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Enriching the fault identification methodology of the first paper,  
this second paper investigates the performance of the identification of 
main distribution line faults when broadband over power lines (BPL) 
networks are deployed. The main issue that is concerned in this paper is 
the impact of measurement differences on the fault identification process 
performance. 
The main contribution of this paper, which is focused on the identification 
of the main distribution line faults when measurement differences occur, 
is the application of the L1 piecewise monotonic data approximation 
(l1PMA) in order to cope with the measurement differences that influence 
the reflection coefficients derived from the extended TM2 method. 
Through the L1PMA application, measurement differences are 
confronted in order to prevent the trigger of a false alarm about the 
existence of a main distribution line fault. The combined operation of the 
extended TM2 method and L1PMA concludes the introductory phase 
(fault identification) of the main line fault localization methodology 
(MLFLM). 
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1. Introduction 
 The need for more intelligent, stable and autonomous transmission and 

distribution power grids is met by the deployment of the smart grid package, which 

comprises both hardware and software proposals, across the entire vintage power grid 

infrastructure [1]-[4]. As concerns the smart grid hardware, broadband over power lines 

(BPL) networks have rightfully attracted the attention among the available wired and 

wireless communications media, which anyway may interoperate in the smart grid 

environment [5]-[7]. A major advantage of the BPL networks is the fact that their 

deployment is based on the already existent power grid equipment devoted to transfer and 

deliver power. As concerns the smart grid software, a myriad of smart grid applications 
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can be supported by all the available wired and wireless communication solutions of 

smart grid, including BPL technology, since the traditional power grid can be further 

treated as an integrated intelligent IP-based network environment [2], [8]-[10]. 

As concerns the determination of the channel attenuation and reflection 

coefficient of overhead medium-voltage (OV MV) BPL networks, the well-established 

hybrid method, which consists of [6], [10]-[26]: (i) a bottom-up approach that is based on 

the multiconductor transmission line (MTL) theory, eigenvalue decomposition (EVD) 

and singular value decomposition (SVD); and (ii) a top-down approach that is denoted as 

TM2 method and is based on the concatenation of multidimensional chain scattering 

matrices. In accordance with [1], original TM2 method gives as outputs the 

corresponding transfer function and reflection coefficients for the normal operation of 

OV MV BPL networks whereas extended TM2 method gives as output the reflection 

coefficients for the operation where a main distribution line fault occurs (fault operation). 

In fact, the main distribution line fault subcategory forms the only fault case which 

cannot be treated by the available tools for identifying and localizing faults and 

instabilities, say Topology Identification Methodology (TIM) and Fault and Instability 

Identification Methodology (FIIM) of [3], [4]. The identification of main distribution line 

faults is going to be treated by the approach of reflection coefficients of the extended 

TM2 method, which has initially been presented in [1]. As presented in [1],  

the comparison of the reflection coefficients between the normal operation, as given by 

the original TM2 method, and the fault operation, as determined by the extended TM2 

method, defines the existence of main distribution line faults. 

 As already been mentioned in [3], [4], [6], [10], [26], measurement differences 

between the experimental and theoretical results occur during the transfer function 

determination of OV MV BPL topologies because of a number of practical reasons and 

“real-life” conditions. Similar measurement differences also occur during the 

determination of reflection coefficients. Following the same methodology to counteract 

the measurement differences of reflection coefficients with those of transfer functions, 

piecewise monotonic data approximations (PMAs), such as L1PMA, L2WPMA and 

L2CXCV, are also applied to the reflection coefficient measurements in order to restore 

the theoretical reflection coefficient [3], [4], [6], [10], [26]. Among the available PMAs 

that have been applied to BPL networks, L1PMA, which has been thoroughly analyzed 

and assessed in [3], [26], is selected to be applied to the restoration of theoretical values 

of reflection coefficients. In this paper, the performance of L1PMA is assessed when 

various intensities of measurement differences are considered regardless of the examined 

OV MV BPL topology and the nature of the terminal load. Synoptically, the primary 

objective of this paper is to identify the main distribution line faults even if measurement 

differences occur while the fault alarm can be prevented due to the measurement 

differences.  

The rest of this paper is organized as follows: In Sec.II, the findings of [1] that are 

used in this paper are briefly outlined. In Sec.III, a brief presentation of the measurement 

differences in BPL networks and L1PMA is given. Also, the suitable performance 

metrics for assessing the mitigation against measurement differences and for identifying a 

main distribution line fault are demonstrated. Sec.IV discusses the simulations of various 

OV MV BPL networks intending to mark out the mitigation performance of L1PMA 

against measurement differences during the main distribution line fault identification. 

