Assessing the Impact of Soiling, Tilt Angle, and Solar Radiation on the Performance of Solar PV Systems
Abstract
This research examined the observed datasets and a theoretically derived model for estimating yearly optimum tilt angle (β), maximum incident solar radiation (Hmax), clean gain indicator (CGI), and soiling loss indicator (SLI) at Mumbwa, Zambia, the Mediterranean Region, and low latitude locations across the globe. The cleaned tilted collector emerged as the best performing collector due to Hmax and much higher energy gains compared with the soiled collector. CGI showed an appreciable performance of 0.4737% over -0.4708% on the SLI, indicating that soiling on the surface of photovoltaic (PV) modules significantly depreciates the overall performance of PV modules. Two established empirical models obtained from the literature were compared with the established theoretical model (β=φ). The result revealed that the two models overestimated the observed annual optimum tilt angle in this paper, simply because the models were developed with high latitude location datasets from the Asia continent. However, the newly established monthly and yearly global radiation indicator (GRI) models by the authors in their previous paper performed excellently in the selected representative cities in the Mediterranean region.
Citation: Nwokolo, S., Obiwulu, A., Amadi, S., & Ogbulezie, J. (2023). Assessing the Impact of Soiling, Tilt Angle, and Solar Radiation on the Performance of Solar PV Systems. Trends in Renewable Energy, 9(2), 120-136. doi:http://dx.doi.org/10.17737/tre.2023.9.2.00156
Keywords
Full Text:
FULL TEXT (PDF)References
Nwokolo, S. C., & Ogbulezie, J. C. (2018). A qualitative review of empirical models for estimating diffuse solar radiation from experimental data in Africa. Renew Sustain Energy Rev, 92, 353-393. doi: https://doi.org/10.1016/j.rser.2018.04.118
Nwokolo, S. C., & Ogbulezie, J. C. (2018). A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef Univ J Basic Appl Sci, 7, 367–96. doi: https://doi.org/10.1016/j.bjbas.2017.05.001
Obiwulu, A. U., Erusiafe, N., Olopade, M. A., & Nwokolo, S. C. (2020). Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance. Renew Energy, 154, 404-431. doi : https://doi.org/10.1016/j.renene.2020.02.103
Obiwulu, A. U., Chendo, M. A. C., Erusiafe, N., & Nwokolo, S. C. (2020). Implicit meteorological parameter-based empirical models for estimating back temperature solar modules under varying tilt-angles in Lagos, Nigeria. Renew Energy, 145, 442-457. doi: https://doi.org/10.1016/j.renene.2019.05.136
Hassan, M. A., Bailek, N., Bouchouicha, K., & Nwokolo, S. C. (2021). Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renew Energy, 171, 191–209. doi: https://doi.org/10.1016/j.renene.2021.02.103
Hassan, M. A., Bailek, N., Bouchouicha, K., Ibrahim, A., Jamil, B., Kuriqi, A Nwokolo, S. C., & El-kenawy, E. M. (2022). Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions. Theor Appl Climatol, 150, 715–729. doi: https://doi.org/10.1007/s00704-022-04166-6
Nwokolo, S. C., Obiwulu, A. U., & Ogbulezie, J. C. (2023). Machine Learning and Analytical Model Hybridization to Assess the Impact of Climate. Physics and Chemistry of the Earth,120, 103389.
Agbor, M. E., Udo, S. O., Ewona, I. O., Nwokolo, S. C., Ogbulezie, J. C., Amadi, S. O., & Billy, U. A. (2023). Effects of Angstrom-Prescott and Hargreaves-Samani Coefficients on Climate Forcing and Solar PV Technology Selection in West Africa. Trends in Renewable Energy, 9, 78-106. doi: https://doi.org/10.17737/tre.2023.9.1.00150
Agbor, M., Udo, S., Ewona, I., Nwokolo, S. C., & Ogbulezie, J. A. (2023). Potential impacts of climate change on global solar radiation and PV output using the CMIP6 model in West Africa. Clean Eng Technol, (In Press).
