be further 

upgraded. At first sight, TIM achieves to reveal the exact topological characteristics  

(i.e., number of branches, length of branches, length of main lines and branch 

terminations) of a BPL topology by appropriately approximating the measured transfer 

function data, which are contaminated by measurement differences. TIM is based on the 

application of L1PMA. Through a similar L1PMA approximation of the measured 

transfer function data, FIIM achieves to identify faults and instabilities that occur in BPL 

topologies and can affect the power system stability. Although the performance of TIM 

and FIIM has been investigated in transmission BPL networks, these two PMA 

applications are first applied in distribution BPL networks, say OV MV BPL networks. 

Exploiting the optimal number of monotonic sections of [27], which offers better 

performance concerning the approximation efficiency of L1PMA, both TIM and FIIM 

can become more accurate and faster.  

The rest of this paper is organized as follows: In Sec. II, the OV MV MTL 

configuration, the indicative OV MV BPL topologies and the basics of BPL signal 

transmission are presented. In Sec. III, a brief presentation of the L1PMA, TIM and FIIM 

is given as well as suitable performance metrics. Sec. IV discusses the simulations of 

various OV MV BPL networks intending to mark out the efficiency of TIM and FIIM in 

these networks as well as their performance upgrade due to the optimal number of 

monotonic sections. Sec. V concludes this paper. 
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2. Configurations, Topologies and BPL Signal Transmission 
 
2.1 OV MV MTL Configuration 
 The OV MV MTL configuration, which is examined in this paper, is presented in 

Fig. 1(a) of [2]. This MTL configuration comprises three phase lines of radius pMV,r that 

are spaced by ΔΜV and hung at typical heights hMV above ground. The ground with 

conductivity σg and relative permittivity εrg is considered as the reference conductor.  

The exact values concerning the related conductor dimensions, ground properties and 

configuration geometry are reported in [5], [6], [17], [19], [21], [28]-[30]. The applied 

exact values define a realistic scenario during the following analysis while the impact of 

imperfect ground on broadband signal propagation via OV MV power lines was analyzed 

in [5], [6], [17], [19], [21], [31]-[33]. 

 

 

2.2 Indicative OV MV BPL Topologies 
 In accordance with [26] and with reference to Fig. 1(a), average path lengths of 

the order of 1000m are considered in OV MV BPL topologies. Four indicative OV MV 

BPL topologies, concerning end-to-end connections of average path lengths, are 

examined, namely:  

1. A typical urban topology (OV MV urban case) with N=3 branches 

(L1=500m, L2=200m, L3=100m, L4=200m, Lb1=8m, Lb2=13m, Lb3=10m). 

2. A typical suburban topology (OV MV suburban case) with N=2 branches 

(L1=500m, L2=400m, L3=100m, Lb1=50m, Lb2=10m). 

3. A typical rural topology (OV MV rural case) with only N=1 branch  

(L1=600m, L2=400m, Lb1=300m).  

4. The “LOS” transmission along the same end-to-end distance 

L=L1+…+LN+1=1000m when no branches are encountered. This topology 

corresponds to Line of Sight transmission in wireless channels.  
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2.3 Hybrid Method, Coupling Schemes and Coupling Transfer Functions 
 Successfully tested in various transmission and distribution BPL networks [5]-[9], 

[14]-[23], [32]-[34], the well-established hybrid method consists of:  

(i) a bottom-up approach that is based on the MTL theory, eigenvalue decomposition 

(EVD) and singular value decomposition (SVD); and (ii) a top-down approach that is 

denoted as TM2 method and is based on the concatenation of multidimensional chain 

scattering matrices. Macroscopically, hybrid method gives as output the corresponding 

EVD modal and original transfer functions when the OV MV BPL network topology,  

OV MV MTL configuration and the applied coupling scheme are given as inputs. 

 Also, hybrid method may take as an input the way that the signals are injected 

into OV MV lines. In fact, two categories of coupling schemes are mainly supported by 

the OV MV BPL networks, namely [2], [16], [18], [24], [25], [35]-[37]:  

(i) Wire-to-Ground (WtG) coupling schemes; and (ii) Wire-to-Wire (WtW) coupling 

schemes. In the case of WtG coupling schemes, which is examined in this paper,  

the coupling WtG channel transfer function 
sWtGH  is given from 

    WtG1TWtGWtGs

CTHTC  

V

m

VH                (1) 

where WtGC  is an 3×1 coupling column vector with zero elements except in row s where 

the value is equal to 1, VT  is a OVMVOVMV nn   matrix that depends on the frequency,  

the OV MV MTL configuration and the physical properties of the cables and m
H  is the 

OVMVOVMV nn   EVD modal transfer function matrix that is given as an output by the 

hybrid method [5]-[9], [14]-[18], [21], [28], [38]. 

 To give the coupling WtG channel transfer function of eq. (1), certain 

assumptions for the circuital parameters of OV MV BPL topologies need to be taken into 

account. In accordance with [2], these assumptions are: (i) The branch lines are assumed 

identical to the transmission ones; (ii) The interconnections between the transmission and 

branch conductors of the lines are fully activated; (iii) The transmitting and the receiving 

ends are assumed matched to the characteristic impedance of the modal channels; and (iv) 

The branch terminations are assumed open circuits. 

 

 

3. L1PMA, TIM, FIIM and Performance Metrics 
 
3.1 L1PMA 
 Various PMA methods have been proposed by Demetriou, such as L1PMA, 

L2WPMA and L2CXCV, that have been applied in transmission and distribution BPL 

networks so that the measurement differences can be mitigated and the theoretical OV 

MV BPL coupling transfer functions can be revealed [2], [24]-[27], [39]-[44].  

Based on the comparative benchmark of the aforementioned PMA methods [26], [27], 

L1PMA has presented the higher and more stable overall mitigation performance against 

measurement differences and, for that reason, only L1PMA is applied in this paper. 

 In fact, L1PMA exploits the piecewise monotonicity property that always occurs 

in OV MV BPL coupling transfer functions. Analytically, L1PMA decomposes the 

coupling transfer functions into separate monotonous sections among their adjacent 

turning points (primary extrema) [41], [42]. Since the separate monotonous sections are 

identified, L1PMA separately handles them. As already been determined, the number of 
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monotonic sections can be equal either to the optimal number of monotonic sections, 

detailed in [2], [26], or to the adaptive number of monotonic sections, reported in [27]. 

According to [27], the adaptive number of monotonic sections helps towards the 

enhancement of the L1PMA mitigation performance against measurement differences; 

the concept of the adaptive number of monotonic sections is based on the need for more 

general approximations as the maximum differences increase and the examined OV MV 

BPL topologies increase in topological complexity.  

 On the basis of L1PMA and the adaptive number of monotonic sections, two of 

the most useful PMA applications that are TIM of [24] and FIIM of [25] can be further 

refined. Note that TIM and FIIM have been developed on the basis of L1PMA software, 

which receives as inputs the measured OV MV BPL coupling transfer function, the 

measurement frequencies and the number of monotonic sections and gives as output the 

best fit of the measured OV MV BPL coupling transfer function. 

 

 

3.2 TIM, Advanced TIM and Curve Similarity Performance Metric (CSPM) 
 TIM is a PMA application that achieves to identify the real OV MV BPL 

topology by approximating and comparing the corresponding measured OV MV BPL 

coupling transfer function with a database of theoretical OV MV BPL coupling transfer 

functions. TIM consists of: (i) the hybrid method; (ii) L1PMA software;  

(iii) the OV MV BPL topology database; and (iv) CSPM that serves as the assessment 

metric of the TIM accuracy [24]. In accordance with [24], TIM CSPM achieves to reveal 

a set of candidate OV MV BPL topologies with the real topology lying inside it even 

though measurement differences of various distributions and magnitudes can occur. 

More analytically, L1PMA gives the approximated OV MV coupling transfer 

function column vector  sect

WtG

meas ,kfH  when measured OV MV one  fH
WtG

 and a 

number of monotonic sections ksect are considered where  T1 ui fff f  is 

the u×1 measurement frequency column vector. CSPM acts as the performance metric of 

the curve similarity between the measurement L1PMA approximation  sect

WtG

meas ,kfH  and 

theory L1PMA approximation  sect

WtG

theor ,kfH  and is determined by 

     



u

i

iikk kfkfkCSPMCSPM
tt

1

sect

WtG

theorsect

WtG

meassect

WtG ,,,
secsec

HHH         (2) 

 TIM is based on the CSPM and the OV MV BPL topology database in order to 

identify the OV MV BPL topology when a set of coupling transfer function 

measurements is available. TIM comprises three steps so that the OV MV BPL topology 

is revealed, say: 

1. Given the measured OV MV BPL coupling transfer function column vector 

 fH
WtG

, the approximated OV MV BPL coupling transfer function column 

vector  sect

WtG

meas ,kfH  is evaluated for monotonic sections that range from ksect,min to 

ksect,max where ksect,min and ksect,max is the minimum and maximum number of 

monotonic sections considered, respectively. 
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2. For each OV MV BPL topology and each monotonic section of the OV MV BPL 

topology database, the respective CSPMksect of eq. (2) and the total CSPMtot are 

computed where  





maxsect,

minsect,sect

sectot

k

kk

k t
CSPMCSPM       (3) 

3. TIM identifies OV MV BPL topologies with the lowest CSPMtot among all the 

available topologies of the database. These OV MV BPL topologies are members 

of the set of candidate OV MV BPL topologies. The number of candidate OV MV 

BPL topologies depends on the topological characteristics of the real topology 

(i.e., number of branches, branch length), the nature of measurement differences 

(i.e., measurement difference distributions, characteristics of distributions) and the 

number of monotonic sections. 

In accordance with [24], TIM has been applied assuming that ksect,min and ksect,max 

are equal to 1 and 20, respectively, considering all the available L1PMA approximation 

cases. However, this assumption demands extremely high computational time, thus 

posing critical restrictions to the creation of the OV MV BPL topology database. 

Taking into account the findings of [26], the adaptive number of monotonic 

sections can significantly reduce TIM computational load. Instead of considering the 

entire range of monotonic sections that ranges from 1 to 20, TIM analysis can only focus 

on a closed set of monotonic sections assuming that its set center ksect,AN is equal to the 

adaptive number of monotonic sections. Here, it should be noted that the adaptive 

number of monotonic section is unique given the examined OV MV BPL topology and 

an estimate of the magnitude of the occurred measurement differences. Numerically, 

ksect,min and ksect,max are assumed to be equal to  

 1,1max ANsect,minsect,  kk       (4) 

 1,20min ANsect,maxsect,  kk        (5) 

where max{·} and min{·} give the maximum and the minimum value among the 

examined values, respectively. Observing the bounds of the closed set of monotonic 

sections, this set consists of three or two values depending on the value of the set center 

ksect,AN. 

In average terms, the advanced TIM, which is based on eqs. (4) and (5),  

can achieve: (i) better accuracy performance during the identification of the real OV MV 

BPL topology since it considers only 
tkCSPM

sec
 that can better approximate theoretical 

OV MV BPL coupling transfer functions; and  

(ii) reduction of the computational load that ranges from %85
20

320
%100 


  to 

%90
20

220
%100 


 . The main disadvantage of the advanced TIM is that needs an 

estimate of the measurement difference condition in order to apply the suitable adaptive 

number of monotonic sections for given OV MV BPL topology. 
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3.3 FIIM, Advanced FIIM and Curve Similarity Performance percentage Metric 
(ΔCSPpM) 
 Apart from the aforementioned measurement differences during the determination 

of OV MV BPL coupling transfer functions, various serious problematic conditions can 

occur across the transmission and distribution power grids. FIIM identifies these 

problematic conditions that cause permanent damage to the power grid and their impact 

on the determination of OV MV BPL transfer functions totally change the form of the 

result.  

 In accordance with [25], FIIM repertory of faults and instabilities is presented in 

Figs. 1(b)-(e). In fact, the problematic conditions are divided into two categories with two 

subcategories each, namely: 

• Faults: This category describes all the interruptions that can occur in the lines of a 

transmission power grid. There are two subcategories of line interruptions that are 

examined in this paper: (i) Fault in transmission line –see Fig. 1(b)–; and  

(ii) Fault in branch line –see Fig. 1(c)–. 

• Instabilities: This category describes all the failures that can occur in the 

equipment across the transmission power grid. There are two subcategories of 

equipment failures that are examined in this paper: (i) Instability in branch 

interconnections –see Fig. 1(d)–; and (ii) Instability in branch terminations  

–see Fig. 1(e)–.  

In total, FIIM can recognize either the fault or the instability condition and warn the 

responsible personnel.  

 As the implementation details of FIIM and its corresponding performance metrics 

are concerned, the proposed curve similarity performance percentage metric (ΔCSPpM), 

which acts as the accompanying performance metric of FIIM, is given by 
** CSPpMCSPpMCSPpM            (6) 

where 
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is retrieved during the normal operation of the OV MV BPL topology examined,  
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         (8) 

is retrieved during the problematic operation of the OV MV BPL topology when either 

fault or instability occurs and  sect

*WtG

meas ,kfH  is the approximated measured OV MV BPL 

coupling transfer function column vector of the modified topology that comes from the 

application of L1PMA for different monotonic sections.  
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FIIM compares 
*CSPpM  with a warning threshold 

*

thrCSPpM  that is 

typically equal to zero. Details concerning the determination of the warning threshold 
*

thrCSPpM  and the relative decisions are provided in [25]. 

Similarly to TIM, the adaptive number of monotonic sections can significantly 

enhance FIIM performance by taking into account the findings of [26].  

Instead of considering the entire range of monotonic sections that ranges from 1 to 20, 

FIIM analysis can only focus on the closed set of monotonic sections defined in TIM case. 

By assuming set lower and upper bounds equal to ksect,min and ksect,max, respectively. This 

advanced FIIM can achieve: (i) better accuracy performance during the identification of 

faults and instabilities since it considers only CSPpM  that can better approximate 

theoretical OV MV BPL coupling transfer functions; and  

(ii) reduction of the computational load that again ranges from %85  to %90 . The main 

disadvantage of the advanced FIIM is that needs an overall knowledge of the 

measurement difference environment in order to apply the suitable adaptive number of 

monotonic sections for given OV MV BPL topology. 

 

 

4. Numerical Results and Discussion 
 
4.1 Simulation Goals and Parameters  
 Various types of OV MV BPL topologies are simulated with the purpose of 

evaluating the proposed advanced TIM and FIIM against the original ones. In accordance 

with [24] and [25], the performance efficiency and the processing time of the advanced 

TIM and FIIM are assessed with regards to the indicative OV MV BPL topologies and 

the nature of the occurred measurement differences. Actually, measurement differences 

that occur in OV MV BPL networks are typically described by CUD with maximum 

CUD value that is equal to αCUD. 

As regards the hybrid method and L1PMA with adaptive number specifications, 

those are the same with [24]. More specifically, the BPL frequency range and the  

flat-fading subchannel frequency spacing are assumed equal to 1-30MHz and 1MHz, 

respectively. Therefore, the number of subchannels u in the examined frequency range is 

equal to 30. Arbitrarily, the WtG1 coupling scheme is applied during the following 

simulations. Finally, the maximum number of monotonic sections ksect,max that is going to 

be used is assumed to be equal to 20 [2]. 

As the OV MV BPL topology database specifications are concerned,  

the maximum number of branches N, the length spacing Ls for both branch distance and 

branch length and the maximum branch length Lb are assumed equal to 2, 50m and 300m, 

respectively. 

 

 

4.2 L1PMA with Adaptive Number of Monotonic Sections 
 The advanced TIM and FIIM are both based on the concept of the adaptive 

number of monotonic sections, which has been presented in [27]. To compute the 

adaptive number of monotonic sections, an estimation of the maximum CUD value, 

which occurs during the operation of OV MV BPL network, is required. In fact,  

the adaptive number of monotonic sections comes from the monotonic section 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.2, 102-128. doi:10.17737/tre.2017.3.2.0034 111 

 

localization of the best measurement difference mitigation performance given the 

maximum CUD value, the examined OV MV BPL topology and the applied WtG 

coupling scheme. Already been reported in [27], the adaptive number of monotonic 

sections for the indicative OV MV BPL topologies of Sec.2.2 is presented in Table 1 

when WtG1 coupling scheme is applied and maximum CUD value range from 0 to 10dB. 

Also, the lower and upper bounds of the monotonic section set, which are reported in  

eqs. (4) and (5) and are going to be used in advanced TIM and FIIM of the following 

subsections, are presented in each of the cases examined.  

From Table 1, it is evident that the adaptive number of monotonic sections 

decreases as the maximum CUD value increases for given OV MV BPL topology. This is 

a reasonable result since there is need for more general approximations as the 

measurement differences create significant differences between theoretical and measured 

OV MV BPL coupling transfer functions. Towards that direction, the lower and upper 

bounds of monotonic section sets follow this trend. Anyway, the narrow monotonic 

section sets allow to avoid large values of CSPMksect that little contribute to the overall 

CSPM and CSPpM performance of TIM and FIIM, respectively. 

Since OV MV BPL coupling transfer functions present close behavior for given 

number of branches [19], [20], [33], [38], the adaptive number of monotonic sections of 

urban, suburban, rural and “LOS” case, which is reported in Table 1, can characterize all 

the OV MV BPL topologies of 3, 2, 1 and 0 branches, respectively.  

This latter observation is used during the following analysis. 

 

 

4.3 Performance of TIM and Advanced TIM 
 Prior to apply TIM and advanced TIM, a preliminary task is the preparation of the 

required OV MV BPL topology database in each case. The two OV MV BPL topology 

databases comprise all the possible topological configurations of OV MV BPL topologies 

concerning the number of branches, each branch distance from the transmitting end, each 

branch length and the required number of monotonic sections. Taking under 

consideration the topology database specifications of [24] and Table 1, the size 

requirements of the OV MV BPL topology databases are: 

• ( ksect,max - ksect,min + 1 ) approximated theoretical OV MV BPL coupling transfer 

function column vectors per each possible OV MV BPL topology of the database, 

which corresponds to the respective ( ksect,max - ksect,min + 1 ) monotonic sections. 

• 30 elements per each approximated theoretical OV MV BPL coupling transfer 

function column vector, which corresponds to the respective 30 measurement 

frequencies.  

• When N branches are considered across the “LOS” transmission path, there are  
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possible OV MV BPL topologies that should be inserted in the OV MV BPL 

topology databases. 
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TABLE 1 

Adaptive Number of Monotonic Sections of [27] and Monotonic Section Sets for the  

Indicative OV MV BPL Topologies when Different Maximum CUD Values Are Applied 

 

Indicative 

OV MV 

BPL 

Topology 

Maximum 

CUD  

Value 

L1PMA  Advanced TIM and FIIM 

Adaptive 

Number of 

Monotonic 

Sections 

Cardinality of the 

Monotonic Section Set 

( 1min,secmax,sec  tt kk ) 

Monotonic 

Section Set 

[ ksect,min    

ksect,max ] 

Cardinality of the 

Monotonic Section Set 

( 1min,secmax,sec  tt kk ) 

Urban 0 12 20 [11 13] 3 

1 8 20 [7 9] 3 

2 10 20 [9 11] 3 

3 8 20 [7 9] 3 

4 10 20 [9 11] 3 

5 8 20 [7 9] 3 

6 8 20 [7 9] 3 

7 8 20 [7 9] 3 

8 8 20 [7 9] 3 

9 8 20 [7 9] 3 

10 4 20 [3 5] 3 

Suburban 0 20 20 [19 20] 2 

1 16 20 [15 17] 3 

2 6 20 [5 7] 3 

3 18 20 [17 19] 3 

4 4 20 [3 5] 3 

5 10 20 [9 11] 3 

6 4 20 [3 5] 3 

7 4 20 [3 5] 3 

8 4 20 [3 5] 3 

9 4 20 [3 5] 3 

10 1 20 [1 2] 2 

Rural 0 6 20 [5 7] 3 

1 6 20 [5 7] 3 

2 2 20 [1 3] 3 

3 2 20 [1 3] 3 

4 2 20 [1 3] 3 

5 1 20 [1 2] 2 

6 1 20 [1 2] 2 

7 2 20 [1 3] 3 

8 1 20 [1 2] 2 

9 1 20 [1 2] 2 

10 1 20 [1 2] 2 

“LOS” 0 6 20 [5 7] 3 

1 6 20 [5 7] 3 

2 2 20 [1 3] 3 

3 2 20 [1 3] 3 
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4 2 20 [1 3] 3 

5 2 20 [1 3] 3 

6 1 20 [1 2] 2 

7 2 20 [1 3] 3 

8 1 20 [1 2] 2 

9 1 20 [1 2] 2 

10 1 20 [1 2] 2 

 

 

 

Taking under consideration the previous requirements, the OV MV BPL topology 

database specifications of Sec.4.1 and eq.(1) of [24], there are 
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inserted in the database where  CUDtt akk ,1card min,secmax,sec   computes the cardinality 

of the monotonic section set when the maximum CUD value is equal to αCUD. 