Sec.V concludes this paper. 
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2. Brief Presentation of the OV MV MTL Configurations,  
OV MV BPL Topologies, Hybrid Method and the Main Distribution Line 
Faults 
 In accordance with [1], the OV MV MTL configuration, which is used in these 

three papers, is presented in Fig. 1(a) of [26] while its structure properties concerning the 

number of phase lines, the phase line spacings and the configuration heights are reported 

in [12], [13], [19], [21], [23], [27]-[29]. As the ground properties are considered, the 

impact of imperfect ground on broadband signal propagation and transmission via OV 

MV MTL configurations is analyzed in [12], [13], [19], [21], [23], [30]-[32]. 

 According to [1], OV MV BPL networks are divided into cascaded  

OV MV BPL topologies. These OV MV BPL topologies are characterized by average 

path lengths of the order of 1000m which are bounded by BPL repeaters. With reference 

to Fig. 1(a) of [1], a typical OV MV BPL topology is presented while four indicative OV 

MV BPL topologies of average path length are defined and examined in these three 

papers. The topological specifications of the four indicative OV MV BPL topologies are 

detailed in [1] in order to describe respective typical urban, suburban, rural and “LOS” 

cases. Certain assumptions for the circuital parameters of OV MV BPL topologies, which 

are required by the hybrid method, are also given in [1]. 

 Similarly to [1], [11]-[25], [31]-[33], the well-established hybrid method is 

applied in these three papers. More analytically, the hybrid method consists of:  

(i) a bottom-up approach that is based on the MTL theory, EVD and SVD decomposition; 

and (ii) a top-down approach that further comprises either the original TM2 method for 

the normal operation or the extended TM2 method for the main distribution line fault 

operation. The output of the hybrid method, which is the EVD modal reflection 

coefficient matrix m

inΓ , is further processed by the coupling scheme module that 

determines the practical way of the BPL signal injection into OV MV lines. In the case of 

Wire-to-Ground (WtG) coupling schemes, which are examined in these papers, the WtG 

coupling reflection coefficient 
sWtG

 is determined by [1] 

    WtG1

V

m

inV

TWtGWtGs

CTΓTC  
               (2) 

where WtGC  is the coupling column vector and VT  is a matrix that depends on the 

frequency, the OV MV MTL configuration and the physical properties of the cables. 

 Already been mentioned in [1], critical problematic conditions can occur across 

the distribution power grid during its continuous normal operation. These problematic 

conditions differ from the measurement differences and can be divided into two 

categories, namely: faults and instabilities [3]-[6], [10]. Main distribution line faults, 

which are examined in these three papers, define a subcategory of the fault operation and 

describe the condition where a main distribution line is interrupted due to physical or 

human reasons [5]. Depending on the location of the conductors of the main distribution 

lines after the fault, main distribution line faults can be assumed to behave as either short- 

or open-circuit terminal loads whether the lines lie in the air or on the ground, 

respectively. 
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3. Measurement Differences, Presentation of L1PMA and  
Performance Metric 
 Apart from the faults and instabilities that cause critical damages to the 

transmission and distribution power grid infrastructure, a set of practical reasons and 

“real-life” conditions create significant differences between experimental measurements 

and theoretical results during the various determinations relating with the BPL networks. 

In accordance with [6], the set of measurement difference causes can be grouped into six 

categories, namely: (i) Isolation difficulties of specific MTL parameters in time- and 

frequency-domain; (ii) Low accuracy and sensitivity of the used equipment during 

measurements; (iii) Cross-talk and resonant phenomena due to the parasitic capacitances 

and inductances of lines; (iv) The weakness of including specific wiring and grounding 

practices; (v) Practical impedance deviations of lines, branches, terminations and 

transmitting/receiving ends; and (vi) The isolation lack of the noise effect during the 

transfer function computations.  

 The acquired PMA experience in the case of BPL coupling transfer functions 

across transmission and distribution power grids is here extended in order to cope with 

the measurement differences that may be present during the measurement of reflection 

coefficients. In accordance with [3]-[6], [10], [26], PMAs are going to exploit their 

piecewise monotonicity property by decomposing the reflection coefficient data into 

separate monotonous data sections between adjacent turning points (primary extrema). 

Then, PMAs separately handle the monotonous sections by proposing suitable regression 

approximations. Similarly to the coupling transfer function case, L1PMA software is 

modified in order to receive as inputs the measured OV MV BPL reflection coefficient 

data (i.e., either from the original TM2 method or the extended TM2 method),  

the measurement frequencies and the number of monotonic sections (i.e., either user- or 

computer-defined) and give as outputs the optimal primary extrema and the best fit of the 

measured OV MV BPL reflection coefficient data. In mathematical terms and with 

reference to eq. (2), the measured OV MV BPL reflection coefficient 
sWtG  for given 

WtGs coupling scheme is determined by 

     iii feff 
ss WtGWtG

, i=1,…,u                        (3) 

where fi, i=1,…,u denotes the measurement frequency, e(fi) synopsizes the total 

measurement difference due to the aforementioned six categories and u is the number of 

subchannels in the examined frequency range. 

