Trend and Variations of Surface Air Temperatures across Selected Eco-Climatic Zones in Nigeria
Abstract
The trends and variability in surface air temperatures over selected eco-climatic zones in Nigeria were assessed using Merra-2 datasets from 1981 to2018. A total of 15 stations spread across the eco-climatic zones in Nigeria were used for this study. The Mann-Kendall, linear trend and Sen’s slope trend test, time series plots and descriptive statistics were used. The coefficients of variability of surface air maximum temperature showed low variability for the Mangrove-swamp rainforest and moderate variability for the Guinea-wooded, Sudan and Sahel savannas. Similarly, the coefficients of variability of surface air minimum temperature showed moderate variability for all the selected eco-climatic zones. The M-K trend test showed that 14 stations had upward trends and 1 downward trend, with 13 stations having statistically significant trend in air surface maximum temperature. All the stations had statistically significant upward trends in air surface minimum temperature. The average increase in maximum and minimum air surface temperatures is estimated to be about 0.035°C and 0.036°C per year, respectively. For Nigeria, the average air surface temperature is estimated to increase by about 0.036°C per year, and the average air surface temperature is estimated to have increased by about 1.4°C over the 38 years. This study then gives a linear trend projection of about 4.3°C increase in estimated mean air surface temperature by year 2100 in Nigeria.
Citation: King, L., Udo, S., Ewona, I., Amadi, S., Ebong, E., & Emeka, C. (2024). Trend and Variations of Surface Air Temperatures across Selected Eco-Climatic Zones in Nigeria. Trends in Renewable Energy, 10(2), 170-209. doi:http://dx.doi.org/10.17737/tre.2024.10.2.00172
Keywords
Full Text:
FULL TEXT (PDF)References
IPCC. (2002). Climate Change 2001: The Scientific basis, Cambridge. Cambridge University Press.
Malhi, Y., Phillips, O. L., Malhi, Y., & Wright, J. (2004). Spatial patterns and recent trends in the climate of tropical rainforest regions. 359(1443), 311-329. doi:https://doi.org/10.1098/rstb.2003.1433
IPCC. (2007). Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
IPCC. (2019). Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Cambridge University Press, Cambridge.
Meissner, K. J., Weaver, A. J., Matthews, H. D., & Cox, P. M. (2003). The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model. Climate Dynamics, 21(7), 515-537. doi:https://doi.org/10.1007/s00382-003-0352-2
Snyder, P. K., Delire, C., & Foley, J. A. (2004). Evaluating the influence of different vegetation biomes on the global climate. Climate Dynamics, 23(3), 279-302. doi:https://doi.org/10.1007/s00382-004-0430-0.
Dang, H., Gillett, N. P., Weaver, A. J., & Zwiers, F. W. (2007). Climate Change detection over different land surface vegetation classes. 27(2), 211-220. doi:https://doi.org/10.1002/joc.1397
Verma, S., Prakash, D., Srivastava, A. K., & Payra, S. (2017). Radiative forcing estimation of aerosols at an urban site near the thar desert using ground-based remote sensing measurements. Aerosol and Air Quality Research, 17(5), 1294-1304.
Fawole, O. G., Cai, X., Pinker, R. T., & MacKenzie, A. R. (2019). Analysis of radiative properties and direct radiative forcing estimates of dominant aerosol clusters over an urban-desert region in West Africa. Aerosol and Air Quality Research, 19(1), 38-48.
Liousse, C., Assamoi, E., Criqui, P., Granier, C., & Rosset, R. (2014). Explosive growth in African combustion emissions from 2005 to 2030. Environmental Research Letters, 9(3), 035003. doi:https://doi.org/10.1088/1748-9326/9/3/035003
Doumbia, E. H. T., Liousse, C., Galy-Lacaux, C., Ndiaye, S. A., Diop, B., Ouafo, M., Assamoi, E. M., Gardrat, E., Castera, P., Rosset, R., Akpo, A., & Sigha, L. (2012). Real time black carbon measurements in West and Central Africa urban sites. Atmospheric Environment, 54, 529-537. doi:https://doi.org/10.1016/j.atmosenv.2012.02.005
Mahmood, R., Pielke Sr., R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A., McAlpine, C., Carleton, A. M., Hale, R., Gameda, S., Beltrán-Przekurat, A., Baker, B., McNider, R., Legates, D. R., Shepherd, M., Du, J., Blanken, P. D., Frauenfeld, O. W., Nair, U. S., & Fall, S. (2014). Land cover changes and their biogeophysical effects on climate. 34(4), 929-953. doi:https://doi.org/10.1002/joc.3736
Yue, S., & Hashino, M. (2003). LONG TERM TRENDS OF ANNUAL AND MONTHLY PRECIPITATION IN JAPAN. 39(3), 587-596. doi:https://doi.org/10.1111/j.1752-1688.2003.tb03677.x
De Luís, M., Raventós, J., González-Hidalgo, J. C., Sánchez, J. R., & Cortina, J. (2000). Spatial analysis of rainfall trends in the region of Valencia (east Spain). 20(12), 1451-1469. doi:https://doi.org/10.1002/1097-0088(200010)20:12<1451::AID-JOC547>3.0.CO;2-0
VICENTE-SERRANO, S. M. (2006). Spatial and temporal analysis of droughts in the Iberian Peninsula (1910-2000). Hydrological Sciences Journal, 51(1), 83-97. doi:https://doi.org/10.1623/hysj.51.1.83
Ewona, I. O., & Udo, S. O. (2008). Trend studies of some meteorological parameters in Calabar, Nigeria. Nigerian Journal of Physics, 20(2), 283-289.