Recognizing the dependence of the number of elements on the term  

( ksect,max - ksect,min + 1 ), the size decrease of the advanced TIM database may reach up to 

90%. 

 Numerically, the number of elements and the approximated time duration of 

inserting all the available OV MV BPL topologies for a specific number of branches is 

reported in Table 2 when the TIM and advanced TIM databases are created. Note that the 

system technical characteristics of [24] are assumed so that an approximation time 

duration can be delivered. 

 Already been reported in [24], it is also evident from Table 2 that the 

approximated time duration poses significant technical difficulties during the 

consideration of OV MV BPL topologies with high number of branches in the database 

regardless of the method applied, say either TIM or advanced TIM. However, the time 

reduction that is offered by the advanced TIM is significant even from the two-branch 

OV MV BPL topologies. Anyway, advanced TIM is the first step of the future research 

towards the need for the optimization of the insertion methodology in topology database 

is among the critical steps of the future research [24], [25]. Similarly to [24], only the 

cases of “LOS” case and topologies with one branch are considered during the 

comparison between TIM and advanced TIM for the sake of simplicity and speed  

(see Sec.VE).  

 Since the OV MV BPL topology databases are available, TIM and advanced TIM 

can now be applied if the three steps of Sec.3.2 are followed, namely: 

1. The measured OV MV BPL coupling transfer function column vector  fH
WtG

 

and the approximated OV MV BPL coupling transfer function column vector 

 sect

WtG

meas , kfH  are computed for different number of monotonic sections as 

reported in Table 1 for TIM and advanced TIM (see the column of the cardinality 

of the monotonic section set). 
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TABLE 2 

Number of OV MV BPL Topologies, Elements and Approximated Time Duration of  

Topology Databases 

 

Number 

of 

Branches 

Number of 

Topologies 

TIM  Advanced TIM Time 

Reduction 

(%) 
Number of 

Elements 

Approximated 

Time 

Duration 

(hours) 

Number of 

Elements 

Approximated 

Time 

Duration 

(hours) 

0 1 600 0.003 90 0.0005 83.33 

1 147 92,610 0.50 13,230 0.07 85.71 

2 11,319 7,130,970 38.43 679,140 3.66 90.48 

3 607,453 382,695,390 2062 54,670,770 294.61 85.71 

 

 

2. With reference to eq. (3), the OV MV BPL topology database and the 

approximated measured OV MV BPL coupling transfer functions, the CSPMtot of 

the indicative topologies is calculated with respect to the topologies of the 

database. In Fig. 2(a), the CSPMtot of the indicative rural OV MV BPL topology 

is plotted versus the maximum CUD value aCUD for TIM and advanced TIM. In 

Fig. 2(b), the position among the 1 + 147 = 148 OV MV BPL topologies of the 

database in ascending CSPMtot order is plotted versus the maximum CUD value 

aCUD for TIM and advanced TIM when the indicative rural case is examined.  

In Fig. 3(a) and 3(b), similar curves with Figs. 2(a) and 2(b) are presented, 

respectively, but for the indicative “LOS” topology.  

3. A set of candidate OV MV BPL topologies with their respective CSPMtot is 

provided by the TIM and advanced TIM as it is shown in Figs. 2(b) and 3(b).  

All these topologies present the same CSPMtot and coincide at the first position in 

ascending CSPMtot order. 
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Figure 2. CSPMtot and position in ascending CSPMtot order versus maximum CUD value when 

TIM ( ) and advanced TIM ( ) are applied in indicative rural case.  
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Figure 3. Same with Figure 2 but for the indicative “LOS” case.  
 
 

From Figs. 2(a), 2(b), 3(a) and 3(b), several interesting observations concerning 

the performance of TIM and advanced TIM can be pointed out: 

• Comparing the aforementioned figures with Figs. 5(a)-(d) of [24], it is shown that 

TIM efficiently copes with either OV HV BPL topologies or OV MV BPL ones. 

This is due to the fact that the poor multipath transmission environment of OV 

HV BPL networks has as a result the presence of coupling transfer functions that 

present great similarities each other, thus, creating a great set of candidate OV HV 
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BPL topologies. In contrast, the set of candidate OV MV BPL topologies 

comprises fewer elements and significant position fluctuations may occur.  

• Both TIM and advanced TIM satisfactorily identify the real OV MV BPL 

topology even if maximum CUD values that reach up to 10dB are assumed. In 

accordance with [24], the identification performance of TIM and advanced TIM is 

significantly higher than the respective one of the traditional identification 

methods that focus on the comparison of the measured OV MV BPL coupling 

transfer function data with the theoretical ones. Anyway, TIM seems to better 

identify the real OV MV BPL topologies when low maximum CUD values occur 

whereas advanced TIM has better identification performance when high 

maximum CUD values occur.  

• Similarly to [24], CSPMtot values of TIM define the accuracy of the topology 

identification. In fact, higher values of CSPMtot imply that topologies of either 

rich multipath environment or strongly contaminated by measurement differences 

are examined while CSPMtot difference between the candidate OV MV BPL 

topologies of the set and the first topology outside the set decreases. Here, a mask 

of secure topology identification can be defined that mainly depends on the 

examined OV MV BPL topology and maximum CUD value. Anyway, this mask 

is easily applicable to TIM because of its higher CSPMtot values. 

• Since an OV MV BPL topology can be almost uniquely identified by the form of 

CSPMtot against various maximum CUD values, significant CSPMtot deviations 

that occur during the operation of an OV MV BPL topology imply that either a 

fault or instability may be arisen. This is the conceptual basis for FIIM of [25] so 

that faults or instabilities across an intelligent energy system can be identified. 

• In order to further compare advanced TIM against TIM, the number of OV MV 

BPL topologies, elements and approximated time duration that are required to 

create the topology databases of advanced TIM and TIM are reported in Table 2. 

Although TIM and advanced TIM present approximately the same performance to 

identify an OV MV BPL topology from the respective database –see Figs. 2(a), 

2(b), 3(a) and 3(b)–, the time reduction during the creation of the OV MV BPL 

topology database that is gained by the advanced TIM application is significant –

see the respective columns of Approximated Time Duration in Table 2–. 

 

 

4.4 Performance of FIIM and Advanced FIIM  
 As already been reported in Sec. 3.3, FIIM and advanced FIIM can identify four 

problematic conditions when these occur in OV MV BPL topologies, namely:  

(i) Fault in main distribution lines; (ii) Fault in branch lines; (iii) Instability in branch 

interconnections –see Fig. 1(d)–; and (iv) Instability in branch terminations –see Fig. 

1(e)–. In total, FIIMs can recognize either the fault or the instability condition and warn 

the responsible personnel. OV MV BPL topologies that suffer from faults or instabilities 

are treated as modified OV MV BPL topologies and characterized by new respective OV 

MV BPL coupling transfer functions and measurement differences.  

 
 

4.4.1 Fault in Main Distribution Line 
 As a fault in main distribution lines is assumed, an immediate communications 

failure in the OV MV BPL topology occurs. If transmitting and receiving ends operate in 
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stable conditions then a warning of fault in main distribution line is issued to the 

responsible personnel. 

 
 

4.4.2 Fault in Branch Line 
 In accordance with [25], a fault in branch lines implies that a branch line is 

interrupted and an open circuit at the fault occurs. With reference to Fig. 1(c), let the first 

branch of each indicative OV MV BPL topology be broken at 2m from the branching 

interconnection A1 with the main distribution line. The modified OV MV BPL topology 

is characterized by more frequent and deeper spectral notches due to the fact that a new 

shorter branch creates a richer multipath environment. In Fig. 4(a), FIIM CSPpM of the 

original urban OV MV BPL topology, FIIM CSPpM* of the modified urban OV MV 

BPL topology and their FIIM 
*CSPpM are plotted versus the maximum CUD value of 

the occurred measurement differences, which is assumed to be common for the two 

applied CUDs. Similar curves with Fig. 4(a) are given in Fig. 4(b) but for the application 

of the advanced FIIM. Similar curves with Figs. 4(a) and 4(b) are given in Figs. 4(c) and 

4(d) for the suburban case and in Figs. 4(e) and 4(f) for the rural case.  
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Figure 4. Fault in the first branch of the indicative OV MV BPL topologies and the behavior of 
CSPpMs and ΔCSPpM*. (a) FIIM / Urban case. (b) Advanced FIIM / Urban case. (c) FIIM / 
Suburban case. (d) Advanced FIIM / Suburban case. (e) FIIM / Rural case. (f) Advanced FIIM / 
Rural case. 

 

 

 From Figs. 4(a)-(f), it is evident that OV MV BPL topologies that suffer from a 

fault in their branch lines are characterized by modified OV MV BPL coupling transfer 

functions that differ from the original ones. These differences are reflected on CSPM* 
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and CSPM, respectively. Especially, the difference, which is expressed by the respective 

ΔCSPpM curves, is easily observable when measurement differences remain relatively 

low. As the measurement differences increase, measurement differences become 

important affecting the original form of the OV MV BPL coupling transfer functions and 

the identification potential of branch faults. Although the accuracy of FIIM and advanced 

FIIM to identify the faults in branch lines remains almost the same, advanced FIIM 

presents better computational speed in comparison with FIIM. However, both methods 

fail to identify faults of high maximum CUD value when these faults occur in OV MV 

BPL topologies of low branch complexity –e.g., see Figs. 4(e)-(f) when the maximum 

CUD value is equal to 8 or 9dB–. 

 

 

4.4.3 Instability in Branch Interconnection  
 Branch interconnections connect main lines with branch ones and establish the 

stable power flow till the MV/LV transformers. In this section, the performance of FIIM 

and advanced FIIM to identify instabilities that occurs in a branch interconnection is 

investigated in this subsection. With reference to Fig. 1(d), the interruption of the last 

branch at the point AN cancels the presence of this branch. The modified (N-1)-branch 

OV MV BPL topology comes from the original N-branch one. 

Similarly to branch line faults, in Fig. 5(a), CSPpM of the original urban OV MV 

BPL topology, CSPpM* of the modified urban OV MV BPL topology and their 
*CSPpM s are plotted versus the CUD maximum value of the occurred measurement 

differences when FIIM is applied. Similar curves with Fig. 5(a) are given in Fig. 5(b) but 

for the application of the advanced FIIM. Similar curves with Figs. 5(a) and 5(b) are 

given in Figs. 5(c) and 5(d) for the suburban case and in Figs. 5(e) and 5(f) for the rural 

case.  
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Figure 5. Instability in the branch interconnection of the last branch of the indicative OV MV BPL 
topologies and the behavior of CSPpMs and ΔCSPpM*. (a) FIIM / Urban case. (b) Advanced FIIM 
/ Urban case. (c) FIIM / Suburban case. (d) Advanced FIIM / Suburban case. (e) FIIM / Rural 
case. (f) Advanced FIIM / Rural case. 
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 From Figs. 5(a)-(f), 
*CSPpM  of FIIM and advanced FIIM can identify the 

branch interconnection instability regardless of the considered OV MV BPL topology 

and the applied CUD magnitude. Although the identification of the branch 

interconnection instability becomes more challenging as the maximum CUD value 

increases, 
*CSPpM  triggers the alarm in all the cases examined except for the 

application of FIIM in rural case when maximum CUD value exceeds 9dB. Therefore, 

FIIM and advanced FIIM present almost the same identification performance of a branch 

interconnection instability but advanced FIIM is characterized by better execution times. 

 

 

4.4.4 Instability in Branch Terminations  
 This subsection examines the possibility of identifying an instability that occurs in 

a branch termination. With reference to Fig. 1(e), let the branch termination of the first 

branch of each indicative OV MV BPL topology act as short circuit termination.  

This short circuit at the first branch termination may come up from a short circuit inside a 

MV/LV transformer. FIIM and advanced FIIM can identify the instability in branch 

terminations by applying 
*CSPpM . Similarly to branch line faults and branch 

interconnection instabilities, in Fig. 6(a), CSPpM of the original urban OV MV BPL 

topology, CSPpM* of the modified urban OV MV BPL topology and their 
*CSPpM  

are plotted versus the CUD maximum value of the occurred measurement differences 

when FIIM is applied. Similar curves with Fig. 6(a) are given in Fig. 6(b) but for the 

application of the advanced FIIM. Similar curves with Figs. 6(a) and 6(b) are given in 

Figs. 6(c) and 6(d) for the suburban case and in Figs. 5(e) and 5(f) for the rural case. 
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Figure 6. Instability in the branch termination (short circuit) of the first branch of the indicative OV 
MV BPL topologies and the behavior of CSPpMs and ΔCSPpM*. (a) FIIM / Urban case. (b) 
Advanced FIIM / Urban case. (c) FIIM / Suburban case. (d) Advanced FIIM / Suburban case. (e) 
FIIM / Rural case. (f) Advanced FIIM / Rural case. 
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From Figs. 6(a)-(f), both FIIM and advanced FIIM can easily identify any damage 

that may affect pieces of equipment across the distribution power grid. This is clear from 

the comparison among the previous figures where various faults and instabilities occur. 

In the case of the short circuit termination, there is not only one case where 
*CSPpM  

lies below 0dB. The identification of the instability remains easy even if high maximum 

CUD values are encountered that exceed 6-7dB. Again, FIIM and advanced FIIM present 

almost the same identification performance of a branch termination instability but 

advanced FIIM is characterized by better execution times. 
 

 

4.5 General Remarks Regarding TIM, Advanced TIM, FIIM and Advanced FIIM  
 Already been mentioned in [24], [25], TIM, advanced TIM, FIIM and advanced 

FIIM can act as invaluable smart grid applications towards the power stability of the 

transmission and power grids.  

 Among the research goals that have been presented in [25], advanced TIM and 

advanced FIIM can successfully cope with the challenges of the BPL topology 

identification as well as the fault and instability identification. Actually, advanced TIM 

performance towards the identification of OV MV BPL topologies remains almost the 

same with TIM, as described in Figs. 2(a), 2(b), 3(a) and 3(b), but reducing significantly 

the approximated time duration as well as the complicacy of the examined OV MV BPL 

topologies. In accordance with Table 2, the key of advanced TIM that allows the 

reduction of the approximated time duration is the adoption of the concept of the adaptive 

number of monotonic sections presented in [27] when the required OV MV BPL 

topology database is prepared. Similarly to advanced TIM, advanced FIIM performance 

remains almost the same with FIIM when the problematic conditions of Secs. 4.4.1-4.4.4 

occur. Again, advanced FIIM execution time is drastically reduced comparing with the 

respective time of FIIM.  

 

 

5. Conclusions 
 In this paper, TIM and FIIM have first applied to distribution power grids while 

the respective advanced TIM and advanced FIIM have been proposed.  

 As the validation of the TIM and advanced TIM are concerned, a set of candidate 

OV MV BPL topologies has been revealed with the real original topology lying inside 

the set by using the TIM performance metric of CSPMtot. Even though measurement 

differences of various maximum CUD values have been assumed, TIM and advanced 

TIM have satisfactorily achieved to identify the real original topology with almost the 

same accuracy. However, advanced TIM succeeds in identifying original OV MV BPL 

topologies with significant shorter execution times in comparison with TIM. 

 As regards the validation of the FIIM and advanced FIIM, four problematic 

conditions (i.e., faults in main distribution lines, faults in branch lines, instabilities in 

branch interconnections and instabilities in branch terminations) have been easily 

identified. Through FIIM performance metric of 
*CSPpM , FIIM and advanced FIIM 

have successfully managed to identify the four problematic conditions. Again, advanced 

FIIM presents significantly shorter execution times when OV MV BPL topologies are 

examined in comparison with FIIM. 
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 Exploiting the virtues of the emerging intelligent energy systems, advanced TIM 

and FIIM complete another step towards the real time surveillance and monitoring of 

transmission and distribution power grid. 
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Microbial fuel cell (MFC) that was configured with the carbon felt electrode 
and the cation exchange membrane, and inoculated with mixed culture 
was demonstrated to yield bioelectricity. The cell was operated under four 
external loads with pHs ranging from 4 to 10 and the total cell operation 
was monitored up to 25 days. The presented results revealed that the 
potentiality of maximum current and power production was achieved while 
hexacyanoferrate(III) used as a cathodic reaction and at neutral pH 
condition of media. The maximum current density 2.5 Am-2 and power 
density 1410 mWm-2 were observed on the 25th day at an anode potential 
of -378 mV. Stable and steady power was produced by MFC on the day 
22nd to 25th when cell operated at 250 Ω external load. The internal 
resistance of the fuel cell was decreased with the increase of the operation 
time. Coulombic efficiency (CE %) was found 22.70 % at the stable phase 
of fuel cell operation. 
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Introduction 
 

In the recent years, green energy production utilizing renewable resources is 

becoming an active area of research in the research fraternity. Ethanol, bio-diesel, bio-

hydrogen, and bioelectricity production from waste materials are finding prominence in 

this direction [1-2]. Now, the efforts are devoted in developing alternative electricity 

production methods. New electricity production from renewable resources is much 

indispensable [3-4]. In this regard, microbial fuel cell (MFC) is a promising technology 

that can convert biodegradable materials e.g. organic materials present in wastewater, into 

clean and renewable electricity. In MFC, bacteria can be used to convert the energy stored 

in the chemical bonds of organic compounds into electrical energy [5]. 

Electrochemically active microorganisms play a crucial role in the generation of 

electricity through MFC by oxidizing different biodegradable materials to CO2 and protons 

for their growth while transferring the electrons towards a solid electrode [5]. Electron 

transfer from the microorganisms to the electrode was explained by several proposed 

mechanisms [6-7]. In MFC, anodic oxidation is accompanied by a cathodic reduction that 

is enclosed in a separate compartment [8]. An external electrical circuit is used with a 

resistor or by the power user to transfer electrons from the anode to the cathode. Protons 

and other cations are transferred from the anode to the cathode through a cation exchange 

membrane in order to close the circuit and maintain electroneutrality in both anodic and 

cathodic compartments.  

The performance of the MFC mainly relies on the materials and the reactor 

configuration, and the microorganisms that required to produce the current [5, 9]. Power 

output from the MFC is thus affected by the variations in these operating conditions. Thus, 

based on these factors, different mediators and their different configurations, wide variety 

of substrates and anode inoculum were studied to increase the efficiency in the conversion 

of electricity from substrate [1, 10-11]. In the MFC, microorganisms act as a catalyst in the 

transfer of electrons from the substrate to the anode, thus, high performing microbial 

consortium (either pure or mixed culture) is very important to enhance MFC performance 

[12-13]. Up until now, it has been reported that the mixed cultures used in MFC have 

greater potentiality to produce power densities than those using pure cultures [9, 14-15]. 

Wastewater is often considered as a rich source of a variety of exoelectrogenic bacteria and 

thus it could be used in the MFC to increase its performance [16-17]. A mixed culture of 

bacteria often consists of different type of exoelectrogenic bacteria including Geobactor 

sp., Pseudomonas sp., Bacillus sp., Shewanella sp., Brevibacillus sp., and so on, which 

serve as the bacterial inoculum for the formation of primary electrochemically active 

biofilm on carbon electrode [9,15]. The mixed culture electroactive biofilms were consisted 

of these different types of bacteria that vary in morphology from spherical, rod, and oval 

shape. Bacteria, such as spherical and rod shape, shows the presence of nanowires (pili), 

which can be responsible for extracellular electron transfer (EET). For producing the 

bioelectricity, the electrons generated by the bacteria upon the oxidation of organic 

substrate could be transported effectively through these living nanowires to an electrode 

[9].    