Generalizing eq. (3), the measured OV MV BPL reflection coefficient column 

vector 
WtG
Γ  is then determined by 

        TWtGWtG

1

WtGWtGWtG

ui fff  fΓΓ       (3) 

where  T1 ui fff f  is the measurement frequency column vector.  

Similarly to the measured OV MV BPL reflection coefficient column vector 
WtG
Γ ,  

the theoretical OV MV BPL reflection coefficient column vector 
WtG
Γ  can also be 

defined. With reference to [26], the theoretical OV MV BPL reflection coefficient 

column vector, the measured OV MV BPL reflection coefficient column vector,  

the measurement frequency column vector and the number of monotonic sections are 
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received by the L1PMA software presented in [34]. L1PMA software processes its inputs 

and gives as outputs the approximated theoretical OV MV BPL reflection coefficient 

column vector 
WtG

theorΓ  and the approximated measured OV MV BPL reflection coefficient 

column vector 
WtG

measΓ . 

 Similarly to the performance metric CSPpM of FIIM [5], the proposed main 

distribution line fault identification percentage metric (MDLFI), which acts as the 

accompanying performance metric of the identification of main distribution line faults 

when measurement differences occur, is given by 

 

  ukk

kMDLFI

MDLFI

k

kk







1minsect,maxsect,

sectpar

maxsect,

minsect,sect            (4) 

where 

 
   
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sect
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sect

WtG

theorsect

WtG

meas

sectpar

,

,,

Γ

ΓΓ

             (5) 

, ksect,min is the lower monotonic section bound, which is assumed to be equal to 1 in this 

paper, and ksect,max is the upper monotonic section bound, which is assumed to be equal to 

20 in this paper. Overall, note that MDLFI describes the relative error between L1PMA 

approximations of the measured and theoretical data by receiving the arithmetic mean of 

its MDLFIpar components. The behavior of the aforementioned percentage metric is going 

to be examined in Sec.IV in comparison with the magnitude of the measurement 

differences while a critical threshold of the MDLFI (MDLFIthr) that is going to act as the 

warning limit of a main distribution line fault is also analyzed. Relative decisions 

regarding the dependencies of MDLFIthr on various parameters are also presented in 

Sec.IV. 

 

 

4. Numerical Results and Discussion 
4.1 Simulation Goals and Parameters  
 Various types of OV MV BPL topologies and measurement difference 

distributions are simulated with the purpose of evaluating the L1PMA mitigation 

performance against measurement differences and the accuracy of identifying a main 

distribution line fault when it occurs by eliminating the false alarm likelihood. Similarly 

to the measurement differences of OV MV BPL coupling transfer functions,  

the measurement differences that occur in OV MV BPL networks during the 

determination of reflection coefficients are typically described by continuous uniform 

distributions (CUDs) with range from 0 to a maximum CUD value that is equal to αMD. 

As regards the operation parameters of hybrid method and L1PMA, the BPL 

frequency range and the flat-fading subchannel frequency spacing are assumed equal to 

1-30MHz and 1MHz, respectively. Therefore, the number of subchannels u in the 

examined frequency range is equal to 30. In accordance with [1], the WtG3 coupling 

scheme is applied during the following simulations. Finally, the maximum number of 

monotonic sections that is going to be used is assumed to be equal to 20 [26].  
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As the indicative OV MV BPL topologies are concerned, their topological 

characteristics concerning the number of branches, the length of main distribution lines 

and branches as well as the fault location have already been determined in [1]. 

 

 

4.2 Measurement Differences and Faults in Indicative OV MV BPL Topologies 
 Already been presented in [1], the main distribution line faults differentiate the 

reflection coefficient behavior between the normal and fault operation. Hence, significant 

differences occur between the theoretical and measured reflection coefficients.  

At the same time, there are also six categories, which have been reported in Sec.III,  

that may create additional measurement differences between the existing coupling 

reflection coefficients of the normal and fault operation for given OV MV BPL topology.  

 For comparison reasons only, the aforementioned four measurement difference 

distributions are first applied to the theoretical coupling reflection coefficients.  

In Figs. 1(a)-(d), the magnitude of the theoretical coupling reflection coefficients are 

plotted versus frequency for the four indicative OV MV BPL topologies –i.e., urban, 

suburban, rural and “LOS” case of Sec.2.2 of [1]–, respectively, when the four indicative 

measurement difference CUDs are applied for a given indicative OV MV BPL topology. 