Nwokolo, S. C., Julie, C., Ogbulezie, J. A., & Obiwulu, A. U. (2022). Impacts of Climate Change and Meteo-Solar Parameters on Photosynthetically Active Radiation Prediction Using Hybrid Machine Learning with Physics-Based Models. Advances in Space Research, 70(11), 3614–37
Martial, A., Akata, E. A., Njomo, D., Agrawal, B., Mackpayen, A., & Ali, A. M. (2022). Tilt Angle and Orientation Assessment of Photovoltaic Thermal (PVT) System for Sub-Saharan Tropical Regions: Case Study Douala, Cameroon. Sustainability, 14(23), 15591. doi: https://doi.org/10.3390/su142315591
Karahüseyin, T. S. A. (2022). Performance Loss Rates of a 1 MWp PV Plant with Various Tilt Angle , Orientation and Installed Environment in the Capital of Cyprus. Sustainability, 14(15), 9084. doi: https://doi.org/10.3390/su14159084
Dhimish, M., & Alrashidi, A. (2022). Photovoltaic degradation rate affected by different weather conditions: A case study based on pv systems in the uk and australia. Electronics, 9(4), 650. doi: https://doi.org/10.3390/electronics9040650
Jordan, D. C., Silverman, T. J., Wohlgemuth, J. H., Kurtz, S. R., & VanSant, K. T. (2017). Photovoltaic failure and degradation modes. Prog Photovoltaics Res Appl, 25(4), 318-326. doi: https://doi.org/10.1002/pip.2866
Frick, A., Makrides, G., Schubert, M., Schlecht, M., & Georghiou, G. E. (2020). Degradation rate location dependency of photovoltaic systems. Energies, 13(24), 6751. doi: https://doi.org/10.3390/en1324675
Khan, F., & Kim, J. H. (2019). Performance Degradation Analysis of c-Si PV Modules Mounted on a Concrete Slab under Hot-Humid Conditions Using Electroluminescence Scanning Technique for Potential Utilization in Future Solar Roadways. Materials, 12(24), 4047. doi: https://doi.org/10.3390/ma12244047
Kyranaki, N., Smith, A., Yendall, K., Hutt, D. A., Whalley, D. C., Gottschalg, R., & Betts, T. R. (2022). Damp-heat induced degradation in photovoltaic modules manufactured with passivated emitter and rear contact solar cells. Prog Photovoltaics Res Appl, 30(9), 1061-1071. doi: https://doi.org/10.1002/pip.3556
Quansah, D. A., Adaramola, M. S., & Takyi, G. (2020). Degradation and longevity of solar photovoltaic modules—An analysis of recent field studies in Ghana. Energy Sci Eng, 8(6), 2116-2128. doi: https://doi.org/10.1002/ese3.651
Gopi, A., Sudhakar, K., Keng, N. W., & Krishnan, A. R. (2021). Comparison of normal and weather corrected performance ratio of photovoltaic solar plants in hot and cold climates. Energy for Sustainable Development, 65, 53-62. doi: https://doi.org/10.1016/j.esd.2021.09.005
Ameur, A., Berrada, A., Bouaichi, A., & Loudiyi, K. (2022). Long-term performance and degradation analysis of different PV modules under temperate climate. Renewable Energy, 188, 37-51. doi: https://doi.org/10.1016/j.renene.2022.02.025
Silvestre, S., Tahri, A., Tahri, F., Benlebna, S., & Chouder, A. (2018). Evaluation of the performance and degradation of crystalline silicon-based photovoltaic modules in the Saharan environment. Energy, 152, 57-63. doi: https://doi.org/10.1016/j.energy.2018.03.135
Malvoni, M., Kumar, N. M., Chopra, S. S., and Hatziargyriou, N. (2020). Performance and degradation assessment of large-scale grid-connected solar photovoltaic power plant in tropical semi-arid environment of India. Solar Energy, 203, 101-113. doi: https://doi.org/10.1016/j.solener.2020.04.011
Hassan Daher, D., Gaillard, L., & Ménézo, C. (2022). Experimental assessment of long-term performance degradation for a PV power plant operating in a desert maritime climate. Renewable Energy, 187, 44-55. doi: https://doi.org/10.1016/j.renene.2022.01.056
Lu, H., Lu, L., & Wang, Y. (2016). Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building. Applied Energy, 180, 27-36. doi: https://doi.org/10.1016/j.apenergy.2016.07.030