Porous carbon-based materials such as graphite granules, graphitic felt, carbon 

cloth, and reticulated vitreous carbon (RVC) have been used currently as the anode of the 

MFC to make the entire process more economically feasible [18]. Relatively cheap and 

porous nature of carbon-based materials are becoming attractive because their high specific 

surface areas lead to the high volumetric activity. To increase the power production, 
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different strategies have been reported, for example, precipitating iron oxide onto carbon 

electrodes [19], adding Mn4+ [20], Fe3O4, or Fe3O4 and Ni2+ to graphite anodes [21], 

ammonia treatment of carbon cloth anodes [22]. However, inefficient attachment of 

bacterial nanowires to carbon cloth electrodes could be the cause of limiting power 

production. 

The eventual aim of this study was to investigate bioelectricity production as well 

as power production by mixed culture MFC, in which the plain carbon felt was used as the 

electrode materials. The overall MFC performance was evaluated in terms of maximum 

power based on polarization and power density curves, internal resistance, and columbic 

efficiency (CE). 

 

 

Materials and Methods 
 
Microbial fuel cell design and setup 

The experiments were conducted in the same electrochemical cell as described 

previously [23]. MFC consists of two plexiglass plates containing a single flow channel, 

two electrodes, and two plexiglass support plates (Figure 1A). The two plates with the flow 

channel were separated by the cation exchange membrane (Fumasep FKB, Fumatech, St. 

Ingbert, Germany). The other side of the flow channel faced the electrode. Both the anode 

and the cathode were made with the carbon felt. The projected surface area of the both 

electrodes in contact with the solution was 22 cm2, and the volume of the flow channel was 

33 mL (11.2 cm length × 2.0 cm width × 1.5 cm height). Both inlet and outlet of the anode 

and cathode chambers were connected to a 600 mL glass reservoir.  The cation exchange 

membrane was pre-treated subsequently in 30% H2O2, deionized water, 0.5 M H2SO4, and 

deionized water (for 1 h each) to increase porosity. All electrochemical experiments were 

carried out in a three-electrode cell arrangement that consists of a working electrode, the 

reference electrode, and the cathode counter electrode. To measure the anode, cathode, 

membrane and cell potential, both anode and cathode compartments were equipped with 

an Ag/AgCl (3M KCl, +0.205 V vs NHE) reference electrode. A schematic overview of 

the experimental setup is presented in Figure 1B.  

 

Startup and MFC operation 

Anode chamber was inoculated with the enriched mixed bacterial culture from 

another MFC run on acetate. The source of inoculums was wastewater, which served as 

the bacterial inoculum for the formation of a primary electrochemically active biofilm on 

a potentiostatically positive poised carbon electrode (0.4 V vs. SHE (the standard hydrogen 

electrode)). Acetate (20 mM) served as the substrate in the growth medium, whose pH was 

adjusted to 6.8 with 20 mM phosphate buffer solution at pH 7. The bacterial growth 

medium solution contained following chemicals (per liter): 10 mL/L of a macronutrient 

solution containing 28 g/L NH4Cl, 10 g/L MgSO4·7H2O, and 0.57 g/L CaCl2·2H2O; 2 

mL/L of micronutrient solution containing 2 g/L FeCl2·4H2O, 1 g/L CoCl2·6H2O, 0.5 g/L 

MnCl2·4H2O, 0.05 g/L ZnCl2, 0.05 g/L H3BO3, 0.04 CuCl2.2H2O, 0.07 g/L 

(NH4)6Mo7O24·5H2O, 1 g/L NiCl2·6H2O, 0.16 g/L Na2SeO3·5H2O, and 2 mL/L 37% HCl; 

and 2 mL/L of a vitamin solution as reported previously by Ter Heijne et al.(2008) [23]. 

In order to ensure anaerobic conditions, the substrate and buffer solutions were purged with 

nitrogen for 30 min before use. The anolyte and catholyte (volume 550 mL) were 

continuously recirculated at a rate of 100 mL/min using a peristaltic pump. MFC was 
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operated in batch mode at the temperature of (27 ± 2oC) under anaerobic conditions. During 

a feeding event, the anode chamber was purged with N2 gas for 30 min to create the 

anaerobic microenvironment in the cell. 

 

 
 
Figure 1. (A) MFC design: the assembly of flow channel, carbon felt electrode, and support plate 
of one side of the MFC; (B) Schematic of MFC operation to produce bioelectricity; (C) Photograph 
of the experimental setup. 

 

The MFC was started with an external load of 16 kΩ and a 0.020 M phosphate 

buffer at pH 7 in the cathode, and air was continuously circulated through the catholyte. 

Firstly, the system was stabilized overnight to reach a steady state. Four resistors with a 

range of 0–16 kΩ were used, and thereupon potential was measured two times a day with 

constant interval using a Keithley 2700 multimeter (Keithley Instruments, Cleveland, OH, 

USA). Polarization and power density curves were obtained by varying the external 

resistance applied to the circuit. Here, all electrode potentials were given as vs Ag/AgCl 

(3M KCl, + 0.205 V vs NHE (the normal hydrogen electrode)) and all the current density 

values were normalized to the geometric surface area. 

After 25th day of operation, the catholyte was replaced with a Fe (III) [CN]6
3− 

solution (0.050M) in 0.020M buffer (pH 7) for a fast cathode reaction (reduction of 

Fe(III)[CN]6
3− to Fe(II)[CN]6

4−). In this case, the MFC was also operated at three different 

resistances with first R = 16 kΩ during the first 8 days, second R = 2 & 0.5 kΩ during the 

next 5 days, and third R=250 Ω during the last 12 days. After reaching stable performance, 

power output was monitored by measuring voltage using an external resistor (250 Ω) 

connected across the electrodes. 

To characterize pH effects on the MFC performance, media with pHs ranging 

from 4.0 to 10 at 0.5 pH unit increments were created with 5 M solutions of HCl or NaOH. 

 

Analysis  

Cell voltage across an external resistor was recorded using a multimeter. 

Polarization curves were obtained by varying the external resistance applied to the circuit 

(in a decreasing order) and using the average voltage obtained after stabilization (2 times 

in a day). Current density was calculated using I = V/R, where I (mA/m2) is the current, V 

(mV) is the measured voltage, and R (Ω) is the applied resistance, and A (m2) is the 
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geometric surface area of the anode electrode. Power densities (mWm-2) were calculated 

using P= IV, and normalized by the projected anode surface area [5]. 

Coulombic efficiency was calculated as CE (%) = (CEx/CTh) × 100, where CEx 

is the total Coulombs calculated by integrating the current over time, CTh is the theoretical 

number of Coulombs available from the oxidation of acetate calculated as, CTh = FbMv, F 

is the Faraday’s constant (96,485 C/ mole, b is the number of moles of electrons available 

per mole of substrate (8 mol e-/ mol acetate), M is the acetate concentration (molL-1), and 

v is the volume of liquid in the anode chamber (L) [5]. 

The energy losses of MFC were measured in three parts, which were anode, 

cathode, and membrane losses. These energy losses therefore led to the internal resistance 

of the system. Internal resistance can be split into partial internal resistances, for instance, 

anodic resistance, cathodic resistance, and membrane resistance. Anodic and cathodic 

resistances were calculated as overpotential divided by current density. 

Anodic resistance calculated according to Ran= (Ean-E°an)/I, where, Ran = anodic 

resistance (Ω.m2), E0 an= Theoretical anode potential (V), Ean = measured anode potential 

at certain external load (V), I = current density (A/m2). Assumed that theoretical anode 

potential is open circuit potential (at zero current). Cathodic resistance, Rcat = (E° cat-E cat)/I, 

where Rcat = cathodic resistance (Ω.m2), E0
cat = theoretical cathode potential (V), Ecat = 

measured cathode potential, I = current density (A/m2) [24]. 

 

 

Results and Discussion  
 

Reactor performance 

Following inoculation of the anode, the operation of MFC were started with a 

0.020 M phosphate buffer at pH 7 in the cathode, in which oxygen was circulated 

continuously for reduction reaction (O2 + 4H+ + 4e- → 2H2O). Firstly, to obtain 

polarization and power density curve, MFC was started with a 16 kΩ external resistor, and 

stabilized overnight to reach a steady state. Afterward, the polarization test was performed 

(every day two times) to evaluate the development of activity of electrochemically active 

microorganisms in time that means the performance of the bioanode. Higher current 

density accompanying the lowest anode overpotential is indicating best performance of 

MFC [5]. During the polarization test, the current density was extracted from the maximum 

current densities of the batch experiments. At the beginning of the experiment, negligible 

current was observed, and this is due to the lack of biocatalysts at the electrode surface. 

About 12 day after the initial inoculation, the current rose significantly, indicating the 

formation of an electrochemically active biofilm. The biocatalytic current density and the 

power density reached the maximum values of about 51.5 mAm-2 and 11.6 mWm-2, 

respectively, on day 25th after inoculation at 250 Ω for operation. 
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Figure 2. Polarization test gave insight into the performance of a bio-anode at operation 250 Ω in 
time using potassium hexacynonoferrate(III) reduction at the cathode on 25th day. 

 

To investigate the effect of the catholyte on the performance of MFC (in terms 

of power generation), the catholyte was replaced by Potassium hexacyanoferrate(III) (Fe 

(III) [CN] 6
3− solution, 0.050M). In this case, the MFC was started with freshly inoculated 

anolyte. With the cathodic reaction of potassium hexacyanoferrate(III), a higher current 

density as well as a higher power density was observed (current density 2.5 Am-2, power 

density 1410 mWm-2) at the anode potential of -378 mV on day 25 (see in Figure 2), while 

the MFC was operated at 250 Ω.  From the polarization test, Figure 3 is depicted an 

overview of obtained cell voltage, cathode potential, and anode potential during maximum 

power generation. 

 

 
 
Figure 3. Cell voltage, cathode potential, and anode potential were recorded from the polarization 
test while maximum power produced by MFC, using Hexacyanoferrate (III) as the catholyte. First 
8 days, the cell was operated with a 16 kΩ external resistor, next 9-13 days, cell was operated at 
2 KΩ & 500 Ω and last 14-25 days, cell was operated at 250 Ω. 
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Higher current density as well as higher power density was obtained for 

Potassium hexacyanoferrate(III) reduction than the oxygen reduction at the cathode. This 

lower current density for oxygen reduction at the cathode could be the results of (i) oxygen 

diffusion through the membrane from cathode to anode leading to a parasitic reaction at 

the anodic compartment, therefore limiting the number of electrons available for electricity 

production. The parasitic side reaction that leads to the formation of mixed potential, may 

substantially lower the anode potential and reduce the cell voltage as well as current density 

and power density. Furthermore, this side reaction may not only reduce the cell voltage but 

also reduce the columbic efficiency of the electrode reaction [25]. (ii) Competing reduction 

reaction may be occurred during oxygen reduction at the cathode. (for instance, not only 

formation of water, but often considerable extent of hydrogen peroxide formation). This 

competing reaction can lead to the formation of mixed cathode potential (reduce cell 

voltage), which limits the overall performance of MFC. (iii) Due to limited diffusion of 

oxygen in the electrode surface, the higher cathodic partial internal resistance produced 

(3050 mΩ.m2 at maximum current density 51.5 mAm-2, on day 25) can limit the 

performance of the cell. 

Improvisation of the MFC performance by operating at a lower external resistor 

was revealed through the polarization test. Figure 4 depicts that the MFC operation at a 

lower external resistor caused higher current densities. The potential difference in the 

anode (between the electron donor (acetate) and the electron acceptor (the anode) became 

larger due to lower resistance of the MFC that helped the electrochemically 

microorganisms to attain more energy from the substrate. This energy gaining for the 

growth of microorganisms in turn helped produce higher current that reflected the 

maximum bioelectrocatalytic activity of the biofilm [23].  

 

 
 
Figure 4. Maximum power evolution was recorded from days 6th to 25th during cell operated at 
different external loads 16 KΩ, 2 KΩ, 500 Ω, and 250 Ω. (Hexacyanoferrate(III) used as a catholyte). 

 

To determine the performance of a microbial fuel cell, the internal resistance 

(Rint) has been recognized as an important factor [16]. Thus, the internal resistance profile 

was observed over the operation period in order to envisage the changes in performance of 

MFC, while hexacyanoferrate (III) was reduced at the cathode (hexacyanoferrate (III) used 
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as a catholyte). Figure 5 depicts the anode and cathode resistances over the period of 

operation.  

 

 
 
Figure 5. Internal resistances profile of anode and cathode over the period of MFC operation. 

 

The results revealed that the anode resistance declined from 543.9 mΩ.m2 to 

18.5 mΩ.m2 (from day 6 to 25), indicating the enhancement in activity of the electroactive 

biofilm. Cathode resistance also decreased from 25.9 mΩ.m2 to 3.1 mΩ.m2 (from day 6 to 

25). As both anode and cathode resistances decreased with time, it indicted that the 

performance of MFC increased with time. The total cell resistance (sum of the anode, 

cathode and membrane internal resistances) decreased from 582.7 mΩ.m2 to 27.48 mΩ.m2 

(from 6 day to 25 day). At the maximum performance on the day 25th, the anode, the 

cathode, and the membrane contributed to 67%, 11%, and 20% of the total resistance, 

respectively. 

When MFC was operated with potassium hexacyanoferrate(III) for cathodic 

reaction, the Coulombic efficiencies (CE %) 22.70 % of MFC was observed at the stable 

phase of fuel cell operation. 

 

Effect of pH on MFC performance  

Physiologically permissive medium is crucial for the growth of a viable 

biocatalyst on an electrode. To enhance the MFC operation and performance, an improved 

understanding of the bioanode process as a function of medium pH conditions is of crucial 

importance. Therefore, MFC performance was examined by using media with pHs ranging 

from 4.0 to 10 at 0.5 pH unit increments. MFC performance was characterized based on 

current densities as well as power densities produced using the polarization test.  
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Figure 6. Obtained current density and power density correspond to cell operated with media of 
pHs ranging 4 to 10. The maximum current density and power density were extracted from 25 day 
when MFC operated with 250 Ω external load. 

 

Figure 6 shows that MFC performance was enhanced as pH became neutral, 

and this result is consistent with a previous study [26]. However, at low pH condition, the 

current densities and power densities decreased. The acidification of the anode biofilm 

affected current generation, because microbial activity is inhibited in low pH [27]. The 

produced current densities and power densities were remained almost steady from pH 7 to 

9. In alkaline medium and high buffer concentration, bioanode performance was enhanced 

by increasing flux of proton shuttles out of the anode biofilm [28]. However, the maximum 

power density (Pmax) decreased at pH 9.5, showing that neutral pH was the optimum pH 

for attaining the highest power density in this system. 

 

 

Conclusion 
 

In this study, we have shown that the bioelectricity yield at neutral pH condition 

from microbial fuel cell (MFC), where untreated carbon felt was used as both the anode 

and the cathode, and the anolyte was inoculated with mixed culture. The performance of 

MFC was enhanced by replacing continuous air cathode with potassium hexacyanoferrate 

(III). Potassium hexacyanoferrate (III) reduced at cathode that increased current density by 

addressing the limited diffusion of the substrate into the electrode surface. The increase in 

power density to 1410 mWm-2 resulted in the improved performance of the system at 

higher current densities (51.5 mAm-2 to 2500 mAm-2). Power generation using MFC with 

low cost electrodes and mixed culture was considered as cost-effective and 

environmentally sustainable process which will also provide a great potentiality for other 

applications like handy power supplies for remote sensors using native fuels. 
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The development of the microalgae-based biodiesel technology has 
become a hot research topic in the bioenergy field in recent years. 

Presently, the technical possibility of the conversion of microalgae to 
biodiesel has been confirmed at the laboratory scale. The fundamental 
issues impeding the industrialization of microalgae-based biodiesel 

include the high cost of production and the lack of research on the 
scaling-up technology. In this paper, the technical challenges and 
economic aspects of biodiesel production from microalgae were 

analyzed. It was found that the production cost of microalgae -based 
biodiesel mainly come from three processes: microalgae cultivation, 
harvest, and lipid extraction, among which microalgae cultivation 

represented the highest cost. Finally, the prospect of the industrialization 
of the microalgae-based biodiesel was proposed.  

 
Keywords:  Microalgae; Biodiesel; Technical challenges; Economic Analysis; Cultivation; Harvest; Lipid 

extraction 

 

 
1. Introduction  

  
Environmental pollution and energy shortages have become important issues that 

restrict the sustainable development of the world economy. Biodiesel as a green and 

renewable energy has received more attention. Biodiesel consists of long chain fatty acid 
methyl esters or ethyl esters, which are produced by esterification or transesterification 

reaction with animal fats and vegetable oils [1]. Biodiesel is free of sulfur and aromatics 
components, and used as an additive of diesel fuels that can significantly reduce the 
sulfur oxides, hydrocarbons, nitrogen oxides, and other pollutant emissions [2]. As a new 

type of renewable energy, a major problem restricting its development is the serious 
shortage of feedstock. Currently, biodiesel made from vegetable oils and animal fats can 

fulfil about 3% of the required diesel fuel, and the increasing use of these feedstock for 
biodiesel production may result in world food supply problems [3]. 

Microalgae is the most widely distributed and the largest species in nature, 

representing a large quantity of biomass resource. Compared to other biomass, 
microalgae have the advantages of high photosynthetic efficiency, short growth period, 

high biomass yield, no need for arable land, high efficiency of carbon fixation, high oil 
content, and environmental friendly resource. It is considered as one of the ideal 

feedstock for biodiesel production [4]. 
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2. Production Process of Biodiesel from Microalgae 

 
The production process of microalgae-based biodiesel mainly includes four steps, 

namely microalgae culture, harvest, oil extraction, and esterification as shown in Figure 1. 
There are several different process routes to choose for each step in this production 
process. In order to establish an industrial technology route, it is necessary to study the 

key technical issues in each step. The existing production processes of microalgae-based 
biodiesel require high cost and show low production efficiency. Some of the bottlenecks 

have seriously restricted the development of industrialization. Currently, the microalgae 
industry is small in scale, and research and development are required. 
 

 
Figure 1. Production process of biodiesel using microalgae 
 

2.1 Microalgae cultivation 
Microalgae such as Prymnesiophytes (Class Prymnesiophyceae), Eustigmatophytes 

(Class Eustigmatophyceae), diatoms (Class Bacillariophyceae), green algae (Class 
Chlorophyceae), goldenbrown algae (Class Chrysophyceae) and blue-green algae (Class 
Cyanophyceae) have shown the potential to accumulate high levels of polyunsaturated 

fatty acids (also known as microalgal lipids or microalgal oils). Table 1 summarizes the 
lipid content and the biomass yield of some typical microalgal species. 

Microalgal lipids are similar to vegetable oils, which can be used as a substitute of 
vegetable oils for biodiesel production or even cooking [5]. At present, there are a lot of 
studies on utilization of microalgal lipids, and reported microalgal species include 

Chlorella sp., Isochrysis galbana, diatoms, and Scenedesmus. These microalgae perform 
photosynthesis using water, carbon dioxide, and simple inorganic elements with the 
sunlight as the energy source. The resulting lipids can be converted into biodiesel (fatty 

acid methyl ester or ethyl ester) via esterification. Microalgal residues after lipid 
extraction can be used for production of animal feed, organic fertilizer, and methane. 