Note that during the normal operation the terminal load is assumed to be matched to the 

characteristic impedance of the modal channels. 
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Figure 1. Magnitude of theoretical coupling reflection coefficients of OV MV BPL topologies 
contaminated by the four indicative measurement difference distributions  
(CUD/aMD=0, CUD/aMD=0.1, CUD/aMD=0.2 and CUD/aMD=0.5). (a) Urban case.  
(b) Suburban case. (c) Rural case. (d) “LOS” case. 
 

 

 The combined impact of the measurement differences and the main distribution 

line faults on the OV MV BPL coupling reflection coefficient is here investigated.  

More specifically, in Figs. 2(a)-(d), the theoretical coupling reflection coefficient is 

plotted versus frequency for the indicative OV MV BPL topologies, respectively  

–i.e., urban, suburban, rural and “LOS” case of Sec.2.2 of [1]–. In each figure,  
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the measured coupling reflection coefficient after the main distribution line fault at 750 

m from the transmitting end is also given for the respective modified OV MV BPL 

topology –i.e., modified urban, suburban, rural and “LOS” case of Sec.4.3 of [1]– when 

measurement differences follow four indicative measurement difference distributions, 

namely: (i) CUD with aMD=0 (no measurement differences); (ii) CUD with aMD=0.1;  

(iii) CUD with aMD=0.2; and (iv) CUD with aMD=0.5. Similarly to [1], it should be noted 

that the magnitude of the OV MV BPL coupling reflection coefficients is demonstrated 

in the following figures of this paper while the terminal loads during the fault operation 

are assumed to be short-circuits in Figs. 2(a)-(d). In Figs. 3(a)-(d), same figures with Figs. 

2(a)-(d) are shown but for the case of open-circuit terminal loads. 
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Figure 2. Theoretical and measured coupling reflection coefficients (measurement differences 
and main distribution line fault) of OV MV BPL topologies when four indicative measurement 
difference distributions (CUD/aMD=0, CUD/aMD=0.1, CUD/aMD=0.2 and CUD/aMD=0.5) are applied 
while the terminal load is assumed to be short-circuit. (a) Urban and modified urban case.  
(b) Suburban and modified suburban case. (c) Rural and modified rural case.  
(d) “LOS” and modified “LOS” case. 
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Figure 3. Same plots with Figure 2 but for open-circuit terminal loads during the fault operation. 

 

 

 Depending on the examined OV MV BPL topology, the notches of measurement 

differences incommode the identification of a main distribution line fault by creating 

different levels of difficulty. Observing Figs. 1(c) and 1(d), the OV MV BPL topologies 

of low number of branches, such as rural and “LOS” cases, are characterized by rare and 

shallow notches. When a main distribution line fault occurs, the coupling reflection 

coefficient curves of the fault operation significantly differ from the respective curves of 

the normal operation. The superimposed notches, which come from the measurement 
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differences, imply the presence of a main distribution line fault because the curves of the 

theoretical and measured reflection coefficients still significantly differ. Conversely, OV 

MV BPL topologies of high number of short branches maintain significant notches due 

to the multipath environment. 

 Already been mentioned in [1], the first sign of the presence of a main 

distribution line fault is the immediate communications failure between the transmitting 

and receiving end but it is not the only sign. From Figs. 2(a)-(d) and Figs. 3(a)-(d), it is 

evident that significant coupling reflection coefficient differences occur between the 

normal and fault operation even if measurement differences are neglected  

(i.e., CUD/aMD=0). Regardless of the terminal load (i.e., short- or open-circuit 

terminations), when a main distribution line fault occurs, the superposition of the 

measurement differences to the reflection coefficients of the fault operation deteriorates 

the identification process of a main distribution line fault. In fact, as the maximum value 

aMD of CUD increases so do the notches across the reflection coefficient curves.  

 Comparing Figs. 1(a) and 1(b) with Figs. 2(a), 2(b), 3(a) and 3(b), the coupling 

reflection coefficients of the fault operation satisfactorily differ from the ones of the 

normal operation when a main distribution line fault occurs. However, in the more 

aggravated OV MV BPL topologies, such as urban and suburban cases, the imposed 

notches of measurement differences are tangled with the notches of the coupling 

reflection coefficients. The plethora of notches creates confusion when a decision needs 

to be taken whether a noisy environment or main distribution line fault occurs.  