Ekoe A Akata, A. M., Njomo, D., & Agrawal, B. (2017). Assessment of Building Integrated Photovoltaic (BIPV) for sustainable energy performance in tropical regions of Cameroon. Renewable and Sustainable Energy Reviews, 80, 1138-1152. doi: https://doi.org/10.1016/j.rser.2017.05.155
Gholampour, M., & Ameri, M. (2016). Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study. Applied Energy, 164, 837-856. doi: https://doi.org/10.1016/j.apenergy.2015.12.042
Obiwulu, A. U., Erusiafe, N., Olopade, M .A., & Nwokolo, S. C. (2022). Modeling and estimation of the optimal tilt angle, maximum incident solar radiation, and global radiation index of the photovoltaic system. Heliyon, 8(6). doi: https://doi.org/10.1016/j.heliyon.2022.e09598
Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307-1316. doi: https://doi.org/10.1016/j.rser.2016.01.044
Jacobson, M. Z., & Jadhav, V. (2018). World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Solar Energy, 169, 55-66. doi: https://doi.org/10.1016/j.solener.2018.04.030
Talebizadeh, P., Mehrabian, M. A., & Abdolzadeh, M. (2011). Determination of Optimum Slope Angles of Solar Collectors Based on New Correlations. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(17), 1567-1580. doi: https://doi.org/10.1080/15567036.2010.551253
Jamil, B., Siddiqui, A. T., & Denkenberger, D. C. (2019). Solar radiation on south-facing inclined surfaces under different climatic zones in India. Environ Prog Sustain Energy, 38(3), e13050. doi: https://doi.org/10.1002/ep.13050
Mulcué-Nieto, L. F., & Mora-López, L. (2015). Methodology to establish the permitted maximum losses due to shading and orientation in photovoltaic applications in buildings. Applied Energy, 137, 37-45. doi: https://doi.org/10.1016/j.apenergy.2014.09.088
N’Tsoukpoe, K. E. (2022). Effect of orientation and tilt angles of solar collectors on their performance: Analysis of the relevance of general recommendations in the West and Central African context. Scientific African, 15, e01069. doi: https://doi.org/10.1016/j.sciaf.2021.e01069
Haghdadi, N., Copper, J., Bruce, A., & MacGill, I. (2017). A method to estimate the location and orientation of distributed photovoltaic systems from their generation output data. Renewable Energy, 108, 390-400. doi: https://doi.org/10.1016/j.renene.2017.02.080
Hartner, M., Ortner, A., Hiesl, A., & Haas, R. (2015). East to west – The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective. Applied Energy, 160, 94-107. doi: https://doi.org/10.1016/j.apenergy.2015.08.097
Mukisa, N., & Zamora, R. (2022). Optimal tilt angle for solar photovoltaic modules on pitched rooftops: A case of low latitude equatorial region. Sustainable Energy Technologies and Assessments, 50, 101821. doi: https://doi.org/10.1016/j.seta.2021.101821
Nwokolo, S. C., Amadi, S. O., Obiwulu, A. U., Ogbulezie, J. C., & Eyibio, E. E. (2022). Prediction of global solar radiation potential for sustainable and cleaner energy generation using improved Angstrom-Prescott and Gumbel probabilistic models. Cleaner Engineering and Technology, 6, 100416. doi: https://doi.org/10.1016/j.clet.2022.100416
Nwokolo, S. C., Obiwulu, A. U., Ogbulezie, J. C., & Amadi, S. O. (2022). Hybridization of Statistical Machine Learning and Numerical Models for Improving Beam, Diffuse and Global Solar Radiation Prediction. Cleaner Engineering and Technology, 9, 100529. doi: https://doi.org/10.1016/j.clet.2022.100529
Nwokolo, S. C., & Otse C. (2019). Impact of Sunshine Duration and Clearness Index on Diffuse Solar Radiation Estimation in Mountainous Climate. Trends Renew Energy, 5, 307–32. doi: https://doi.org/10.17737/tre.2019.5.3.00107
Ituen, E. E., Esen, N. U., Nwokolo, S. C., & Udo, E. G. (2012). Prediction of global solar radiation using relative humidity, maximum temperature and sunshine hours in Uyo, in the Niger Delta Region, Nigeria. Adv Appl Sci Res, 3, 1923–37.