The amount of lipids accumulated in microalgal cells is closely related to the 
cultivation conditions. Adequate carbon sources and other nutrient deficiencies are an 
induction factor in production of a higher lipid content. Generally, microbial production 

of lipids can be divided into two stages, namely, cell proliferation and lipid accumulation 
period. Different carbon-nitrogen ratios can be applied for these two stages. The role of 

nitrogen source is to promote cell growth. The low carbon and nitrogen ratio during the 
first stage is favorable for biomass production, while lipid-producing stage requires a 
high carbon to nitrogen ratio [6]. The effect of temperature on the accumulation of lipids 

is various among different microalgal species. The light intensity is one of the important 
factors that affect the growth and biochemical composition of microalgae. In general, a 

low light intensity can induce synthesis of polar lipids, while a high light intensity can 
lead to accumulation of neutral lipids [7]. 
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The way that was used to grow microalgae is another key factor affecting the rate of 
microalgal biomass synthesis. The growth modes of microalgae include autotrophic, 

heterotrophic, and mixotrophic. Autotrophic is the most common way of microalgal 
growth. Different microalgal species have very different lipid contents during 

autotrophition. Generally, the lipid content of algal cells can be improved by reducing 
either nitrogen source or other nutrient elements in the culture medium. However, due to 
the need of adequate light, the cell density of autotrophic algae is relatively low. The cell 

density is even lower under nutrient deficiencies and nutritional stress, which greatly 
reduces the efficiency of microalgae production and make harvest more difficult [8]. 

Heterotrophic cultivation of microalgae is generally carried out using traditional 
fermentation equipment, in which microalgae are not affected by environmental 
conditions and grow fast without light. This method can shorten the culture cycle, and 

reduce the cost of harvest. However, some scholars believe that heterotrophic culture of 
microalgae will discharge CO2, instead of fixing it [9]. The need of additional organic 

carbon sources rises the cultivation cost. The autotrophic feature of microalgae is lost, but 
the ability of lipid production still cannot compete with oleaginous microorganisms.  

Mixotrophic grown microalgae obtain energy mainly via photosynthesis, but the 

external organic carbons and CO2 are also necessary. This culture condition reduces the 
release of CO2, but the microalgae lipid content and cell density are not significantly 

improved. So, this method is not extensively applied.  
 
Table 1. Lipid content and yield of some microalgal species [8] 
Microalgal species  Growth 

condition 

Lipid 

content 

(wt% of cell 

dry weight) 

Growth rate 

(g/(L·d)) 

Lipid 

production 

rate 

(mg/(L·d)) 

Chlorella protothecoides CCAP 

211/8D 

Autotrophic 11.0~23.0 0.002~0.02 0.2~5.4 

Chlorella protothecoides Heterotrophic 50.3~57.8 2.2~7.4 1209.6~3701.1 

Chlorella protothecoides Mixotrophic 58.4 23.9 11800 

Chlorella vulgaris #259 Autotrophic 33.0~38.0 0.01 4.0 

Chlorella vulgaris #259 Mixotrophic 21.0~34.0 0.09~0.25 22.0~54.0 

Dunaliella tertiolecta ATCC 30929 Autotrophic 60.6~67.8 0.10 60.6~69.8 

Isochrysis sp. F&M-M37 Autotrophic 27.4 0.14 37.8 

Nannochloropsis oculata NCTU-3 Autotrophic 22.7~29,7 0.37~0.48 84.0~142.0 

Pavlova lutheri CS 182 Autotrophic 35.5 0.14 50.2 

Scenedesmus sp. DM Autotrophic 21.1 0.26 53.9 

 

The autotrophic culture system for microalgae can be divided into two categories: 
outdoor open pond and closed photobioreactor. Table 2 summarizes the properties of 

open ponds and enclosed photobioreactors. Open ponds may adopt one of the raceway 
type, round pool, and slope type designs. Closed photobioreactor designs can be columns, 

tubes, plates, and some other special types [10]. The raceway pond is the most important 
culture system for commercial cultivation of microalgae. The system is generally a 
shallow pool with 15-30 cm depth and natural light as the light source and the heat source. 

The rotation of the impeller(s) mixes the culture medium, prevents algae precipitation, 
and improves the light utilization. Air or CO2 gas may be pumped into the system via 

bubbling or airlift stirring. The raceway pond can be covered with a transparent film that 
can prevent pollution and reduce water evaporation.  
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Table 2. Properties of open ponds and enclosed photobioreactors [10] 
Cultivation system Advantages  Disadvantages  

Open pond Low construction cost, low operation 

cost, ease to clean, mature 

technology, ease to scale-up 

 

Need large area, ease to be 

contaminated, hardly to grow 

monoculture, low biomass yield, 

water evaporation, difficulty of 

harvesting, affected by environmental 

conditions, hardly to supply extra 

CO2.  

Closed photobioreactor Grow monoculture, low possibility of 

contamination, high biomass yield, 

ease to harvest, low water 

evaporation, ease to control, hardly 

affected by the environment 

High construction cost and operation 

cost, forming biofilm, hardly to clean, 

need enhanced mass transfer, heat 

transfer and light, technologies under 

development 

 

 
2.2 Harvest of Microalgae 

Microalgae harvest from the culture broth has been a bottleneck in the industrial 
scale microalgae production. Individual microalgal cells are small (1-30 μm diameter). 
The cell surface often possesses with hydroxyl, carboxyl, amino, mercapto, and 

phosphate groups and shows a negative charge [11]. It is possible to form a stable 
dispersion system in the culture medium, and the biomass concentration in the culture 

medium is very low (usually 0.5 to 5.0 g/L), so that the harvest of microalgae is difficult. 
The cost of harvesting microalgae accounts for 20% to 30% of the cost of microalgae 
farming that includes cultivation and harvesting [12]. Therefore, there is an urgent need 

to develop high efficiency and low-cost harvesting methods. 
Due to the special nature of microalgae and its culture medium, the traditional solid-

liquid separation technology cannot be directly applied for microalgae harvesting. 
Generally, microalgae are first physically or chemically treated, and then separated [13]. 
The harvesting methods include sedimentation, flotation, dissolved air floatation (DAF), 

filtration, and centrifugation. Sedimentation and flotation are the preferred harvesting 
methods for open large ponds due to the low cost [14]. The flotation method uses a 

flocculant such as Fe3+, Al2(SO4)3 or a cationic polymer. The flotation method is only 
applicable to few species like Chlorella and Scenedesmus, and it must combine with 
other methods to work effectively. Sedimentation is suitable for microalgae easily settled. 

Some microalgae can be precipitated by changing pH. Meanwhile, the DAF method can 
easily, safely, and efficiently concentrate the microalgae cells via adjusting the pH value, 

increasing the reflux ratio, and prolonging the dissolved gas time and contact residence 
time [15]. Centrifugation and ultrafiltration are suitable for the harvest of microalgae 
from photobioreactors, in which microalgae can usually achieve higher cell density. 

Centrifugation is a fast harvesting method, but it is also more energy intensive and only 
applicable when extracting high-value products from microalgae. Ultrafiltration is not 

suitable for the large-scale harvest due to the high cost of the membrane. The 
development of low cost membrane materials can also serve as an effective way to reduce 
the cost of microalgae biodiesel. 

 
2.3 Extraction of Microalgal Lipids 

Microalgal lipids are mainly distributed in the forms of triglycerides or fatty acids in 
the cells. The extraction of intracellular lipid components is also an important part of 
microalgae biodiesel production process. The extraction technologies of microalgal lipids 
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include mechanical crushing, organic solvent extraction, water enzymatic, supercritical 
fluid extraction, thermal cracking, etc. These methods require microalgae as a dry powder 

[16]. 
Cell density of microalgae in the large-scale culture is generally less than 10 g/L. 

Even after solid- liquid separation (such as centrifugation, flocculation, flotation, 
membrane filtration, etc.), the microalgae slurry still has a high water content of 95.5% to 
67%. The drying methods for microalgae slurry include sun drying, drum drying, spray 

drying, fluidized bed drying, freeze drying, and refractance window dehydration 
technology. According to the life cycle analysis (LCA), the energy output of the products 

produced by using dry microalgae is less than the energy input [17]. In order to avoid the 
energy intensive drying process, the development of conversion technologies that use wet 
algae as raw material has become an important research direction.  

Mechanical crushing is the simplest method for microalgal lipid extraction. With the 
assistance of the high osmotic shock and ultrasonic assisted technologies, the cell rupture 

and intracellular release of substances can be accelerated. But these technologies are 
energy consumption, and different extrusion methods must be selected according to the 
specific physical characteristics of microalgal species.  

Solvent extraction method commonly uses chemical solvents such as benzene, ether, 
and n-hexane, as well as mixing co-solvent extraction. Mixing co-solvent extraction 

refers to mixing a polar solvent and a non-polar solvent to form a single-phase system to 
extract microalgal lipids. At present, the methanol-chloroform system is the most 
commonly used method for extraction of microalgal lipids. This methanol-chloroform 

system is based on the principle of "similar compatibility". Microalgae are fully 
contacted with the methanol-chloroform mixed solvent. The polar solvent of methanol 

binds to the polar lipids of the cell membrane, and thereby destroying the hydrogen bonds 
and electrostatic interactions between the lipid and the protein molecules; while the non-
polar solvent of chloroform diffuses into the cell and dissolves the intracellular 

hydrophobic neutral lipids. After extraction, water is added to the system. Methanol is 
dissolved in the water phase, and separated from the lipid-containing chloroform phase. 

Crude microalgal lipids can be obtained after evaporation of chloroform [16].  
Water enzymatic method is the use of enzymes to decompose the cell wall and 

release microalgal lipids. The major limitation of this method is the high cost of enzymes.  

Supercritical carbon dioxide extraction is another potential extraction method of 
microalgal lipids. Supercritical carbon dioxide possesses the characteristics of both liquid 

and gas, which can greatly speed up the extraction process of lipids with a high oil 
recovery rate. But the expensive equipment and operating conditions make it difficult for 
industrialization. 

 
2.4 Production of biodiesel 

Biodiesel preparation methods can be categorized as physical and chemical methods. 
Physical methods include direct mixing and micro-emulsion method, while chemical 
methods include thermal cracking and transesterification [13]. The most widely used 

biodiesel preparation method is a chemical method - transesterification, in which 
methanol reacts with natural lipids that is in the form of triglycerides. The triglycerides 

are broken into three long-chain fatty acid methyl esters and glycerol, thereby reducing 
the length of the carbon chain. The viscosity of the oil product (often called biodiesel) is 
reduced and the fluidity is improved. The biodiesel product meets the requirements of the 

transportation fuel. Fatty acids that are suitable for producing biodiesel have a chain 
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length of 16 to 18 carbon, and the majority of high- lipid content microalgae accumulate 
triglycerides with a fatty acid content falling into this range. The transesterification 

reaction can reduce the molecular weight of the original lipids by 1/3 and the viscosity by 
8 times, improve the volatility, and make the products compatible with diesel. 

 
2.4.1 Biodiesel Production by in-situ Transesterification 

During in-situ transesterification, the dried microalgae powder reacts with an alcohol 

(such as methanol) to produce fatty acid methyl esters in presence of a strong acid 
catalyst such as HCl and H2SO4. In-situ esterification eliminates the need for lipid 

extraction steps, and effectively simplifies the production process of biodiesel. It is 
suitable for methyl esterification of fatty acid contents in microalgal biomass with a high 
oil content. Studies on the in-situ esterification of microalgae showed that the reaction 

can be done within 1 h at 100°C in a closed vessel, and purification of fatty acid methyl 
esters can be done simultaneously by adding n-hexane [18]. By mixing the substrate 

alcohol with a weakly polar solvent such as diethyl ether or toluene, the yield can be 
improved by changing the polarity of the reaction medium. Alternatively, microalgae can 
be converted into liquid biodiesel under supercritical methanol transesterification 

conditions [19].   
 

2.4.2 Biodiesel Production by Hydrocracking 
Recently, some researchers in the United States and Europe are exploring the 

technology for the preparation of microalgae-based diesel by using hydrocracking. The 

technology is different from the transesterification technology [20]. The final products 
obtained by transesterification are fatty acid methyl esters – biodiesel, while the 

hydrocracking technology yields the green diesel (also called renewable diesel) whose 
composition is identical to that of petrochemical diesel. The green diesel can be mixed 
with petrochemical diesel in any proportion. The existing hydrocracking technology and 

equipment in the refinery can be directly used to refine microalgal crude lipids. Because 
this technology requires less investment and can be industrialized easily, it has been 

considered as a promising conversion pathway of microalgae.  
 
2.5 Challenges in Production of Biodiesel from Microalgae 

The use of microalgae for biodiesel production is still in its infancy, though it has 
shown many advantages. Currently, the biodiesel production technology for vegetable oil 

processing is relatively mature. Because microalgal lipids are similar to the vegetable oil, 
conversion of the microalgal lipids to biodiesel is technically feasible. However, 
according to the existing microalgae processing technologies, there is still a considerable 

distance to commercial applications. The bottleneck is the difficulty of obtaining enough 
microalgal biomass, which results in the high cost of microalgae-based energy products 

[21]. The main problems include: 
(1) Selection of high quality energy microalgae 
The lipid content and composition of microalgae are an important factor to 

determine the yield and quality of biodiesel. The selection of high quality microalgae 
species satisfying the industrial demand is a necessary condition for the mass production 

of microalgae-based biodiesel. The growth rate and the final cell density of microalgae 
are relatively low, and the cultivation process and harvesting costs are high. To solve 
these problems, mixotrophic or heterotrophic microalgae can be adopted to improve the 
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oil production rate, and engineering fast-growing lipid-rich microalgal species is 
necessary [22]. 

(2) Large-scale, low-cost, high-efficiency cultivation system and cultivation 
technology 

Developing microalgae cultivation systems that can reach a high cell density is one 
way to improve the economy of harvest. An optimal design of photobioreactors can 
ensure maximized use of light energy, high growth rate and cell density, reduction of the 

all over cost, and ease to scale up culture system [13]. 
(3) Optimizing the microalgae separation process 

Separation of microalgae from the culture media may involve mechanical mixing, 
centrifugal harvesting, drying, etc. These processes require a high energy consumption, 
and making energy input and output not economical. The dry matter content in the 

microalgae culture media is usually less than 1 wt%. Concentration and drying steps 
extend the production cycle of biodiesel, and affect the efficiency of oil extraction [16]. 

(4) Comprehensive biorefinery of microalgae Production 
Lipid-rich microalgae contain a large amount of protein, polysaccharides, pigments, 

and other nutrients. If these high value-added products and microalgae biodiesel are 

manufactured at the same time, it is possible to reduce the cost [5].  
Industrialization of microalgae-based biodiesel is a project of complex system 

engineering. Microalgal growth for energy production requires large scale systems. A 
large amount of waste culture media may cause serious environmental pollution if 
handled improperly. Therefore, when planning a site for the large-scale microalgae 

cultivation, combining the treatment of wastewater, waste gas, and solid wastes should be 
considered. Industrial flue gas containing CO2 may be used to culture autotrophic 

microalgae, while carbon-rich or nitrogen-rich agricultural wastes and industrial 
wastewater may culture heterotrophic microalgae. 
 

 
3. Economic Analysis of Microalgae Production 

 
3.1 Microalgae Cultivation 

As aforementioned, open ponds and photobioreactors are two major systems for 

microalgae cultivation. Through the technical and economic analysis of these two kinds 
of cultivation methods, it is found that there is an obvious economy difference between 

two approaches (Table 3) [23, 24]. 
Zhang et al. [25] studied the life cycle (LCA) of microalgae cultivated in open race 

way ponds. It was found that microalgae culture is the costliest part of the whole 

production process. Their assumptions included that the cell concentration of microalgae 
in the pond was 0.5 kg/m3; its location was close to the power plant, and the flue gas 

discharged from the power plant was used to cultivate microalgae; the medium in the 
pond was continuously stirred to keep the flow rate; and the diesel was used as the fuel 
for both transport and equipment maintenance. So the calculated parameters for the 

growth process of microalgae were: the microalgae yield per hm2 (dry weight) is about 
54.8 t, which requires 10 L diesel oil and 148.9 GJ electricity. If taking into account the 

nutrients consumption (like nitrates, sulfuric acid, salts, and phosphates) during 
microalgae cultivation, producing 1 t microalgae biomass needs to consume nitrates 
349.74 kg, phosphates 52.969 kg, and sulfates 47.526 kg. The fossil energy consumed in 

the cultivation process of microalgae accounts for 73.8% of the total fossil fuel 



 

Peer-Review ed Review  Article   Trends in Renewable Energy, 3 

Tr Ren Energy, 2017, Vol.3 No.2 141-152. doi: 10.17737/tre.2017.3.2.0035 148 
 

consumption, so the comprehensive utilization of energy is related to the energy balance 
of the whole microalgae-based biodiesel industry.  

 
Table 3. Economic estimates of microalgae culture in open ponds and 

photobioreactors [23] 
Economic assessment Open ponds  Photobioreactors  

Production scale   

Algae productivity 25(g/m2/day) 1.25(kg/m3/day) 

Algae cell density (g/L) 0.5 4 

Lipid yield (dry wt%) 25% 25% 

Operating days/yr 330 330 

Lipid production (MM gal/yr)  10 10 

Biodiesel production (MM gal/yr) 9.3 9.3 

Resource assessment   

Net water demand (MM gal/yr) 10,000 3,000 

-water evaporated/water blowdown to treatment (gal/gal 

lipid)  

570 250 

- water blowdown to treatment/discharge (gal/gal lipid) 430 50 

Fresh CO2 demand (ton/yr) 145,000 145,000 

Fresh NH3 required for algae growth (ton/yr) 5,100 5,100 

Fresh DAP required for algae growth (ton/yr) 4,800 4,800 

Power coproduct exported to grid (MM kW h/yr) 80 100 

System cost   

Total capital cost (direct + indirect) ($MM) $390 $990 

Net operating cost ($MM/yr) $37 $55 

Total coproduct credits ($MM/yr) $6 $7 

 
Presently, the comprehensive utilization technologies of energy mainly include the 

concentrated solar power [26] and the flue gas and wastewater co-utilization (FWC) 
technology [27]. Concentrated solar power converts the solar energy into heat that is 

stored in water, oil, sand, or other media. When needed, the stored heat will be used to 
generate electricity to supply the microalgae culture system, which can minimize the 
weather effects and provide continuous and stable energy supply. The FWC strategy uses 

the wastewater to provide N, P, and other nutrients, and industrial flue gas as the CO2 
source for microalgae culture. FWC saves resources and controls the pollution. The types 

of wastewater include domestic sewage, aquaculture wastewater, fermentation 
wastewater, papermaking wastewater, and so on.  
 

3.2 Microalgae Harvesting Process 
When the density or the lipid content of microalgae reaches a certain concentration, 

microalgae will be harvested. The cost of harvesting microalgae accounted for 20 to 30 
percent of the total production cost. Commonly used harvesting technologies are 
flocculation, centrifugation, and filtration. The cost and energy consumption of these 

harvesting techniques are summarized in Table 4. 
Membrane filtration often uses modified cellulose as the filter, which is easy to be 

polluted, though the counter-current operation may improve the efficiency to some extent. 
Centrifugation is a commonly used method for cell separation, which uses centrifugal 
separation without introducing other chemical reagents, but requires a high energy cost 

[28]. Flocculation is an industrial separation technology. This method requires the 
addition of AlCl3, FeCl3 or chitosan as flocculant to fix microalgae cells into flakes. 

However, the flocculant is difficult to be removed during the downstream separation 
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processes. Microbial flocculation is a new method developed in recent years. Kim studied 
the flocculation of several green algae by using bacteria, and the recovery ratio was over 

90% [29]. The microbial flocculation method has the advantages of low cost, safety, and 
pollution-free. 

 
Table 4. Summary of harvest costs and energy consumption of microalgae 
[27,30] 
Technique Pros  Cons  Cost（$·hm-2） Energy 

consumption 

(kwh·m-3) 

Flocculation Low capital cost Low water 

removal ratio 

2,000 ~0 

Centrifugation Fast separation rate, 

high recovery rate 

High cost and 

high energy cost 

12,500 3.29 

Filtration High efficiency, 

medium cost 

Limited 

application, 

pollution of filters  

9,884 0.5~5.9 

hm2: square hectometer 
 

3.3 Microalgae Dehydration and Lipid Extraction  
The most effective dewatering technology can only reduce the water content of 

microalgae slurry to 65-80 wt%. Drying microalgae to a lower water content of less than 
80% requires dehydration processes, which increase energy consumption and cost [31]. 
Such dehydration processes include drying microalgae with sunlight, fixed bed or spray 

dryers. The energy input of the microalgae-based biodiesel process using dry microalgae 
is more than energy output. Traditional lipid extraction processes separate microalgal 

lipids from the water phase with organic solvents, such as methyl ether and n-hexane. But 
the extraction efficiency is low and it is difficult to recover the extraction solvent. Table 5 
compares the cost of microalgae dehydration and lipid extraction.  