 

 

4.3 L1PMA Mitigation of Measurement Differences and MDLFIpar  
 Already been presented in Sec. 4.2, measurement differences can create 

significant deviations between experimental measurements and theoretical results during 

the determination of OV MV BPL coupling reflection coefficients, thus, creating 

ambiguity, whether a main distribution line fault or noisy environment occurs. On the 

basis of [3], [4], piecewise monotonic data approximations, such as L1PMA, L2WPMA 

and L2CXCV, achieve to mitigate the additive measurement differences by simply 

maintaining the monotonicity pattern of each OV MV BPL coupling transfer function. 

Extending the previous concept, L1PMA is here applied to coupling reflection 

coefficients so that the mitigation of measurement differences may occur and a robust 

decision regarding the existence of a main distribution line fault can be supported. 

Actually, the mitigation performance of L1PMA mainly depends on the magnitude of 

measurement differences and the applied number of monotonic sections.  

 In accordance with [3], L1PMA identifies the primary extrema of the examined 

curves and, then, interpolate the data at these extrema. In the case of L1PMA, which is 

examined in this paper, the low number of monotonic sections blocks the high 

fluctuations imposed by the high magnitudes of measurement differences, thus giving a 

general data approximation that follows the monotonicity pattern. Conversely, when a 

high number of monotonic sections is adopted, L1PMA very efficiently approximate the 

curves by following them in the depth and the extent of spectral notches but the data 

approximation cannot mitigate the measurement differences in that sense. In the last case, 

L1PMA considers measurement differences as part of the OV MV BPL coupling 

reflection coefficients.  

 The proposed MDLFI of eq. (4) tries to overall exploit the result versatility of the 

application of different number of monotonic sections through MDLFIpar of eq. (5) by 
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considering ksect,min and ksect,max to be equal to 1 and 20, respectively. In Fig. 4(a), 

MDLFIpar is plotted versus the number of monotonic sections for the indicative 

theoretical OV MV BPL urban case when the four indicative measurement difference 

distributions of Sec.4.2 are applied. In Figs. 4(b)-(d), same curves with Fig. 4(a) are 

presented but for the case of the indicative OV MV BPL suburban, rural and “LOS” case, 

respectively.  
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Figure 4. MDLFIpar of OV MV BPL topologies contaminated by the four indicative measurement 
difference distributions (CUD/aMD=0, CUD/aMD=0.1, CUD/aMD=0.2 and CUD/aMD=0.5). (a) Urban 
case. (b) Suburban case. (c) Rural case. (d) “LOS” case. 

 

 

 From Figs. 4(a)-(d), it is obvious that MDLFIpar uniquely characterizes an OV 

MV BPL topology however its curve depends on the severity of the imposed 

measurement differences and the examined OV MV BPL topology. For given OV MV 

BPL topology, the theoretical coupling reflection coefficient is already known and, thus, 

MDLFIpar is equal to zero when measurement differences are neglected. As the 
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magnitude aMD of measurement difference CUD increases, MDLFIpar differentiates from 

zero presenting increased values.  

 The combined impact of measurement differences and main distribution line 

faults on the OV MV BPL coupling reflection coefficient is also investigated through 

MDLFIpar. More specifically, in Figs. 5(a)-(d), MDLFIpar is plotted versus the number of 

monotonic sections for the indicative OV MV BPL topologies, respectively –i.e., urban, 

suburban, rural and “LOS” case of Sec.4.2–. In each figure, MDLFIpar after the main 

distribution line fault at 750m from the transmitting end is given for the respective 

modified OV MV BPL topology when measurement differences follow four indicative 

measurement difference distributions, namely: (i) CUD with aMD=0 (no measurement 

differences); (ii) CUD with aMD=0.1; (iii) CUD with aMD=0.2; and (iv) CUD with 

aMD=0.5. In Figs. 5(a)-(d), the terminal loads during the fault operation are assumed to be 

short-circuits. In Figs. 6(a)-(d), same figures with Figs. 5(a)-(d) are shown but for the 

case of open-circuit terminal loads. 
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Figure 5. MDLFIpar of modified OV MV BPL topologies with short-circuit terminal loads 
contaminated by the four indicative measurement difference distributions (CUD/aMD=0, 
CUD/aMD=0.1, CUD/aMD=0.2 and CUD/aMD=0.5). (a) Modified urban case. (b) Modified suburban 
case. (c) Modified rural case. (d) Modified “LOS” case. 
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Figure 6. Same plots with Figure 5 but for open-circuit terminal loads during the fault operation. 