Nwokolo, S. C., & Ogbulezie, J. C. (2017). A single hybrid parameter-based model for calibrating hargreaves-samani coefficient in Nigeria. Int J Phys Res, 5, 49. doi: https://doi.org/10.14419/ijpr.v5i2.8042
Nwokolo, S. C., & Ogbulezie, J. C. (2017). A critical review of theoretical models for estimating global solar radiation between 2012-2016 in Nigeria. Int J Phys Res, 5, 60. doi: https://doi.org/10.14419/ijpr.v5i2.8160
Nwokolo, S. C., & Ogbulezie, J. C. (2017). Performance evaluation of existing sunshine-based computing models for estimating global solar radiation at Lagos, Nigeria. Int J Adv Astron, 5, 106. doi: https://doi.org/10.14419/ijaa.v5i2.8308
Nwokolo, S. C., & Ogbulezie, J. C. (2017). Estimation of direct normal irradiance under various sky condi-tions in data sparse tropical ecological zones in Nigeria. Int J Adv Astron, 5, 90. doi: https://doi.org/10.14419/ijaa.v5i2.8329
Ogbulezie, J. C., James, O. J., & Nwokolo, S. C. (2017). A review of regression models employed for predicting diffuse solar radiation in North-Western Africa. Trends Renew Energy, 3(2), 160-206. doi: https://doi.org/10.17737/tre.2017.3.2.0042
Nwokolo, S. C. (2017). A comprehensive review of empirical models for estimating global solar radiation in Africa. Renew Sustain Energy Rev, 78, 955–95. doi: https://doi.org/10.1016/j.rser.2017.04.101
Amadi, S., Dike, T., Nwokolo, S. C. & Amadi, S. (2020). Global Solar Radiation Characteristics at Calabar and Port Harcourt Cities in Nigeria. Trends in Renewable Energy, 6, 101-120. doi: 10.17737/tre.2020.6.2.00114
Jamil, B., Siddiqui, A. T., & Akhtar, N. (2016). Estimation of solar radiation and optimum tilt angles for south-facing surfaces in Humid Subtropical Climatic Region of India. Engineering Science and Technology, an International Journal, 19(4), 1826-1835. doi: https://doi.org/10.1016/j.jestch.2016.10.004
Ghazi, S., Sayigh, A., & Ip, K. (2014). Dust effect on flat surfaces – A review paper. Renewable and Sustainable Energy Reviews, 33, 742-751. doi: https://doi.org/10.1016/j.rser.2014.02.016
Darwish, Z. A., Kazem, H. A., Sopian, K., Al-Goul, M. A., & Alawadhi, H. (2015). Effect of dust pollutant type on photovoltaic performance. Renewable and Sustainable Energy Reviews, 41, 735-744. doi: https://doi.org/10.1016/j.rser.2014.08.068
Mani, M., & Pillai, R. (2010). Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable and Sustainable Energy Reviews, 14(9), 3124-3131. doi: https://doi.org/10.1016/j.rser.2010.07.065
DOI: http://dx.doi.org/10.17737/tre.2023.9.2.00156
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Samuel Chukwujindu Nwokolo, Anthony Umunnakwe Obiwulu, Solomon Okechukwu Amadi, Julie C. Ogbulezie
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)