 
Table 5. Summary of costs of microalgae dehydration and lipid extraction [27] 
Operation Capital cost ($) Operation cost ($) Methods  

Dehydration 250,000 45,251 Solar drying/fixed bed drying 

Extraction 150,000 7,332 methyl ether, n-hexane 

 

 
4.Conclusions and Prospects 

 

At the present stage, the production of biodiesel from microalgae is still not an 
economical process, and it is difficult to achieve industrialization in China. Reducing the 

cost is the major goal in the future [32, 33]. The cost of microalgae processes decreases in 
following order: microalgae culture > microalgae harvest > dehydration and lipid 
extraction. These three steps account for the major cost of microalgae-based diesel 

production, and they are closely related to each other. The low microalgae concentration 
is the reason of the high harvest cost, while the concentration of microalgae harvested is 

the key to the cost of lipid extraction. Therefore, the development of the novel microalgae 
technology should not only focus on the main steps, but also consider coupling between 
different processes.  
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Such technologies may include metabolic engineering, comprehensive utilization of 
energy, and well-developed scaling-up technology. For the microalgae cultivation, with 

the progress of genetic engineering, it is expected to develop ideal algal species, which 
can be cultivated with the improved culture system. To reduce simultaneously the cost of 

equipment and energy consumption of harvesting microalgae, the new technologies like 
biological flocculation might be used. For the microalgal lipid extraction, some new 
techniques may avoid the dehydration step and combine harvesting and extraction steps 

together, and thus develop an economical biodiesel production process. Furthermore, 
microalgae are rich in pigment, protein, polysaccharides, unsaturated fatty acids, and 

other bioactive substances, which can be used for the chemical, food, pharmaceutical and 
feed industry, etc. These useful components should be co-produced with the biodiesel to 
reduce the processing cost.  
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This paper deals with thermal and exergy efficiencies of biomass fired 
water heating system. Water heating system is extensively suitable to 
generate hot water in rural areas. The developed water heating system 
was tested with Desi babul (Acacia nilotica) wood. Thermal and exergy 
efficiencies of the system were estimated at 54.5 percent and 6.79 percent, 
respectively. 
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Introduction 
 

It is well known fact that biomass is an indirect source of solar energy, and it is a 

renewable energy resource available where the climatic conditions are favorable for plant 

growth and production [1-3]. Biomass combustion is going to increase worldwide for a 

provision of heat and electricity. Approximately 60% of total biomass is used for energy 

purposes are traditional biomass that is fuel wood, while crop residues and the remaining 

biomass are used for modern bio-energy. Biomass can play vital role in responding to 

concerns over the protection of the environment as well as the security of an energy supply 

[4-5]. From ancient time, biomass is the main fuel which is used for cooking and water 

heating. But due to urbanization and industrialization, these biomass are replaced by 

modern fuel like kerosene, LPG and electricity. However, these conventional sources of 

energy are exhaustible in nature. It is essential to find an economical, convenient and 

efficient way to replace these conventional sources by renewable sources like biomass and 

solar as alternate fuel with improved technology to maximize the energy efficiency.  

Comprehensive literature is available on various aspects of biomass combustion 

devices. However, literature on exergy analysis of biomass fired water heating system is 

limited. Saidur et al.  performed an exhaustive literature survey on the exergy assessment 

of various biomass that can be used as fuel for cookstove [6]. Tyagi et al. presented an 

experimental and comparative performance evaluation, using energy and exergy analyses, 

of four metallic types of cook stoves [7]. Further, Panwar presented a study on assessment 

of energy and exergy of improved biomass cookstoves [8]. Biomass fired water heating 

systems are capable to generate hot water whenever it is required, and significantly 

contribute to reduction of greenhouse gases. Despite these advantages, there is very little 

literature available on energetic and exergetic analyses of such water heating system. 
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Therefore, the present experimental study was conducted to assess the energetic and 

exergetic performance of the biomass fired water heating system. 

 

 

Materials and Methods 
 
System Description 

The biomass-fired water heating system consists of two concentric cylinders, i.e. 

the inner cylinder and the outer cylinder made of stainless steel SS 304. Actual combustion 

takes place in the inner cylinder, which has a diameter of 20 cm, whereas the outer shell 

has a diameter of 30 cm. During the experiment, the water was poured between these two 

cylinders. The outer shell was insulated with glass wool to minimize heat loss. The grate 

was made of a mild steel round bar. To maintain the proper draft during the combustion of 

the biomass, a chimney was placed on the top of the combustion chamber, as illustrated in 

Figure 1. One water tap was placed at on the upper side of the water tank to drain hot water, 

and another tap was placed at the bottom side to drain the water when the system is not in 

use. The technical specification of the developed water heating system is presented in Table 

1.  

 

Table 1. Technical specification of biomass fired water heating system. 

No. Component  Dimension in cm Material  

1. Inner cylinder 
Diameter = 20 

Height = 60 
SS 304 

2. Outer cylinder  
Diameter = 30 

Height = 60 
SS 304 

3. Chimney  
Diameter = 5 

Height = 90 
Galvanised iron (GI) 

4.  Grate Diameter = 19 Mild steel round bar 

5.  Insulation  Thickness = 0.4 Glass wool 

6. Insulation cover 
Diameter = 30.8 

Height = 90 
Aluminum sheet 

 
 
Thermal Performance 

Proximate analysis of the fuel - Desi Babul wood (Acacia nilotica), which was 

purchased from a local market, was carried out prior to the test by using the method 

suggested by the literature [9]. The physical and thermal properties of the fuel wood are 

presented in Table 2.  

Seven trials were undertaken under different conditions to study the thermal 

efficiency of the developed system. The calorific value of fuel wood was calculated by 

using a digital bomb calorimeter (Advance Research Instruments Company, Delhi, India). 

A multi-channel temperature scanner (ADI-Vadodara, Gujarat, India) with calibrated 

NiCr–Ni thermocouples was used to measure the ambient air temperatures, water inlet and 

out temperature.  
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Figure 1. Schematic of biomass fired water heating system (all dimension in cm). 
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 Table 2. Physical and thermal properties of the fuel wood 

Characteristic Biomass (Desi Babul wood, Acacia nilotica) 

Size (mm) 25-40 

Length (mm) 50-75 

Bulk density (kgm-3) 350 

Moisture content (wt% wet basis) 5.6 

Volatile matter (wt% dry basis) 82.52 

Ash content (wt% dry basis) 1.05 

Fixed carbon (wt% dry basis) 16.43 

Calorific value (Higher heating 

Value, HHV, unit: MJ/kg) 

19.157  

 

Thermal efficiency of system is calculated by the following formula: 

Hout = 𝑀𝑤𝐶𝑝𝑤∆𝑇     Eqn. 1 

Hin = 𝑀 ×  𝐶𝑣      Eqn. 2 

ηth =
ℎ𝑒𝑎𝑡 𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑏𝑦 𝑠𝑦𝑠𝑡𝑒𝑚

𝑡𝑜𝑡𝑎𝑙 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑣𝑖𝑎𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑤𝑜𝑜𝑑
=

𝐻𝑜𝑢𝑡

𝐻𝑖𝑛
  Eqn. 3 

 

Exergy Analysis 
Energy assessment is the customary method of assessing the way that energy is 

used in an operation involving the physical or chemical processing of materials and the 

transfer and/or conversion of energy. Energy analysis is based on the first law of 

thermodynamics: Net heat supplied is converted in order to work. Thus, energy analysis 

ignores reductions of energy potential and can provide sound management guidance for 

those applications in which the usage effectiveness depends exclusively on energy 

quantities. Such analyses are suitable for sizing and analyzing of systems using only one 

form of energy [10]. 

The exergy contents of biomass can be calculated by using their higher heating or 

lower heating values. Both higher and lower heating values are the function of the weight 

fraction (wt%, dry) of the chemical composition of biomass such as carbon (C), hydrogen 

(H), oxygen (O), nitrogen (N), etc. The higher heating value (HVV) of biomass can be 

calculated by using the correlation proposed by [11-12]. 

         2105.144.153.1425.33  NOHCHHV   Eqn. 4 

Similarly, lower heating value (LHV) can be computed using correlation proposed 

by [13]. 

   iii HOHOHHHVLHV 924401 22     Eqn. 5 

where 𝐻2𝑂𝑖 and 𝐻𝑖 state the moisture content of biomass and the weight of hydrogen in 

biomass. 

Correlation can be used for estimating the exergy of biomass suggested by [14]. 

biomassbiomass LHVEx         Eqn. 6 

where  is the quality factor and can be calculated as follows: 
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   Eqn. 7 

Exergy output of improved cookstove is depended on the heat utilized to boil the 

water and amount of water evaporated. It can be written as follows: 













aw

o
outout

T

T
HEx 1       Eqn. 8 

where Taw state for average water temperature  

Therefore, exergy efficiency (𝜓) can be written as follows: 

biomass

out

Ex

Ex
               Eqn. 9 

 

 

Results and Discussion  
 

Thermal Performance 
Thermal efficiency of the developed system was estimated using equations (1-3). 

To assess the thermal performance, total 80 liters of water was used to raise the temperature 

from 30°C to average temperature about 61°C in one hour, and one kg of babool (Acacia 

nilotica) wood was consumed. The developed biomass fired system illustrated in Figure 2. 

Thermal efficiency was estimated at about 54.50 %. 

 

 
 

Figure 2. Developed biomass fired water heater 
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Exergy Assessment  
Ultimate analysis of Desi babul (Acacia nilotica) was carried out to assess the 

exergetic performance of cookstoves as presented in Table 3. Exergy efficiency was 

calculated using equation (9). The exergy efficiency of biomass fired water heating system 

was about 6.79 %  

 

Table 3. Ultimate analysis of biomass (wt%) 

Biomass  C  H O N 

Acacia nilotica 48.82 4.78 0.28 46.12 

 

 

Conclusions 
 

Biomass is the most convenient form of renewable resources. A country’s socio-

economy cannot show progressive development unless energy is explored, developed, 

distributed and utilized in an efficient and appropriate way. In this study, the performance 

of the developed system was tested with Desi babul (Acacia nilotica) wood. Efficiency was 

determined through water heating tests. The developed system delivers 80 litres of hot 

water per hour per one kg of biomass at average temperature 61°C. The developed water 

heating system brings potential benefits like reduced emission of the greenhouse gases and 

reduced fuel demand with economic and time saving benefits to the household, and 

increases sustainability of the natural resources. 
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The knowledge of diffuse solar radiation (Hd) is of almost importance for 
determining the gross primary productivity, net ecosystem, exchange of 
carbon dioxide, light use efficiency and changing colour of the sky. 
However, routine measurement of Hd is not available in most locations in 
North-Western Africa. During the past 36 years in order to predict Hd in the 
horizontal surface on hourly, daily and monthly mean basis, several 
regression models have been developed for numerous locations in North-
Western Africa. As a result, several input parameters have been utilized 
and different functional forms applied. The regression models so far 
utilized were classified into six main categories and presented based on 
the input parameters applied. The models were further reclassified into 
numerous main groups and finally represented according to their 
developing year. In general, 188 regression models, 33 functional forms 
and 20 groups were reported in literature for predicting Hd in North-
Western Africa. The regression and soft computing models developed 
within North-Western Africa and across the globe were examined in order 
to determine the best technique of prediction. The result revealed that soft 
computing models are more suitable for predicting Hd in North-Western 
Africa and across the globe. 

 
Keywords: Diffuse solar radiation; Regression models; Classification; Functional forms; North-Western 

Africa 

 

 

1. Introduction 
 

As a result of exponentially increasing costs of fossils, uncertainty of availability 

and transportation, environmental pollution, and general awareness amongst common 

people, the renewable sources which are environmental friendly since they have much 

lower environmental impact compared to conventional sources have enabled smart energy 

to gain more attention from researchers, governments, non-governmental organisations 

(NGOs) and industries etc. in recent years due to the rapid growth of the global energy 

demands. Solar energy in the form of radiation received at the surface of the earth is the 

most preferred sustainable source of renewable energy in the form of solar photovoltaic, 

solar thermal. Other sources of renewable energy are wind, biomass, small and big hydro, 

tidal, wave, ocean etc. as a result of their inexhaustible nature and abundant availability 

globally. These attributes make solar energy to be accepted worldwide as a key energy 
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source for the future with respect to the environmental issues associated with fossils as well 

as their limited reserves. Therefore, solar energy is the best substitute of fossils owing to 

the ever growing demand for energy globally. In fact, about 40 GW of solar photovoltaics 

(PV) capacity was installed in 2014 and the International Energy Agency, IEA [1] predicts 

that by 2050, photovoltaic (PV) as a renewable energy source (solar energy) may become 

one of the most promising sources of energy that will provide about 11% of global 

electricity production and would reduce 2.3 gigatonnes of CO2 emissions per year. As a 

result, more and more penetration of solar energy technologies to the worlds’ energy sector 

is indeed appealing for supplying a notable part of the electricity, heating, cooling, cooking, 

and drying of all types of things: clothes, agricultural produce, cash crops, and bricks etc. 

Therefore, a good working knowledge of available solar energy obtained principally from 

global solar radiation with its diffuse and direct components in a particular location are of 

great importance in designing and sizing of solar energy conversion systems. 

Diffuse solar radiation is the component of global solar radiation reaching the 

earth’s surface after having been scattered from the direct horizontal irradiation by 

molecules, aerosols or suspended particular matter such as black carbon, organic carbon, 

dust and sea salt in the atmosphere. Diffuse solar radiation plays an important role in 

determining the gross primary productivity, net ecosystem exchange of carbon dioxide, 

light use efficiency, changing colour of the sky and baseline for estimating and 

understanding diffuse solar radiation parameters such as diffuse solar radiation and global 

solar radiation on surfaces, diffuse photosynthetically active radiation etc. Moreover, solar 

energy among other sources of renewable energy has remained the most viable source of 

energy that has the capacity to sustain and maintain all the activities and processes that 

support life of animals, supply heat to the atmosphere and lands, generate its wind, drive 

the water cycle, warm the ocean and support life of plants.  

The accurate determination and clear understanding of the diffuse solar radiation 

parameters is required for many applications such as energy management, solar energy, 

light studies, architectural research, hydrological process and biometeorology, crop 

production, remote sensing of vegetable and carbon cycle modelling, designing and sizing 

photovoltaic systems, development of thermal and electrical solar energy devices [2-6]. 

Diffuse solar radiation arises as a result of the interaction between the solar 

radiation incident on the top of the earth’s atmosphere and the matter within it. Thus, 

understanding how this radiometric flux interacts with the matter within it and relates with 

its immediate environment thereby influencing diffuse light availability for energy, sky 

colour, agricultural, material and technological production and utilization for man’s need 

is of utmost importance for modelling and estimating diffuse solar radiation in a particular 

geographical environment.  

Diffuse solar radiation varies from one geographical location to another. It is a 

function of meteorological parameters such as evaporation, effects of cloudiness, relative 

humidity, precipitation, temperature, sunshine duration, extraterrestrial solar radiation, and 

reflection of the environs; geographical parameters such as latitude, longitude and 

elevation of the site; geometrical factors such as azimuth angle, sun azimuth angle; 

astronomical parameters like solar constant, earth-sun distance, solar declination and hour 

angle; physical parameters such as scattering air molecules, water vapour content, 

scattering of dust and other atmospheric constituents like O2, N2, CO2, and O. 

Measurement of diffuse solar radiation is often performed in many parts of the 

world by mounting a pyranometer on the axis of the ring on a roof top so as to receive only 

diffuse solar radiation and the ring is normally adjusted regularly to ensure that the direct 
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irradiance does not reach the pyranometer. As a result of cost of measuring equipment, its 

maintenance and calibration requirements, in rural and developing countries in Africa and 

several places around the world, several empirical models had been developed in Africa 

and other locations across the globe that can produce diffuse solar radiation data without 

the substantial cost of the instrumentation network that would otherwise be needed [7-10]. 

The most primitive model for estimating diffuse solar radiation was developed by 

Liu and Jordan [11]. These solar energy researchers correlated diffuse fraction (Hd/H) with 

clearness index (kt). Their investigation has been adopted by numerous solar energy 

researchers in Nigeria and Egypt and across the globe as a baseline further developing 

regression models for estimating diffuse solar radiation using the same parameter, other 

meteorological parameters, geographical parameters, geometrical parameters and 

astronomical parameters that will best fit the local climate of their study.  

However, diffuse solar radiation and other components of solar radiation such as 

direct normal irradiance, photosynthetically active radiation, evapotranspiration etc. have 

been predicted employing different soft computing techniques in recent times. This 

constitutes a widely accepted technique offering an alternative way to synthesize complex 

problems associated with solar energy prediction. These problems include inability to 

handle non-linear relationships in data; applying only calculable atmospheric, 

meteorological, astronomical, geographical, geometrical parameters such as extraterrestrial 

solar radiation, latitude, altitude, longitude, maximum sunshine duration, azimuth angle, 

solar declination, cosine of solar zenith angle, and hour angle. The soft computing 

technique has the capacity of accepting many input parameters for a particular model which 

is not possible applying regression technique and this strengthens its reliability. Therefore, 

applying soft computing techniques compared to regression techniques according to 

previous studies offers greater accuracy with prediction error in a range (less than 20 %) 

and could be very good in terms of diffuse solar radiation prediction as more and more soft 

computing approaches are demanded in the domains of renewable energy resource 

prediction [12-21]. 

Therefore, the main purpose of the study was to review regression models fitted in 

literature for predicting diffuse solar radiation in North-Western Africa and its objectives 

are identifying several input parameters and functional forms ever applied for predicting 

diffuse solar radiation in North-Western Africa; classify the regression models commonly 

employed in this part of Africa according to the main input parameters; compare the 

performance of regression and soft computing models applied and decide the best 

technique that can yield high accuracies of estimation for future purposes and finally 

identify the research gap. 

 

 

2. Basic Parameters 
 

The principal parameter of sunshine duration fraction, daily extraterrestrial 

radiation on the horizontal surface is significant for the prediction of diffuse solar radiation. 

Sunshine duration fraction is the ratio of actual sunshine duration to maximum possible 

sunshine duration expressed theoretically as: 

  tantancos
15

2 1  

oS         (1) 
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Where  is the latitude,   is the solar declination given by Yaniktepe and Genc [22] and n 

is the number of days of the year starting from first January. The daily extraterrestrial solar 

radiation is the solar radiation intercepted by horizontal surface during a day without the 

atmosphere and hourly extraterrestrial radiation has similar definition. 

Hourly extraterrestrial solar radiation on the horizontal surface is given by Zhang 

et al. [23] as: 
















 



 





sinsin

180

)12(
sin)1sin2(sincoscos

365

360
cos033.01

360012

S

nSCI

oI  (3) 

While the daily extraterrestrial solar radiation on the horizontal surface is given by 

Yaniktepe and Genc [23] as: 



















 





sinsin

360

2
sincoscos

365

360
cos033.01

24 S
S

n

SCIoH    (4) 

Where the mean sunrise hour angle  s   can be evaluated as:  

  tantancos 1  

s         (5) 

ISC is the solar constant, 
1 and 

2 are the limit hour angle of an hour, in which 
2  is the 

larger, all in degrees and other symbols retain their usual meaning. 