 

 

 To facilitate the comparison between Figs 4(a)-(d) with the respective  

Figs. 5(a)-(d), ΔMDLFIpar that describes the difference between the MDLFIpar of 

modified OV MV BPL topologies and of respective original OV MV BPL topologies is 

plotted versus the number of monotonic sections in Figs. 7(a)-(d) when short-circuit 

terminal loads are assumed. In Figs. 8(a)-(d), same curves with Figs. 7(a)-(d) are 
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presented but for the case of open-circuit terminal loads; say, the graphical comparison 

of Figs. 4(a)-(d) with the respective Figs. 6(a)-(d). 
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Figure 7. ΔMDLFIpar between modified OV MV BPL topologies with short-circuit terminal loads 
and original OV MV BPL topologies when the four indicative measurement difference distributions 
are applied (CUD/aMD=0, CUD/aMD=0.1, CUD/aMD=0.2 and CUD/aMD=0.5). (a) Urban case 
difference. (b) Suburban case difference. (c) Rural case difference. (d) “LOS” case difference. 
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Figure 8. Same plots with Figure 7 but for open-circuit terminal loads during the fault operation. 

 

 

 Comparing Figs. 4(a)-(d), 5(a)-(d), 6(a)-(d), 7(a)-(d) and 8(a)-(d), it is obvious 

that MDLFIpar differences occur between the original and modified OV MV BPL 

topologies. Although the direct comparison among curves is a difficult task, it is clear 

that ΔMDLFIpar implies the existence of a main distribution line fault when the 

magnitude aMD of measurement differences is assumed to be equal to zero or remain low 

(e.g., below 0.1). When the magnitude aMD increases above 0.2 the identification of main 
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distribution line faults become a precarious venture because it is not clear if the coupling 

reflection coefficient differences derive from either the modified OV MV BPL topology 

or the measurement differences. In order to bypass the examination of MDLFIpar curves 

among different OV MV BPL topology cases and quantify the identification problem of 

main distribution line faults, MDLFI is further calculated in the following subsection. 

Actually, MDLFI is a derivative performance metric since it is based on MDLFIpar of this 

subsection. Since MDLFI is, in essence, a performance metric similar to the relative 

error –see eq. (4)–, MDLFI can be straightforward compared to the magnitude aMD of 

measurement difference distribution. 

 

 

4.4 MDLFI, MDLFI Thresholds and Decisions Concerning Main Distribution Line 
Faults in OV MV BPL Topologies 
 The decision of the existence of a main distribution line fault remains precarious 

if intense measurement differences should be counteracted during the determination of 

OV MV BPL coupling reflection coefficients. However, MDLFI that expresses a 

deviation percentage between the measured and theoretical OV MV BPL coupling 

reflection coefficients can provide a benchmark result, which further can be compared to 

the magnitude aMD of the measurement differences taking into account the examined OV 

MV BPL topology. In this way, MDLFI can support a decision concerning the existence 

of main distribution line faults. It should be reminded that the original OV MV BPL 

topologies consist of the four indicative 1000m average path length OV MV BPL 

topologies whereas modified OV MV BPL topologies, which have been examined until 

now, comprise the respective original OV MV BPL topologies but for a main 

distribution line fault that occurs at 750m from the transmitting end by simultaneously 

implying terminal loads that behave either as short- or open-circuit terminations.  

 In order to examine the impact of the measurement differences on MDLFI and on 

relative decisions concerning the existence of faults across the main distribution lines of 

the examined topologies, MDLFI of the original and modified OV MV BPL topologies 

of Sec.4.2 is reported in Table 1. MDLFI of Table 1 is investigated when different 

magnitudes aMD of CUD measurement differences and terminal loads are assumed.  

Note that the terminal loads of the original OV MV BPL topologies are assumed to be 

matched to the supported modal characteristic impedances whereas modified OV MV 

BPL topologies are examined when short- and open-circuit terminations are applied.  

 By observing the values of Table 1, some interesting remarks can be pointed out, 

namely: 

• From all the columns of MDLFI concerning both original and modified OV MV 

BPL topologies, it is clear that as the magnitude aMD of CUD measurement 

differences increases so does MDLFI for given topology, in general.  

• Since MDLFI of the original OV MV BPL topologies describes the dissimilarity 

between the respective theoretical and measured coupling reflection coefficients 

of original topologies, it is expected that even if small measurement differences 

get appeared, the coupling reflection coefficient differences of the OV MV BPL 

topologies with shallow and rare notches (i.e., rural and “LOS” cases) are going 

to be significantly differentiated. The latter is reflected to high values of MDLFI.  
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TABLE 1 

MDLFI of the Original and Modified OV MV BPL Topologies for Different Magnitudes of 

Measurement Differences 

 

 
 

 

 

 

 

 

• When a high number of deep spectral notches already occurs in coupling 

reflection coefficient curves (i.e., curves of original urban and suburban OV MV 

BPL topologies), the impact of measurement differences on MDLFI is less 

important in comparison with that of original rural and “LOS” OV MV BPL 

topologies. Since the spectral notch origin remains unclear, MDLFI values stay 

low. Therefore, ΔMDLFI between the respective values of original and modified 

OV MV BPL topologies also remains low implying that harder decision 

regarding the existence of main distribution line faults could be supported.  