 

 

3. Evaluation Metrics 
 

Evaluation, principally compares how well the observed and predicted fit each 

other. This evaluation is applied at numerous steps of the computing model development 

as for instance during the evaluation of the prediction model itself (during the training of a 

statistical model for instance), for judging the improvement of the computing model after 

some modifications and for comparing numerous computing models. As previously 

mentioned, this performance comparison is not easy for numerous reasons such as different 

predicted time horizons, numerous time scales of the predicted data and variability of the 

meteorological conditions from one site to another one. It works by comparing the 

predicted outputs 𝑦̂ with observed data y which are also measured data themselves linked 

to an error (or precision) of a measure.  

Graphic tools are available for predicting the adequacy of the computing model with 

the experimental measurements via: 

1. Time series of predicted diffuse solar radiation in comparison with measured 

diffuse solar radiation which allows visualizing easily the estimation quality. In Fig. 

1a, for instance, high estimate accuracy in clear-sky conditions and a low one in 

partly cloudy conditions can be seen. 

2. Scatter plots of estimated over measured diffuse solar radiation(as shown in Fig. 

1b) which can reveal systematic bias and deviations depending on the diffuse solar 

radiation conditions and show the range of deviations that are related to the 

estimates.  

3. Receiver Operating Characteristic (ROC) curves which compare the rates of true 

positives and false positive.  
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Fig. 1. a) Time series of predicted and measured global radiation for 2008 in Ajaccio (France); b) 
Scatter plot of predicted vs. measured global radiation in Ajaccio (France); c) Example of ROC 
curve (an ideal ROC curve is near the upper left corner). 
 

Up till now, there is no standard evaluation measures accepted for diffuse solar 

radiation measurement, which makes the comparison of the estimating methods difficult. 

Sperati et al. [24] presented a benchmarking exercise within the framework of the 

European Actions Weather Intelligence for Renewable Energies (WIRE) with the purpose 

of evaluating the performance of state of the art computing models for short term renewable 

energy prediction or forecasting. This research is a very good example of reliability 

parameter utilization. They concluded that: “More work using more test cases, data and 

computing models needs to be performed in order to achieve a universal overview of all 

possible conditions. They also pointed out that test cases located all over Europe, the US 

and other relevant countries should be considered, in an effort to represent most of the 

possible meteorological conditions”. This study therefore illustrates very well the 

difficulties of performance comparisons encountered for diffuse solar radiation prediction. 

The commonly applied statistics for diffuse solar radiation prediction include the following: 

The Mean Bias Error (MBE) represents the mean bias of the prediction: 

    



N

i
iyiy

N
MBE

1
ˆ

1
       (6) 

  

 𝑦̂ is the predicted diffuse solar radiation, y the measured diffuse solar radiation and N the 

number of observations. The prediction will under-estimate or over-estimate the 

observations. Thus, MBE is not a good statistical indicator for the reliability of a computing 

model because the errors compensate each other but it allows seeing how much it 

overestimates or underestimates.  

a) 
b) 

c) 
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The Mean Absolute Error (MAE) is appropriate for comparing diffuse solar 

radiation estimation with linear cost functions, i.e., where the costs resulting from a poor 

prediction are proportional to the estimation error: 

   



N

i
iyiy

N
MAE

1
ˆ

1
        (7) 

The mean square error (MSE) applies the squared of the difference between 

observed and estimated data. This statistical indicator penalizes the highest gaps: 

    



N

i
iyiy

N
MSE

1

2
ˆ

1
        (8) 

MSE is principally the statistical parameter which is minimized by the training algorithm.  

The Root Mean Square Error (RMSE) is more sensitive to big prediction errors, 

and thus is good for applications where small errors are more tolerable and larger errors 

cause disproportionately high costs, as in the case of utility applications 

(http://www.cost.eu/about_cost). It is probably the reliability parameter that is most 

appreciated and employed:  

    



N

i
iyiy

N
MSERMSE

1

2
ˆ

1
       (9) 

The Mean Absolute Percentage Error (MAPE) is close to the MAE but each gap 

between observed and predicted value is divided by the observed value so as to consider 

the relative gap. 

   






N

i iy

iyiy

N
MAPE

1 )(

ˆ1
        (10) 

This statistical indicator has a challenge that it is unstable when y(i) is near zero and it 

cannot be defined for y(i)=0. 

Of recent, these errors are normalized particularly for the RMSE; as reference the 

mean value of global radiation is generally employed but other definitions can be applied:  

    

y

N

i
iyiy

N
nRMSE







1

2
ˆ

1

       (11) 

With 𝑦̅ is the mean value of y. Other statistical indicators exist and can be employed as the 

correlation coefficient (R), coefficient of determination (R2), or the index of agreement (d) 

which is normalized between 0 and 1.  

As the prediction accuracy strongly depends on the location and time period applied 

for evaluation and on other parameters, it is difficult to evaluate the quality of estimation 

from accuracy metrics alone. Then, it is best to compare the accuracy of different 

estimations against a common set of test data Pelland et al. [25]. “Trivial” prediction 

approach can be applied as a reference [26], the most common one is the persistence model 

(“things stay the same”, Trapero et al., 2015) where the prediction is always equal to the 

last known data point. The diffuse solar radiation has a deterministic component due to the 

geometrical path of the sun. This characteristic may be included as a constraint to the 

simplest form of persistence in considering as an example, the measured data of the 

previous day or the previous hour at the same time as a prediction value. Other common 

reference forecasts include those based on climate constants and simple autoregressive 

methods. Such comparison with referenced NWP computing model is shown in Fig. 2. 

Generally, after 1 hour the forecast is better than persistence. For forecast horizons of more 
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than two days, climate averages show lower errors and should be preferred for diffuse solar 

radiationprediction. 

 

 
Fig. 2. Relative RMSE of forecasts (persistence, auto regression, and scaled persistence) and of 
reference models depending on the forecast horizon Lauret et al. [27]. 
 

Classically, a comparison of performance is performed with a reference computing 

model and to do it, a skill factor is employed. The skill factor or skill score defines the 

difference between the forecast and the reference forecast normalized by the difference 

between a perfect and the reference forecast Lauret et al. [27]: 

reference
MSE

forecatd
MSE

reference
Metric

castperfectfoe
Metric

reference
Metric

forecasted
Metric

SkillScore 




 1     (12) 

Its value thus ranges between 1 (perfect forecast) and 0 (reference forecast). A negative 

value indicates a performance which is even worse compared to the reference (observed 

data). Skill scores can be adopted not only for comparison between observed and predicted 

diffuse solar radiation values but also for inter-comparisons of different diffuse solar 

radiation prediction techniques. 

 

 

4. Regression Models  
 

A regression model relates diffuse solar radiation (Hd) with other easily measurable 

parameters such as clearness index, mean daily extraterrestrial solar radiation, sunshine 

fraction and cloud cover by applying concise mathematical functions. As a result of its 

simplicity and high operability, the regression model is much more convenient for 

engineering applications.  

Several regression models have been reported in literature for prediction Hd on the 

horizontal surface either on hourly mean basis (HB) or daily mean basis (DB) or monthly 

mean daily basis (MB) in Nigeria and Egypt. In this review, the Hd models are classified 

according to the basis of their input parameters applied in correlating with either diffuse 

fraction (Hd/H) or diffuse coefficient (Hd/Ho).  

It has been accepted that Hd is relatively affected by meteorological parameters, 

astronomical factors, geographical factors, and geometrical factors [7, 9, 28-29]. This could 

be attributed to the uniqueness of local climate in determining the meteorological and 
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atmospheric parameters that best fit that particular locality. This also depends on the 

availability of input meteorological/atmospheric parameter(s) that a given radiometric 

station or an individual is capable of measuring routinely which finally turns out to be the 

best input parameter at the disposal of the researcher for predicting Hd in that location 

factors [7, 9]. Thus, in North-Western Africa, the models for predicting Hd can be classified 

into six (6) following categories based on the employed meteorological and atmospheric 

parameters via: 

1. Clearness index-based models 

2. Sunshine-based models 

3. Cloud-based models 

4. Extraterrestrial Solar Radiation-based models 

5. Monthly-based models 

6. Hybrid Parameter-based models  

 

4.1 Clearness Index-Based Models 
The clearness index (kt) indicates the percentage depletion by the sky of the 

incoming solar radiation and therefore gives both the level of availability of solar radiation 

and changes in the atmospheric condition in a given environment [8, 30-32]. 

Mathematically, clearness index is the ratio of horizontal global solar radiation to the 

extraterrestrial solar radiation (Ho) on daily or monthly basis as found in literature 

expressed as: 

oH

H

tk            (13) 

For this reason, clearness index is closed related to Hd, hence, it has been known as 

a determinant parameter for estimation of Hd. One of the greatest characteristics of the 

models from this class is their convenient application, since for utilizing them only 

measured H data is needed. Numerous functional forms (exponential form, logistic form, 

logarithm form, second order, third order and power form) have been applied for estimating 

HB, DB and MB diffuse horizontal irradiation in literature are introduced according to their 

developing year under this section.  

 

4.1.1 Group 1 

Empirical models from this group are parameterized as the first-order polynomial 

function of the clearness index according to their functional forms and developing year. 

The functional forms are as follows: 











oo

d

H

H
ba

H

H
         (14) 











o

d

H

H
ba

H

H
         (15)

 
1











o

d

H

H
ba

H

H
         (16) 













o

d
H

H
baH          (17) 

Ezekwe and Ezeilo [33] developed the following MB models in Nsukka 
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For January to May 













o

d

H

H

H

H
48.113.1         (18a) 

For dry season 











o

d

H

H

H

H
69.114.1          (18b) 

Said and Ibrahim [34] developed the following MB model for Cairo, Egypt as: 











o

d

H

H

H

H
86.086.0         (19) 

Maduekwe and Chendo [35] developed HB diffuse solar radiation for Lagos as: 













o

d

H

H

H

H
151.0021.1     30.00 












oH

H
  (20a) 













o

d

H

H

H

H
396.1385.1     80.030.0 












oH

H
  (20b) 

Babatunde and Aro [36] established the following MB model for Ilorin as: 













o

d

H

H

H

H
97.0945.0         (21) 

Maduekwe and Chendo [37] proposed the following HB models for Lagos 













o

d

H

H

H

H
151.1021.1      30.00 












oH

H
 (22a) 













o

d

H

H

H

H
396.1385.1      80.030.0 












oH

H
 (22b) 

Trabea [38] obtained the following MB model for AL-Arish, AL-Tahrir, Marsa Matroh, 

Cairo, Al-Kharga and Aswan located in Egypt as: 











o

d

H

H

H

H
894.0924.0         (23) 

Maduekwe and Garba [39] developed the following HB models for Lagos and Zaria with 

the appropriate intervals as: 

For Zaria 













o

d

H

H

H

H
273.0009.1      18.0











oH

H
  (24a) 













o

d

H

H

H

H
136.1077.1      68.018.0 












oH

H
 (24b) 

For Lagos 













o

d

H

H

H

H
028.0002.1      20.0











oH

H
  (24c) 













o

d

H

H

H

H
369.1336.1      78.020.0 












oH

H
 (24d) 

Shaltout et al. [40] developed the following MB models for Cario and Aswan in Egypt. 

For Cario 
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











o

d

H

H

H

H
08.193.0         (25a) 

For Aswan 













o

d

H

H

H

H
16.101.1         (25b) 

El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 

For Matruh 













o

d

H

H

H

H
435.1299.1         (26a) 

For Al-Arish 













o

d

H

H

H

H
550.1377.1         (26b) 

For Rafah 

(26c) 

For Aswan 











o

d

H

H

H

H
339.0580.0         (26d) 

Burari [42] developed the following MB models for Bauchi as follows: 













o

d

H

H

H

H
804.0775.0         (27) 

Ugwuoke and Okeke [43] developed the following models for Nsukka as: 













o

d
H

H
H 1143.0137255.0         (28) 

Khalil and Shaffie [44] established the following HB models for Cario, Egypt as: 













o

d

H

H

H

H
517.6817.5         (29) 

Okundamiya et al. [45] established the following MB models for six Nigerian locations 

For Sokoto 













o

d

H

H

H

H
2566.10658.1         (30a) 

For Maiduguri 













o

d

H

H

H

H
2526.10600.1         (30b) 

For Abuja 













o

d

H

H

H

H
2461.10506.1         (30c) 

For Ikeja 













o

d

H

H

H

H
2461.10467.1         (30d) 













o

d

H

H

H

H
531.1257.1
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For Enugu  













o

d

H

H

H

H
2467.10454.1         (30e) 

For Benin City 













o

d

H

H

H

H
2419.10387.1         (30f) 

Nwokolo and Ogbulezie [10] developed the following MB models for all sky and clear sky 

in numerous stations in six tropical ecological zones in Nigeria. 

For Port Harcourt (All sky) 











o

d
H

H
H 50.13273.14         (31a) 

For Port Harcourt (Clear sky) 











o

d
H

H
H 922.16874.1         (31b) 

For Owerri (All sky) 











o

d
H

H
H 031.7814.10         (31c) 

For Owerri (Clear Sky) 











o

d
H

H
H 21.23400.5         (31d) 

For Ibadan (All sky) 











o

d
H

H
H 542.9059.12         (31e) 

For Ibadan (Clear Sky) 











o

d
H

H
H 902.264955.7        (31f) 

For Abuja (All sky) 











o

d
H

H
H 008.13076.14         (31g) 

For Abuja (clear sky) 











o

d
H

H
H 757.49705.35         (31h) 

For Maiduguri (All sky) 











o

d
H

H
H 256.19049.18         (31i) 

For Maiduguri (clear sky) 











o

d
H

H
H 136.45121.33         (31j) 

For Sokoto (All sky) 
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









o

d
H

H
H 404.20008.19         (31k) 

For Sokoto (Clear sky) 











o

d
H

H
H 1059.38579.7         (31L) 

 

4.1.2. Group 2 

Empirical models from this group are parameterized as the second-order 

polynomial function of the clearness index according to their functional forms and 

developing year. The functional forms are as follows: 
2
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Trabea [38] obtained the following MB model for AL-Arish, AL-Tahrir, Marsa Matroh, 

Cairo, Al-Kharga and Aswan located in Egypt as: 
2
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El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 

For Matruh 
2

439.15170.18914.4 

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      (34a) 

For Al-Arish 
2

778.14540.16138.4 






















oo

d

H

H

H

H

H

H
     (34b) 

For Rafah 
2

312.3652.5635.2 






















oo

d

H

H

H

H

H

H
      (34c) 

For Aswan 
2

459.2147.2945.10 






















oo

d

H

H

H

H

H

H
      (34d) 

Burari [42] developed the following MB models for Bauchi as follows: 
2

474.031.1908.0 






















oo

d

H

H

H

H

H

H
      (35) 

Okundamiya and Nzeako [46] developed the following MB models for selected cities in 

Nigeria 

For Abuja 
2

583.05902.08733.0 






















oo

d

H

H

H

H

H

H
      (36a) 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.2, 160-206. doi: 10.17737/tre.2017.3.2.0042 172 

 

For Benin City 
2

4755.0809.09467.0 






















oo

d

H

H

H

H

H

H
      (36b) 

For Katisna 
2

166.564.7031.3 






















oo

d

H

H

H

H

H

H
      (36c) 

Sanusi and Abisoye [47] proposed the following MB models for Lagos, Nigeria as: 
2

3199.02654.19676.0 






















oo

d

H

H

H

H

H

H
      (37) 

Okundamiya et al. [45] established the following MB models for six Nigerian locations 

For Sokoto 
2

1600.04433.11198.1 






















oo

d

H

H

H

H

H

H
      (38a) 

For Maiduguri 
2

0845.10103.07087.0 






















oo

d

H

H

H

H

H

H
     (38b) 

For Abuja 
2

5466.06674.08994.0 






















oo

d

H

H

H

H

H

H
     (38c) 

For Ikeja 
2

5340.07240.09225.0 






















oo

d

H

H

H

H

H

H
     (38d) 

For Enugu  
2

3753.08786.09571.0 






















oo

d

H

H

H

H

H

H
      (38e) 

For Benin City 
2

1983.00627.19994.0 






















oo

d

H

H

H

H

H

H
      (38f) 

Nwokolo and Ogbulezie [10] developed the following MB models for all sky and clear sky 

in several locations in six tropical ecological zones in Nigeria. 

For Port Harcourt (All Sky) 
2

195.0091.1011.1 






















oo

d

H

H

H

H

H

H
      (39a) 

For Port Harcourt (Clear Sky) 
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2

44.10642.12262.34 






















oo

d

H

H

H

H

H

H
      (39b) 

For Owerri (All Sky) 
2

257.0003.1987.0 






















oo

d

H

H

H

H

H

H
      (39c) 

For Owerri (Clear Sky) 
2

80.39749.4781.13 






















oo

d

H

H

H

H

H

H
      (39d) 

For Ibadan (All Sky) 
2

447.0825.0942.0 






















oo

d

H

H

H

H

H

H
      (39e) 

For Ibadan (Clear Sky) 
2

75.7377.7786.20 






















oo

d

H

H

H

H

H

H
      (39f) 

For Abuja (All Sky) 
2

195.0020.1981.0 






















oo

d

H

H

H

H

H

H
      (39g) 

For Abuja (Clear Sky) 
2

0.15355.17595.49 






















oo

d

H

H

H

H

H

H
      (39h) 

For Maiduguri (All Sky) 
2

456.0721.0907.0 






















oo

d

H

H

H

H

H

H
      (39i) 

For Maiduguri (Clear Sky) 
2

178.7805.9675.29 






















oo

d

H

H

H

H

H

H
      (39j) 

For Sokoto (All Sky) 
2

852.2750.4132.2 






















oo

d

H

H

H

H

H

H
      (39k) 

For Sokoto (Clear Sky) 
2

001.0082.1678.0 






















oo

d

H

H

H

H

H

H
      (39L) 

 

4.1.3. Group 3 
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Empirical models from this group are parameterized as the third-order polynomial 

function of the clearness index according to their functional forms and developing year. 

The functional forms are as follows: 
32



































ooo

d

H

H
d

H

H
c

H

H
ba

H

H
      (40) 

Said and Ibrahim [34] developed the following MB model for Cairo, Egypt as: 
32

383.0194.0279.0636.0 

































ooo

d

H

H

H

H

H

H

H

H
    (41) 

El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 

For Matruh 
32

38.46179.56492.5403.113 

































ooo

d

H

H

H

H

H

H

H

H
    (42a) 

For Rafah 
32

543.14519.3058.22140.6 

































ooo

d

H

H

H

H

H

H

H

H
    (42b) 

For Aswan 
32

42.24170.47275.30681.65 

































ooo

d

H

H

H

H

H

H

H

H
   (42c) 

Olopade and Sanusi [48] developed the following MB model for Ilorin as: 
32

848.2936.4154.1910.0 

































ooo

d

H

H

H

H

H

H

H

H
 7.01.0 












oH

H
 (43) 

Okundamiya et al. [45] established the following MB models for six Nigerian locations 

For Sokoto 
32

4009.5592.99082.61699.2 

































ooo

d

H

H

H

H

H

H

H

H
   (44a) 

For Maiduguri 
32

9520.367977.614344.353138.7 

































ooo

d

H

H

H

H

H

H

H

H
   (44b) 

For Abuja 
32

9301.129398.19346.117317.2 

































ooo

d

H

H

H

H

H

H

H

H
   (44c) 

For Ikeja 
32

90721.124150.188575.93663.2 

































ooo

d

H

H

H

H

H

H

H

H
   (44d) 

For Enugu  
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32

3774.147699.201174.115887.2 

































ooo

d

H

H

H

H

H

H

H

H
   (44e) 

For Benin City 
32

5605.150098.215426.103880.2 

































ooo

d

H

H

H

H

H

H

H

H
   (44f) 

 

4.1.4. Group 4 

Empirical models from this group are parameterized as the four-order polynomial 

function of the clearness index according to their functional forms and developing year. 

The functional forms are as follows: 
432














































oooo

d

H

H
e

H

H
d

H

H
c

H

H
ba

H

H
     (45) 

Bamiro [49] developed the following HB models for Nsukka as: 
432

3879.99514.114495.22727.00.1 












































oooo

d

H

H

H

H

H

H

H

H

H

H
715.0











oH

H
  

(46a) 
432

3879.98448.0555.22832.00.1 












































oooo

d

H

H

H

H

H

H

H

H

H

H
 722.0











oH

H

(46b) 

 

4.1.5 Group 5 

In this sub-class, exponential form of diffuse fraction was correlated with 

clearness index in forms: 










 oH
Hb

d a
H

H
exp          (47) 

Sanusi and Abisoye [47] proposed the following MB models for Lagos, Nigeria as: 

 










 oH
H

d

H

H 2.2

exp2313.1         (48) 

 

4.1.6 Group 6 

In this sub-class, Liu and Jordan type model was modified by correlating diffuse 

fraction with power form of clearness index in the form: 
b

o

d

H

H
a

H

H










          (49) 

Sanusi and Abisoye [47] proposed the following MB models for Lagos, Nigeria as: 
012.1

2.0















o

d

H

H

H

H
         (50) 
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4.2 Sunshine-Based Models 
Sunshine-based models are the most frequently employed model for predicting 

diffuse solar radiation in Nigeria and Egypt as a result of its availability and reliable 

measured data in most meteorological stations in Nigeria and Egypt. This radiometric 

model modified from Liu and Jordan [11] model have been applied by countless number 

of researchers for predicting the hourly, daily and monthly mean daily diffuse solar 

radiation on the horizontal surface for several stations within Nigeria and Egypt and beyond 

by employing meteorological parameters of the site of interest as stated in this class. Thus, 

the relation is given as: 

         (51) 

Where a and b are the empirical constants, S is the measure of sunshine duration and So is 

the daily maximum possible sunshine duration. 

 

4.2.1 Group 1 

Empirical models from this group are parameterized as the first-order polynomial 

function of the sunshine fraction according to their functional forms and developing year. 

The functional forms are as follows: 













o

d

S

S
ba

H

H
         (52) 













oo

d

S

S
ba

H

H
         (53) 

Said and Ibrahim [34] developed the following MB model for Cairo, Egypt as: 













o

d

S

S

H

H
59.079.0         (54) 

Maduekwe and Chendo [37] developed the following DB and MB models for Lagos. 

For DB 













oo

d

S

S

H

H
46.0012.0         (55a) 













o

d

S

S

H

H
58.0078.0         (55b) 

For MB 













o

d

S

S

H

H
39.082.0         (55c) 

Trabea [38] obtained the following MB model for AL-Arish, AL-Tahrir, Marsa Matroh, 

Cairo, Al-Kharga and Aswan located in Egypt as: 
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El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 

For Matruh 
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For Rafah 
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For Aswan 













o

d

S

S

H

H
618.0886.0         (57g) 













oo

d

S

S

H

H
453.0627.0         (57h) 

Khalil and Shaffie [44] established the following HB models for Cario, Egypt as: 
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4.2.2 Group 2 

Empirical models from this group are parameterized as the second-order 

polynomial function of the sunshine fraction according to their functional forms and 

developing year. The functional forms are as follows: 
2
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Said and Ibrahim [34] developed the following MB model for Cairo, Egypt as: 
2

083.00001.0252.0 


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
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Maduekwe and Chendo [37] developed the following DB and MB models for Lagos. 

For DB 
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For MB 
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Trabea [38] obtained the following MB model for AL-Arish, AL-Tahrir, Marsa Matroh, 

Cairo, Al-Kharga and Aswan located in Egypt as: 
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El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 

For Matruh 
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For Al-Arish 
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For Rafah 
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For Aswan 
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4.2.3 Group 3 

Empirical models from this group are parameterized as the third-order polynomial 

function of the sunshine fraction according to their functional forms and developing year. 

The functional forms are as follows: 
32
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El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 

For Matruh 
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For Al-Arish 
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For Rafah 
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For Aswan 
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Okundamiya et al. [45] established the following MB models for six Nigerian locations 

For Sokoto 
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For Abuja 
32

4702.23429.42775.21485.0 

































oooo

d

S

S

S

S

S

S

H

H
   (67c) 

For Ikeja 
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For Enugu  
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For Benin City 
32

4154.01159.00459.02015.0 

































oooo

d

S

S

S

S

S

S

H

H
   (67f) 

 

4.3 Cloud Cover-Based models 
Cloud cover as a climate variable is the fraction of the sky obscured by clouds when 

observed from a given locality. Cloud cover data are periodically obtained from 

meteorological stations or satellites-derived and are expressed in percent (%) of the 

maximum cloud amount. Cloud amount is mostly classified into several categories of 0 – 

24%, 25 – 49%, 50 – 74% and 75 – 100%. The implication is that zero percent implies no 

visible cloud in the sky while hundred percent cloud amount indicates no clear sky is visible. 

Researchers in the domain of renewable energy in the past have investigated and simulated 

regression computing models to relate cloud amount conditions and diffuse solar radiation 

owing to the fact that as diffuse fraction or diffuse coefficient increases, clouds cover 

increases as well. This is because of the absorption of water vapour’s waveband selective 

in the solar spectrum that is, in cloudy and humid conditions, the absorption of solar 

radiation in the infrared portion of the solar spectrum is enhanced whereas absorption in 
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the diffuse solar radiation waveband does not vary significantly as shown in the relations 

below. 

 

4.3.1. Group 1 

Empirical models from this group are parameterized as the first-order polynomial 

function of the diffuse fraction or diffuse coefficient with cloud cover (C) or cloudiness 

index according to their functional forms and developing year. The functional forms are as 

follows: 

 Cba
H

H d           (68) 
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H d
         (69) 
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

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
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C
ba

H

H

o

d          (70) 

Erusiafe and Chendo [50] developed HB model for Lagos as: 

 C
H

H d 316.10859.0          (71) 

Okundamiya et al. [45] established the following MB models for six Nigerian locations 

For Sokoto 

 C
H

H d 0439.01505.0          (72a) 

For Maiduguri 

 C
H

H d 0528.01202.0          (72b) 

For Abuja 

 C
H

H d 0614.01052.0          (72c) 

For Ikeja 

 C
H

H d 0706.00792.0          (72d) 

For Enugu  

 C
H

H d 0669.00888.0          (72e) 

For Benin City 

 C
H

H d 0759.00761.0          (72f) 

 
4.4 Monthly-Based Models 

Monthly-based models are applied for estimating diffuse solar radiation as a result 

of variation effects on diffuse solar radiation striking at ground level in a particular location 

due to the movement on the earth on its axis. Thus, the functional forms and models 

employed in Africa are introduced in this section.   

 

4.4.1 Group 1 

In this group, clearness index is corrected to month of the year (M) in the form:  
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     32
MdMcMbaHd         (73) 

Ugwuoke and Okeke [43] developed the following models for Nsukka as: 

     32
03918.08832.05095.62667.47 MMMHd      (74) 

 
4.5 Global Solar Radiation-Based models 

Global solar radiation-based models are employed by solar radiation researchers 

for predicting diffuse solar radiation as a result of their great importance and influence for 

determining the diffuse solar radiation striking a particular location at the top of the 

atmosphere and their comprehensive impact on the diffuse solar radiation on the horizontal 

surface on ground level. Thus, the functional forms and models employed in Africa are 

presented in this section.   

 

4.5.1 Group 1 

In this group, diffuse solar radiation is correlated to global solar radiation (H) in the 

form:  

   2HcHbaH d          (75) 

Ugwuoke and Okeke [43] developed the following models for Nsukka as: 

   29774.075992.1253439.62 HHHd       (76) 

 

4.6 Hybrid Parameter-based models  
As far as the input parameter for predicting diffuse solar radiation on the horizontal 

surface vary periodically with the local climate in a particular geographical location, it 

therefore implies that to accurately develop a model that can fit a locality, the solar energy 

researcher must test the local climate with various input parameters owing to the 

availability of the meteorological parameters at the disposal of the researcher. Several solar 

energy researchers in Nigeria and Egypt have observed that hybrid parameters-based 

models fit local climate more than one variable – sunshine-based, global solar radiation-

based and cloud cover – based commonly employed for predicting diffuse solar radiation. 

In this section, numerous hybrid parameter-based models are presented and classified 

based on their input parameters and developing year. 

 

4.6.1 Group 1 

In this group, sunshine duration and clearness index were incorporated with diffuse 

for estimating diffuse solar radiation in the forms: 
























ooo

d

S

S
c

H

H
ba

H

H
        (77) 

2



































oooo

d

S

S
d

S

S
c

H

H
ba

H

H
       (78) 

2
























ooo

d

S

S
c

H

H
ba

H

H
        (79) 
























oo

d

S

S
c

H

H
ba

H

H
        (80) 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.2, 160-206. doi: 10.17737/tre.2017.3.2.0042 183 

 

2



































ooo

d

S

S
d

S

S
c

H

H
ba

H

H
       (81) 

2
























oo

d

S

S
c

H

H
ba

H

H
        (82) 

Maduekwe and Chendo [37] developed the following DB and MB models for Lagos. 

For DB 
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Trabea [38] obtained the following MB model for AL-Arish, AL-Tahrir, Marsa Matroh, 

Cairo, Al-Kharga and Aswan located in Egypt as: 
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Khalil and Shaffie [44] established the following HB models for Cario, Egypt as: 
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4.6.2 Group 2 

In this group, cloud cover and clearness index were incorporated with diffuse for 

estimating diffuse solar radiation in the forms: 
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Okundamiya et al. [45] established the following MB models for six Nigerian locations 
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4.6.3 Group 3 

In this group, elevation and clearness index were incorporated with diffuse for 

estimating diffuse solar radiation in the forms: 
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Maduekwe and Chendo [37] proposed the following HB models for Lagos 
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Maduekwe and Garba [39] developed the following HB models for Lagos and Zaria with 

the appropriate intervals as: 
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4.6.4 Group 4 

In this group, elevation, atmospheric turbidity and clearness index were 

incorporated with diffuse for estimating diffuse solar radiation in the forms: 
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Maduekwe and Chendo [37] proposed the following HB models for Lagos 
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4.6.5 Group 5 

In this group, solar elevation and clearness index were incorporated with diffuse 

for estimating diffuse solar radiation in the form: 
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Maduekwe and Chendo [35] developed HB diffuse solar radiation for Lagos as: 
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4.6.6 Group 6 

In this group, solar elevation, turbidity coefficients and clearness index were 

incorporated with diffuse for estimating diffuse solar radiation in the forms: 
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Maduekwe and Chendo [35] developed HB diffuse solar radiation for Lagos as: 
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4.6.7 Group 7 

In this group, sunshine fraction, mean temperature and relative humidity were 

incorporated with diffuse for estimating diffuse solar radiation in the form: 
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Sambo and Doyle [51] established the following MB models for Zaria as: 
2
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4.6.8 Group 8 

In this group, clearness index, sunshine fraction, mean temperature and relative humidity 

were incorporated with diffuse for estimating diffuse solar radiation in the form: 
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Falayi et al. [52] applied a new combination of meteorological parameters to proposed 

eight MB models for some nominated locations in Nigeria. 

For Sokoto 
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For Maiduguri 
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For Port Harcourt 
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 RH
T

T

S

S

H

H

H

H

oo

d 0014.0079.0044.0851.0642.0
min

max 





























   (103e) 

For Yola 
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For Jos 
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5. Discussion  
 

The global sum of regression models reported by peers and researchers for 

predicting diffuse solar radiation in North-Western Africa is ever increasing and relatively 

high, which in turn makes it highly laborious to employ statistical indicators such as Root 

Mean Square Error (RMSE), Sum of the Square of Relative Error (SSRE), Relative 

Standard Error (RSE), Standard Deviation of the residual (SD), Mean Absolute Bias Error 

(MABE), Mean Absolute Percentage error (MAPE), coefficient of determination, 
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uncertainty at 95% (U95), Mean Bias Error (MBE), Mean Percentage Error (MPE), Nash 

Sutcliffe coefficient (NS), Index of Agreement (IG), Mean Absolute Error (MAE) and 

Global Performance Indicator (GPI) etc. to select the best approach for a particular site in 

a single research paper. Recently, Khorasanizadeh and Mohammad [53] classified 

numerous diffuse solar radiation models across the globe into four categories such as 

cleanness index based-models, sunshine based-model, cloud cover-based models and other 

meteorological parameter based-models. 

Sunshine-based models are frequently applied due to their global availability at 

most weathers stations in North-Western Africa. Cloud cover-based models can be 

employed in the absence of clearness index and sunshine-based models but are sensible to 

human biasing [54]. 

Clearness index based-models are the most frequently applied model for predicting 

diffuse solar radiation globally as a result of the availability of are reliable measured global 

solar radiation in most stations around the globe and extraterrestrial solar radiation can be 

calculated theoretically as given in equation (3). This model pioneered by Liu and Jordan 

[11] has been applied by several researchers for estimating diffuse solar radiation for 

several locations across the globe by determining the empirical constants by applying 

meteorological parameters of their chosen site of interest. Apart from Liu and Jordan [11], 

those fitted by Page [55] and Iqbal [56] seem to be universally applicable. However, 

models fitted by numerous researches in Africa [34, 37-39, 57-60] yielded better 

performance and high accuracy in the fitted sites as compared to reported models in 

literature that seem to be universally applicable. This result is in agreement with the report 

in most African countries [33, 43-44, 59, 61-64] confirming that diffuse solar radiation is 

dependent on the local climate and geographical information of a given site.  

Other meteorological parameter-based models are recorded to predict diffuse solar 

radiation with high precision but most of their input parameters are not really available at 

most sites of interest in North-Western Africa and across the globe. 

In this review, the researchers included two meteorological parameters often 

applied by one solar energy researcher to predicting solar radiation in Nigeria via: global 

solar radiation-based models and monthly mean based models. In general, one hundred and 

eighty-eight (188) theoretical models were reported with 33 functional forms and 20 groups 

(sub-class) in this review. Eighty three (83) models with the corresponding 8 functional 

forms and 6 groups were recorded from clearness index-based models representing 

44.14 %, 45models with the corresponding 6 functional forms and 3 groups resulting to 

23.93 % were applied for sunshine-based models; 7 models with 1 functional form and 1 

group amounting to 3.72 %, for cloud cover-based models; 1 model with 1 functional form 

and 1 group yielding to 0.53 % for extraterrestrial solar radiation-based models and 

monthly-based models; and 51 models with 16 functional functions and 8 groups resulting 

to 27.12 % for hybrid parameter-based models as presented in Fig. 8. 

Peers and researchers have shown that it is humanly impossible for now to 

introduce a set of input variables with a particular functional form for optimal prediction 

of diffuse solar radiation in Nigeria and Egypt or any other geographical environment 

across the globe because of its dependence on geographical information and local climate 

of the site [10, 39-40, 41, 45-46, 52, 57-59, 62-64]. To restate this, a brief review of the 

efforts of researchers in North-Western Africa to enhance the accuracy of prediction of 

diffuse solar radiation is presented in the following paragraphs. 

El-Sebaii and Trabea [41] employed sunshine-based model and clearness index-

based model for predictions of diffuse solar radiation on the horizontal surface for four 
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Egyptian locations. The selected locations include Matruth, Al-Arish, Rafah and Aswan to 

represent the weather conditions of the North and South of Egypt. The first, second and 

third order correlations between the diffuse fraction and clearness index produced better 

accurate results compared to the correlations between sunshine fraction and diffuse fraction 

or diffuse coefficients in the selected four locations as shown in Table 1. 

 
Table 1. Statistical indicators for Matruth, Ratah and Aswan El-Sebaii and Trabea [41] 

Stations Degree of 

Correlation 

Correlation 

between 

MBE RMSE MPE (%) 

Matruth First Hd/H and H/Ho 0.07 0.022 1.17 

 Second Hd/H and H/Ho 0.007 0.024 -1.05 

 Third Hd/H and H/Ho 0.006 0.020 -1.07 

 First Hd/H and S/So -0.001 0.003 -0.63 

 Second Hd/H and S/So 0.001 0.002 -0.38 

 Third Hd/H and S/So 0.001 0.002 -0.39 

 First Hd/Ho and S/So 0.003 0.007 -0.72 

 Second Hd/Ho and S/So 0.002 0.001 -0.40 

 Third Hd/Ho and S/So 0.002 0.001 -0.39 

Al-Arish First Hd/H and H/Ho -0.005 0.019 -1.27 

 Second Hd/H and H/Ho -0.005 0.019 -1.07 

 Third Hd/H and H/Ho Very poor fitting 

 First Hd/H and S/So 0.002 0.008 -1.26 

 Second Hd/H and S/So 0.001 0.002 -0.40 

 Third Hd/H and S/So 0.005 0.018 -0.83 

 First Hd/Ho and S/So -0.004 0.015 -1.08 

 Second Hd/Ho and S/So -0.003 0.009 -0.73 

 Third Hd/Ho and S/So 0.003 0.009 -0.54 

Rafah First Hd/H and H/Ho -0.003 0.010 -0.57 

 Second Hd/H and H/Ho -0.003 0.010 -0.38 

 Third Hd/H and H/Ho -0.003 0.011 -0.55 

 First Hd/H and S/So -0.002 0.001 -0.36 

 Second Hd/H and S/So 0.003 0.012 -0.16 

 Third Hd/H and S/So 0.005 0.016 0.46 

 First Hd/Ho and S/So -0.004 0.014 -0.16 

 Second Hd/Ho and S/So 0.001 0.001 -0.12 

 Third Hd/Ho and S/So -0.001 0.001 -0.09 

Aswan First Hd/H and H/Ho -0.003 0.014 -1.07 

 Second Hd/H and H/Ho -0.005 0.012 -0.82 

 Third Hd/H and H/Ho -0.004 0.015 -0.93 

 First Hd/H and S/So -0.002 0.008 -0.43 

 Second Hd/H and S/So -0.003 0.005 -0.40 

 Third Hd/H and S/So -0.003 0.0114 -0.38 

 First Hd/Ho and S/So -0.001 0.005 -0.27 

 Second Hd/Ho and S/So -0.002 0.005 -0.25 

 Third Hd/Ho and S/So -0.002 0.008   -0.23 

 

Sanusi and Abisoye [47] applied Page model (first order polynomial equation), Liu 

and Jordan model (third order polynomial equation), second order polynomial, power and 

exponential models to develop an empirical model for Lagos using eleven years (1999 – 

2009) data. The performances for the models were tested using statistical indicators such 

as Mean Percentage Error (MPE), Mean Bias Error (MBE), Root Mean Square Error 

(RMSE) and coefficient determination (R2). The results revealed that the second-order 

quadratic model yielded reasonably high degree of precision in the forecast of monthly 
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mean daily diffuse solar radiation in the horizontal surfaces as shown in Table 2. These 

results were in agreement with the findings in literature [41, 45-46, 57, 64]. 