• Since the BPL networks are deployed across transmission and distribution 

networks, theoretical OV MV BPL coupling reflection coefficients and real-time 

measurements concerning the coupling reflection coefficients can be 

continuously available. Since theoretical OV MV BPL coupling reflection 

coefficients are already known for given OV MV BPL topology, an estimation of 

the magnitude aMD of CUD measurement differences can be achieved by 

comparing MDLFI of the measured coupling reflection coefficients with the 

respective theoretical MDLFI values exposed to measurement differences of 

different magnitudes. 
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• Real-time measurements of coupling reflection coefficients and an estimation of 

the magnitude aMD of CUD measurement differences can be easily saved in a 

database (see MLFLM database of [35]). Since frequent measurements are 

available and can be retreated right before the main distribution line fault, an 

estimation of the magnitude aMD of CUD measurement differences can be 

available at the moment of the appearance of a main distribution line fault.  

Since measurement differences are not directly affected by the existence of a 

main distribution line fault, the magnitude aMD of CUD measurement differences 

that is used during the MDLFI determination can be considered as already known. 

• In general terms, the values of the column of MDLFI concerning original OV 

MV BPL topologies (see grey column of Table 1) can act as the MDLFI 

threshold for given magnitude aMD of CUD measurement differences and OV MV 

BPL topology. By observing Table 1, if the grey column values are assumed to 

be the benchmark metric MDLFIthr, the identification of a main distribution line 

fault is achieved in 26 of 32 cases, say in 81.25%. 

 To validate the previous findings about the identification of a main distribution 

line fault through MDLFI, all the possible main distribution line faults that can occur 

across a given original OV MV BPL topology should be examined for different 

magnitude aMD of CUD measurement differences. If the previous assertion is valid, 

MDLFI of the examined OV MV BPL topologies with main distribution line faults 

should always remain higher than MDLFIthr for given original OV MV BPL topology 

and magnitude aMD of CUD measurement differences.  

 Let assume that the identification of a main distribution line fault across the 

original OV MV BPL urban case is examined. First, the set of all the possible locations 

of a main distribution line fault should be taken into account when the terminal load is 

assumed to be either short- or open-circuit termination. In order to create an extended set 

of possible fault OV MV BPL topologies, the distance of the main distribution line fault 

from the transmitting end is assumed to be multiples of 50m in this subsection. On the 

basis of the original OV MV BPL topology, in Fig. 9(a), MDLFI of each possible fault 

OV MV BPL topology is plotted versus the main distribution line fault distance from the 

transmitting end when the terminal load is assumed to be short-circuit. MDLFI is 

computed for the four indicative magnitude aMD of CUD measurement differences that 

have already been applied in Secs. 4.2 and 4.3. Also, in accordance with the grey column 

of Table 1, for each magnitude aMD of CUD measurement differences, the respective 

MDLFIthr is also plotted in Fig. 9(a). Same curves with Fig. 9(a) are given in Fig. 9(b) 

but for the case of the fault OV MV BPL urban topology with open-circuit termination. 

In Figs. 10(a) and 10(b), same plots are presented with Figs. 9(a) and 9(b) but for the 

case of the fault OV MV BPL rural topology. 
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Figure 9. MDLFI of modified OV MV BPL topologies with short-circuit terminal loads and original 
OV MV BPL topologies when the four indicative measurement difference distributions are applied 
(CUD/aMD=0, CUD/aMD=0.1, CUD/aMD=0.2 and CUD/aMD=0.5). (a) Urban case difference.  
(b) Suburban case difference. (c) Rural case difference. (d) “LOS” case difference. 
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Figure 10. Same plots with Figure 9 but for the identification of main distribution line faults across 
the original OV MV BPL rural topology.  
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 With reference to Figs. 9(a), 9(b), 10(a) and 10(b), several interesting conclusions 

concerning the application of MDLFI as well as the corresponding decisions about the 

identification of a main distribution line fault across the OV MV BPL topologies can be 

pointed out, namely: 

• Already been mentioned in this subsection, MDLFI strongly depends on the 

examined OV MV BPL topology since it is considered as a dissimilarity metric 

between the original and fault case. This explains the fact that MDLFI values of 

fault rural OV MV BPL topologies always remain higher than the ones of fault 

urban OV MV BPL topologies.  

• MDLFI slightly depends on the terminal load of the examined fault OV MV BPL 

topology. In fact, coupling reflection coefficient differences can be observed 

when the terminal load is assumed to be equal to short- or open-circuit 

termination. However, the coupling reflection coefficients for given OV MV BPL 

topology when terminal loads vary from short- to open-circuit remain low 

implying low differences between the respective MDLFIs. Hence, apart from the 

identification of a main distribution line fault, a first idea regarding the nature of 

the fault and thus the type of the main distribution line fault (day, fault line in the 

air or on the ground) can be given. 

• MDLFI strongly depends on the location of the main distribution line fault across 

the OV MV BPL topology. In fact, when the fault is located near to the 

transmitting end, MDLFI receives higher values in comparison with the 

respective ones of a main distribution line fault located near to the receiving end. 

Since the identification of the fault is achieved through the comparison of 

MDLFI of the fault OV MV BPL topology against the MDLFIthr of the original 

one, this implies that the identification of a main distribution line fault becomes 

easier when it is located near to the transmitting end than far away from it. This is 

a logical result since the fault OV MV BPL topology is critically modified in 

comparison with the original one when the fault is near to the transmitting end. 

Not only the overall transmission length of the fault OV MV BPL topology 

becomes lower than the average length of 1000m but a number of branches can 

be omitted in the fault OV MV BPL topology. In order to cope with this fault 

location sensitivity, MLFLM exploits MDLFI measurements of both the 

available sides of an OV MV BPL topology –say, transmitting and receiving 

end– (for more details concerning the combined MLFLM application of MDLFI, 

see [35]). 

• Already been recognized from Table 1, as the magnitude aMD of measurement 

differences increases so does the difficulty of identifying a main distribution line 

fault. This can be explained by the fact that the magnitude increase of 

measurement differences creates an increase to MDLFIthr that anyway defines the 

critical line between the normal and fault operation. As MDLFIthr increases, the 

distinction between the normal and fault condition becomes problematic. From 

the Figures, it is clear that MDLFI of the examined OV MV BPL topologies 

always remains above MDLFIthr when magnitudes aMD of measurement 

differences remain low (e.g., aMD=0 and aMD=0.1). In these cases of low 

measurement differences, the difference between MDLFI and MDLFthr remains 

large enough so that a robust decision regarding the existence of a main 

distribution line fault can be supported. Conversely, when magnitudes aMD of 
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measurement differences start to get high, the difference between MDLFI and 

MDLFIthr diminishes, thus confusing and creating a decision ambiguity whether a 

main distribution line fault exists. Marginally, when the magnitude aMD of 

measurement differences is equal to 0.5, the decision of the existence of a main 

distribution line fault becomes critically uncertain. Numerically, in all the four 

OV MV BPL topologies examined in Figs. 9(a), 9(b), 10(a) and 10(b), although a 

main distribution line fault occurs, a safe decision concerning this existence 

cannot be safely supported in 8 of the 20 cases when the magnitude aMD of the 

measurement differences is assumed to be equal to 0.5. Here, it should be noted 

that all the 8 problematic main distribution line fault cases are situated near to the 

receiving end, which is a problematic condition for a single MDLFI measurement 

from the transmitting end, as already been mentioned. 

 The identification of main distribution line faults in OV MV BPL topologies 

regardless of the presence of measurement differences and the nature of the terminal load 

concludes the main prerequisite of applying MLFLM. Since the existence of main 

distribution line faults can be secured with a high degree of accuracy, the next phase of 

MLFLM that is the exact localization of the fault across the examined OV MV BPL 

topology is analyzed in [35]. 

 

 

5. Conclusions 
 The main distribution line fault identification methodology of the first paper has 

further been extended in this paper so that measurement differences of the coupling 

reflection coefficients can be mitigated. Through the application of L1PMA and its 

accompanying metrics, such as MDLFIpar, MDLFI and MDLFIthr, a secure identification 

of a main distribution line fault across the OV MV BPL networks can be achieved when 

magnitude aMD of measurement differences that follow CUD remains low or normal (i.e., 

aMD lower than 0.2). In the vast majority of the cases examined, the decision regarding 

the fault identification remains robust when magnitude aMD remains, indeed, low or 

normal. In contrast, when the magnitude aMD of measurement differences becomes 

significant and comparable to the depth of the spectral notches of the coupling reflection 

coefficients (i.e., aMD higher than 0.2), decisions regarding the existence of main 

distribution line fault become insecure especially when the faults are situated near to the 

receiving end, far away from the measurement site. Anyway, the decision regarding the 

identification of main distribution line faults are considered to be more reliable when the 

faults are located near to the transmitting end of the examined OV MV BPL topologies. 

 The combined operation of extended TM2 method, L1PMA and set of  

MDLFI-related metrics concludes the introductory phase of MLFLM. However, the 

main phase of MLFLM that has to do with the exact localization of main distribution line 

faults across the OV MV BPL topologies is analyzed in the third paper. 
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