 
Table 2. Statistical indication for the models. Sanusi and Abisoye [47] 

Models MPE 

(%) 

RMSE 

(MJm-2day-1) 

MBE 

(MJm-2day-1) 

Coefficient of 

Determination (R2) 

Page (1961) 

(First order 

polynomial) 

4.800 0.129 0.104 0.982 

 

Liu and Jordan 

(1960) 

(Third order 

polynomial) 

 

9.336 

 

0.201 

 

-0.194 

 

0.978 

 

Second-order 

polynomial 

 

0.010 

 

0.048 

 

0.001 

 

0.982 

 

Exponential 

 

0.012 

 

0.051 

 

-0.001 

 

0.980 

 

Power 

 

0.168 

 

0.065 

 

-0.006 

 

0.971 

 

Okundamiya et al. [45] calibrated Okundaniya and Nzeako [46] model for 

numerous numbers of sites, with varying meteorology covering the entire geographical 

zones in Nigeria. The authors tested the performance of the newly calibrated multivariable 

regression model, which uses clearness index and cloud cover as inputs for estimating the 

monthly daily mean diffuse solar radiation, on a horizontal surface in Nigeria with five 

existing empirical models, which utilizes the clearness index, cloud cover, relative 

sunshine duration or the combination of two of these variables as inputs [11, 46, 55, 65-

66]. The results revealed that the calibrated multivariable regression model performed 

better than the other five existing models with a relative percentage error of +6% over 

Nigeria as presented in Table 3. These results justify the recommendation made by Munner 

and Munawwar [67] that the inclusion of cloud cover improves the prediction accuracy of 

diffuse solar radiation on the horizontal surfaces. This result is also comparable to the 

report of numerous researchers in Africa [35, 37, 39, 42, 44, 60, 68-69]. 
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Table 3. Validation results of six studies diffuse radiation model for Nigeria based on 22 years’ 
data sets Okundamiya et al. [45] 

Sites Error 

Terms 

(units) 

Page 

[55] 

Liu and 

Jordan 

[11] 

Butt et 

al. [65] 

Karakoti 

et al. [66] 

Okundamiya 

and 

Nzeako[46] 

Okundamiya 

et al. [45] 

Sokoto r 0.9497 0.9461 0.8446 0.8173 0.9521 0.9967 

RMSE 

(MJ/m2) 

0.4049 0.4219 0.8951 1.0711 0.3966 0.1061 

MBE 

(MJ/m2) 

-0.1652 -0.1832 0.5307 0.7989 -0.1575 -0.0185 

MABE 

(MJ/m2) 

 

0.3261 0.3434 0.6515 0.9239 0.3213 0.0793 

Maiduguri r 0.9470 0.8594 0.9085 0.9246 0.9284 0.9950 

RMSE 

(MJ/m2) 

0.3976 0.6884 0.7798 0.4401 0.4556 0.1981 

MBE 

(MJ/m2) 

-0.1506 -0.2523 -0.0831 0.0467 -0.1606 -0.1592 

MABE 

(MJ/m2) 

0.3269 0.5246 0.7136 0.3557 0.3629 0.1623 

 

 

Abuja r 0.9930 0.9951 0.9175 0.9295 0.9937 0.9980 

RMSE 

(MJ/m2) 

0.1727 0.2427 0.6918 0.5350 0.1802 0.1109 

MBE 

(MJ/m2) 

-0.0744 -0.1414 0.1298 0.1363 -0.0924 -0.0461 

MABE 

(MJ/m2) 

0.1182 0.1836 0.5151 0.4277 0.1461 0.1000 

 

 

Ikeja r 0.9848 0.9933 0.9307 0.9333 0.9875 0.9951 

RMSE 

(MJ/m2) 

0.1615 0.1857 0.7551 0.3119 0.1605 0.1098 

MBE 

(MJ/m2) 

0.0370 0.0662 -0.6056 -0.1614 0.0573 -0.0849 

MABE 

(MJ/m2) 

0.1395 0.1519 0.6550 0.2568 0.1392 0.0913 

 

 

Enugu r 0.9887 0.9890 0.9032 0.8767 0.9887 0.9957 

RMSE 

(MJ/m2) 

0.1348 0.1282 0.5029 0.4102 0.1289 0.0778 

MBE 

(MJ/m2) 

-0.0220 -0.0365 0.0973 -0.0216 -0.0237 -0.0030 

MABE 

(MJ/m2) 

0.1137 0.1018 0.4208 0.3241 0.1113 0.0663 

 

 

Benin-

City 

r 0.9869 0.9849 0.9508 0.9360 0.9865 0.9935 

RMSE 

(MJ/m2) 

0.1537 0.1471 0.5365 0.3942 0.1481 0.1129 

MBE 

(MJ/m2) 

-0.0599 -0.0781 -0.0262 0.0843 -0.0624 -0.0633 

MABE 

(MJ/m2) 

0.1197 0.1170 0.4814 0.2932 0.1162 0.0955 

 

From the report of existing studies, it is clear that from above findings that 

introducing an appropriate set of input for diffuse solar radiation prediction in any 

geographical site and climatic condition is not a viable work. This could be attributed to 
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numerous number of required inputs variables, inaccuracies associated with irrelevant 

variables, difficulty in explaining the model, time consuming task for assembling the 

needed variable and finally its inability to accept many input variables. 

For instant, the Artificial Intelligence (AI) and Computation Intelligence (CI) 

techniques such as Artificial Neural Network (ANN), machine learning, genetic 

programming, support vector machine, Adaptive Neural Fuzzy Inference System (ANFIS) 

and hybrid networks have been widely applied in numerous scientific areas for modeling, 

estimation, prediction, forecasting and optimization such as Support Vector Machine 

(SVM) [70-74]; Hybrid network [17, 70-71]; genetic programming [16, 75], Adaptive 

neural fuzzy inference system [73, 75-77]; and an Automatic Relevance Determination 

(ARD) methodology Bosch et al. [78];can be adopted for predicting diffuse solar radiation 

in North-Western Africa. Various applications of artificial neural networks are reported in 

numerous fields such defense, image impression, mathematics, character recognition, 

aerospace, neurology, meteorology, economic, electronic nose engineering, machine and 

psychology (Nwokolo and Ogbulezie [9]. These methods have been adopted for prediction 

and empirical analysis in market trend forecasting, solar and weather. 

Boland and Scott [18] determined the comparison between the empirical models 

and a fuzzy logic based model to estimate hourly diffuse solar radiation in some locations 

of Australia. The results revealed that coefficients of determination recorded for the fuzzy 

logic model are comparable, and in most cases more suitable than those of empirical 

models. 

Jiang [19] developed a model based Artificial Neural Network (ANN) model to 

predict monthly mean daily diffuse solar radiation in China. The researcher employed 

measured data of eight typical stations for training and data of one station for testing. He 

proceeded by comparing the estimation of ANN model with those of regression models. 

According to the author, the results revealed that ANN model compared to the regression 

model offer is more suitable for estimating diffuse solar radiation in the eight stations 

studied.  

Elminir et al. [13] estimated hourly and daily diffuse radiation of Egypt by applying 

neutral network (ANN) and compared the result with two linear empirical models. The 

performances of the models were determined on the basis of the Mean Bias Error (MBE), 

Root Mean Square Error (RMSE) and correlation coefficient (r) between the estimated and 

measured data. The results reveal that ANN model is more suitable to predict diffuse 

radiation in hourly and daily scales than empirical models. 

Alam et al. [20] employed Artificial Neural Network (ANN) to estimate monthly 

mean hourly and daily diffuse radiation in ten Indian stations with diverse weather 

conditions. They applied different parameter as inputs and used the feedforward back-

propapgation algorithm to train the ANN model. They discovered that that ANN model 

compared to the regression model offer is more suitable for estimating diffuse solar 

radiation in the ten stations studied.  

Lazarevska and Trpovski [21] applied neuro fuzzy inference system with a 

relevance vector machine mechanism for estimation of diffuse solar radiation. They used 

global solar radiation and solar elevation angle as input parameters to estimate the diffuse 

solar radiation. Their result revealed that the new developed technique is really effective 

and remarkably outperformed the existing regression models. 

Soares et al. [14] stimulated a technique based upon artificial neural network (MLP-

ANN) method for estimation of hourly diffuse solar radiation in the city of Sao Paulo, 

Brazil. The result revealed that the estimated diffuse solar radiation values obtained from 
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MLP-ANN technique are more suitable compared to those of empirical models as shown 

in Table 4 and Fig. 3-4. 

 
Table 4. Model Statistics Soares et al. [14] 

 Sample size MBE (MJm-2) RMSE (MJm-2) ts tc 

Correlation model 

 form Oliveira et al. 

(2002) 

15258 -0.0169 0.193 11.16 1.96 

MLP neural-network 

- Experiment I 

2928 0.0116 0.121 5.19 1.96 

MLP neural-network 

- Experiment II 

2928 0.0291 0.152 10.63 1.96 

MLP neural-network 

- Experiment III 

2928 0.0110 0.155 3.86 1.96 

tc is given at a level of confidence of 95 %. 

 

 
 
Fig. 3. Dispersion diagram between the hourly values of diffuse radiation observed and (a) using 
MLP based on 2928 pairs of points and (b) using the correlation model based on 15,258 pairs of 
points (from Oliveira et al. [79]). Dashed line corresponds to diagonal and continuous line 
corresponds to curve fitted by least squares method. The corresponding linear equations are 
indicated in the bottom of each diagram and r is the correlation coefficient Soares et al. [14]. 

 

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.2, 160-206. doi: 10.17737/tre.2017.3.2.0042 194 

 

 

 
 
Fig. 4. KT scatter diagram for hourly values of solar radiation. (a) KDF obtained using MLP, based 
on2928 pairs of points and (b) KDF observed in São Paulo City, based on 15,258 pairs of points 
(from Oliveira et al. [79]). The continuous and dashed lines display the fourth-degree polynomial 
curves obtained, respectively, from MLP and Lawrence (1991); Soares et al. [14]. 
 

Lou et al. [15] employed machine learning logarithm to estimate the horizontal sky-

diffuse irradiance and conduct sensitivity analysis for the meteorological parameters. Apart 

from the clearness index, the authors discovered that predictors including solar attitude, air 

temperature, cloud cover and visibility are more suitable for estimating diffuse solar 

radiation component. The Mean Absolute Error (MAE) of the logistic regression using the 

aforementioned predictors was less than 21.5w/m3 and 30w/m3 for Hong Kong and Denver, 

USA as presented in Table 5. 
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Table 5. Results of Logistic Regression Lou et al. [15] 

Regression Predictors Parameters Performance 

  f0 f1 f2 f3 f4 f5 Data of 2008-2012 Data of 2013 

        MAE 

(W/m2) 

R2 MAE 

(W/m2) 

R2 

1 kt -4.61 7.78 0 0 0 0 29.2 0.850 27.5 0.851 

2 kt, µ -4.42 8.75 -1.16 .0 0 0 26.3 0.867 26.2 0.851 

3 kt, µ, Ta -4.37 8.85 -1.38 0.12 0 0 25.7 0.875 25.2 0.866 

4 kt µ, Ta, Cld -3.4 7.4 0.8 0.2 -1 0 23.2 0.400 21.8 0.901 

5 kt, µ, Ta, Cld, VIS -3.3 7.14 0.68 0.13 -1.08 0.18 21.5 0.914 20.0 0.916 

Where Kt is clearness index, µ is the sine of solar attitude angle (sin ( s )), Ta is air temperature, Cld is the cloud amount, VIS is the visibility               

 

Feng et al. [12] proposed four artificial intelligence models including the Extreme 

Learning Machines (ELM), back propagation neural networks optimized by Genetic 

Algorithm (GANN) Random Forest (RF), and Generalized Regression Neural Networks 

(GRNN) for estimating daily diffuse solar radiation at two meteorological stations of North 

China Plain. Daily global solar radiation and sunshine duration were selected as model 

inputs to train the models. The proposed models were compared with the empirical Iqbal 

model to test their performance employing measured daily diffuse solar radiation data. The 

result revealed that the ELM, GANN, RF, and GRNN models all performed much better 

than the empirical Iqbal model for estimating daily diffuse solar radiation. On the whole, 

all the models under-estimated daily diffuse solar radiation for both stations with average 

relative error ranging from 5.8% to 5.4% for all models and 19.1% for Iqbal model in 

Beijing; 5.9% to 4.3% and 26.9% in Zhengzhou respectively. Generally, GANN model 

recorded the best accuracy and ELM ranked the next, followed by RF and GRNN model.  

The ELM model reported a slightly poorer performance but the highest computation speed, 

and both GANN and ELM could be highly recommended for estimating daily diffuse solar 

radiation in North China Plain as presented in Table 6 and Fig. 5. 

 
Table 6: Statistics Performances of different models in estimation daily diffuse solar radiation for 
each Station Feng et al. [12] 

Station  Model RRMSE (%) MAE (MJm-2day-1) NS 

Beijing 

 

 

 

 

 

Zhengzhou 

ELM 17.3 0.760 0.908 

GANN 17.1 0.748 0.909 

RF 18.3 0.841 0.897 

GRNN 19.2 0.951 0.880 

Iqbal 32.9 0.162 0.666 

 

ELM 13.4 0.762 0.924 

GANN 13.4 0.749 0.928 

RF 15.0 0.862 0.910 

GRNN 16.5 0.997 0.892 

Iqbal 35.8 2.359 0.491 
RRMSE is the relative root mean square error, MAE is the mean absolute error and NS is Nash Sutcliffe coefficient 

 

Mohammadi et al. [16] applied Adaptive Neuro-Fuzzy Influence System (ANFIS) 

to select the most influential parameters for prediction of daily horizontal diffuse solar 

radiation (Hd). Ten significant parameters are selected to analyze their impact on estimation 

Hd in the city of Kerman, situated in the south central part of Iran. For this purpose, a 

thorough parameter selection was conducted for the cases with 1, 2 and 3 inputs to 

introduce the best and worst inputs combinations. For the cases with 2 and 3 inputs, 45 and 
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120 possible combinations of inputs are considered, respectively. For the cases with one 

input variable, the results revealed that sunshine duration(s) is the most influential variable. 

Moreover, combination of H, Ho and S are the best sets among the cases with 2 and 3 

inputs variables respectively. The observed result revealed that combinations of either 2 or 

3 most relevant inputs would be appropriate to provide a balance between the simplicity 

and high precision. Predictions using the most influential set of 2 and 3 inputs revealed that 

for the ANFIS model with two inputs variables, the mean absolute percentage error, mean 

absolute bias error, root mean square error and correlation coefficient are 23.0579%, 

1.0176 MJ/m2, 1.3052 MJ/m2 and 0.8247, respectively, and for the ANFIS model with 

three inputs they are 18.3143%, 0.8134 MJ/m2, 1.1036MJ/m2 and 0.8783, respectively as 

presented in Table 7 and Fig. 6. 

 
Table 7. Five most and least relevant combination of inputs and ANFIS regression error (RMSE in 
MJ/m2) achieved for training and checking phases Mohammadi et al. [16]. 

Combination No. Combination of Inputs RMSE for Training RMSE for Checking 

Combination 1 H, Ho, S (Ist best model) 1.2417 1.2889 

Combination 9 H, S, and So (2nd best model) 1.2523 1.2968 

Combination 15 H, S, and (3rd best model) 1.2532 1.2971 

Combination 5 H, Ho and Targ (4th best model) 1.2820 1.2925 

Combination 3 H, Ho, and Tmin (5th best model) 1.2902 1.3222 

Combination 28 H, Tmax and RH (1st worst model) 1.8916 1.9339 

Combination 90 So, Tmin and S (2nd worst model) 1.8671 1.8673 

Combination 97 So, Tavg and S (3rd worst model) 1.8571 1.8643 

Combination 94 So, Tmax and S (4th worst model) 1.8395 1.8585 

Combination 117 Tava, RH and Vp (5th worst model) 1.8231 1.8890 
Where S is the sunshine duration, H global solar radiation,   solar declination, Ho extraterrestrial solar 

radiation So maximum possible sunshine duration Vp water vapour pressure, RH relative humidity, Tavg 

average air temperature, Tmin minimum temperature, Tmaxmaximum temperature. 
 

During the last decades, numerous renewable energy researchers have carried out 

number of studies for estimation of diffuse solar radiation mainly by developing different 

soft computing techniques and regression models, but there is still a main challenge 

regarding the development of powerful hybrid soft computing techniques and models with 

high level of reliability and adaptability to achieve accurate predictions just as hybrid 

regression models offer more suitable prediction compared to one parameter-based models. 

Lately, coupling different approaches of soft computing to build a hybrid model has 

received a considerable attention in the renewable energy area. On the whole, it is possible 

to take the advantage of specific nature of different soft computing techniques for 

enhancing the precision. In fact, the particular features of different soft computing 

techniques are able to capture different patterns in the data series. Recent findings from 

literature have revealed that hybrid soft computing approaches would be particularly 

effective and promising for different applications of renewable energy to enhance the 

estimation accuracy and reliability. 

For instance, in a study to determine diffuse solar radiation in the city of Kerman, 

Shamshirband et al. [81] employed a couple model by integrating the support vector 

machine (SVM) with Wavelet Transform (WT) algorithm for estimating daily horizontal 

diffuse solar radiation. In order to test the validity of the coupled SVM-WT method, daily 

measured global and diffuse solar radiation data sets for city of Kerman located in sunny 

part of Iran are utilized. Using the developed SVM-WT model diffuse fraction is related 
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with clearness index as the only input variable. The performance of SVM-WT model is 

calculated against radial basis function SVM (SVM-RBF), Artificial Neural Network 

(ANN) and a third order empirical model established by the researchers. The results 

revealed that the estimated diffuse solar radiation values by the SVM-WT model agreed 

favourably with measured data. The statistical Indicators revealed that the mean absolute 

bias error, root mean square error and correlation coefficient are 0.5757 MJm-2, 

0.6940MJ/m2 and 0.9631, respectively. While for the SVM-RBF ranked next the attained 

values are 1.0877 MJm-2, 1.2583MJ/m2 and 0.8599, respectively. In a nut shell, the study 

revealed that SVM-WT is an efficient method which enjoys much higher precision than 

other models, especially the third order empirical model as shown in Table 8 and Fig. 7. 

 
Table 8. The attained MABE, RMSE and R for all models for the testing data set Shamshirband et 
al. [81]. 

Model MABE (MJ/m2) RMSE (MJ/m2) R 

SVM – WT 0.5757 0.6940 0.9631 

SVM – REF 1.0877 1.2583 0.8599 

ANN 1.1267 1.3183 0.8392 

Empirical Model 1.2171 1.4548 0.8156 

 

The regression models for predicting diffuse solar radiation were examine 

extensively and its performances were compared with the soft computing approach in 

North-Western Africa and across the globe. This review paper distinctively provided 

reliable outcome for various approaches (empirical and soft computing model). The 

regression models regarded as capable and convenient for hourly, daily and monthly 

estimation are clearness index-based models, sunshine-base models, cloud cover-based 

models, extraterrestrial solar radiation-based models, monthly-based models and hybrid 

parameter-based model. A number of important aspects identified in literature as well as 

shortcomings with solutions recommended in the present study are summed up 

subsequently. 

In the light of presented review literature, it seems that a number of sites do not 

have meteorological stations, whereby empirical and soft computing models should be 

developed employing attitude, latitude, longitude, solar declination angle, and 

extraterrestrial solar radiation inputs for precise measurement as they require no 

experimental measurement to obtain their values. Soft computing models have newly been 

initiated for predicting renewable energy resources, but additional work is needed to 

enhance solar radiation prediction accuracy pertaining to various seasons, climate change 

and poor weather, on different surfaces, (e.g., tiled) Nwokolo and Ogbulezie [9]. Hence, 

according to the authors, the greatest advantages may be needed from natural resources to 

supply increasingly reliable efficient solar systems in the market. 
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Fig. 5. Scatter plots of the measured versus the estimated daily diffuse solar radiation at (a) 
Beijing and (b) Zhengzhou of North China Plain by Feng et al. [12]. 
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Fig. 6. Performance of the ANFIS model to predict Hd using optimal combination of 3 inputs for: 
(a) training dataset and (b) checking dataset Mohammadi et al. [16]. 

 

 
Fig. 7. Scatter plots of them ensured diffuse solar radiation versus predictions of (a) SVM–WT, 
(b) SVM–RBF, (c) ANN and (d) empirical model for the testing data set (Shamshirband et al. [81]) 
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Fig. 8. Classification of diffuse solar radiation and its associated number of groups, functional forms, and models in Nigeria and Egypt 
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5. Concluding Remarks 
 

The regression models for predicting diffuse solar radiation were investigated 

extensively and its performances were compared with the soft computing approach in 

North-Western Africa and across the globe. This review paper distinctively provided 

reliable outcome for various approaches (regression and soft computing model). The 

regression models are regarded as capable and convenient for hourly, daily and monthly 

estimation are clearness index-based models, sunshine-base models, cloud cover-based 

models, extraterrestrial solar radiation-based models, monthly-based models and hybrid 

parameter-based model. Owing to the inability of regression models to accept many input 

parameters but rather strengthened in its reliability, a number studies in literature revealed 

that soft computing models are more suitable for predicting diffuse solar radiation in 

several locations distributed across the globe. Thus, applying soft computing and even 

power hybrid soft computing models will culminate in the greatest understanding of 

availability diffuse solar radiation in a particular region or location that is needful for 

supplying increasingly reliable efficient solar systems in the market. 
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