Amadi, S. O., Udo, S. O., & Ewona, I. O. (2014). Trend and Variation of Monthly Mean Minimum and Maximum temperature data over Nigeria for the period 1950-2012. International Journal of Pure and Applied Physics, 2(4), 1-27.
Subarna, D. (2017). Analysis of Long-Term Temperature Trend as an Urban Climate Change Indicator. Forum Geografi, 31(2), 196-208.
Wang, J., Xu, C., Hu, M., Li, Q., Yan, Z., & Jones, P. (2018). Global land surface air temperature dynamics since 1880. International Journal of Climatology, 38(S1), e466-e474. doi:https://doi.org/10.1002/joc.5384
Abiodun, B. J., Salami, A. T., & Tadross, M. (2011). Climate Change Scenarios for Nigeria: Understanding the Biophysical lmpacts. A Report by the Climate Systems Analysis Group, Cape Town, for Building Nigeria’s Response to Climate Change (BNRCC) Project, lbadan, Nigeria.
Thomas, T., Sudheer, K. P., Ghosh, N. C., & Gunte, S. S. (2013). Spatio-temporal variation of temperature characteristics over Narmada basin - is the consistent warming trend a possible climate change signal? In Proceedings - 20th International Congress on Modelling and Simulation, MODSIM 2013, December, pp.2416-2422.
Magawata, U. Z., & Yahaya, A. A. (2019). Trends and Variations of Monthly Solar Radiation, Temperature and Rainfall Data over Birnin Kebbi Metropolis for the Period of 2014-2016. Journal of Geography, Environment and Earth Science International, 21(4), 1-10.
Peterson, T. C., & Vose, R. S. (1997). An overview of the Global Historical Climatology Network temperature database. Bulletin of the American Meteorological Society, 78(12), 2837-2850.
Abatzoglou, J. T., Redmond, K. T., & Edwards, L. M. (2009). Classification of regional climate variability in the state of California. Journal of Applied Meteorology and Climatology, 48(8), 1527-1541.
Liu, X., Yin, Z. Y., Shao, X., & Qin, N. (2006). Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961-2003. Journal of Geophysical Research Atmospheres, 111(19), 1-19. doi:https://doi.org/10.1029/2005JD006915
Abudaya, M. (2013). Seasonal & Spatial Variation in Sea Surface temperature in the South-East Mediterranean Sea. Journal of Environmental and Earth Science, 3(2), 42-52.
Akinsanola, A. A., & Ogunjobi, K. O. (2014). Analysis of rainfall and temperatures variability over Nigeria, 1971-2000. Global Journal of Human-Social Science: B Geography, Geo-sciences, Environmental Disaster Management, 14(3), 1-17.
Oguntunde, P. G., Abiodun, B. J., & Lischeid, G. (2012). Spatial and temporal temperature trends in Nigeria, 1901-2000. Meteorology and Atmospheric Physics, 118(1-2), 95-105. doi:https://doi.org/10.1007/s00703-012-0199-3
Ogolo, E. O., & Adeyemi, B. (2009). Variation and trends of some meteorological parameters at lbadan, Nigeria. The Pacific Journal of Science and Technology, 10(2), 981-989.
Ewona, I. O., & Udo, S. O. (2011). Climatic parameters of Calabar as typified by some meteorological parameters. Global Journal of Pure and Applied Sciences, 17(1), 81-86.
Oruoye, E. D. (2014). An assessment of the trends of climatic variables in Taraba State, Nigeria. Global Journal of Science Frontier Research: H Environment & Earth Science, 14(4), 1-13.
Agbo, E. P., & Ekpo, C. M. (2021). Trend Analysis of the Variations of Ambient Temperature Using Mann-Kendall Test and Sen’s Estimate in Calabar, Southern Nigeria. Journal of Physics: Conference Series, 1734(1), 012016. doi:https://doi.org/10.1088/1742-6596/1734/1/012016
King, L. E., Udo, S. O., Ewona, I. O., Amadi, S. O., Ebong, E. D., & Umoh, M. D. (2024). Assessment of Temporal Trend in Surface Air Temperatures across Some Selected Eco-Climatic Zones in Nigeria. Trends in Renewable Energy, 10, 132-158. doi:http://dx.doi.org/10.17737/tre.2024.10.1.00169
Adefolalu, A. D. (2002). Climate of Nigeria. In Atlas of Nigeria, (65), Paris: Les Editions J.A.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., ... & Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of climate, 30(14), 5419-5454. doi:https://doi.org/10.1175/JCLI-D-16-0758.1
Rienecker, M. M., & Coauthors, G. (2008). The GEOS-5 Data Assimilation System-Documentation of versions 5.0.1,5.1.0 and 5.2.0.T technical Report series on Global Modeling and Data Assimilation, vol.27, NASA TECH REP. NASA/TM-2008-104606,118pp.
Molod, A., Takacs, L., Suarez, M., & Bacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev., 8(5), 1339-1356. doi:http://dx.doi.org/10.5194/gmd-8-1339-2015
Wu, W. S., Purser, R. J., & Parrish, D. F. (2002). Three-dimensional variational analysis with spatially inhomogeneous covariances. Monthly Weather Review, 130(12), 2905-2916.
Longobardi, A., & Villani, P. (2009). Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. International Journal of Climatology, 12(4), 23-31.
Kundzewicz, Z. W., & Robson, A. J. (2004). Change detection in hydrological records - A review of the methodology. Hydrological Sciences Journal, 49(1), 7-19. doi:https://doi.org/10.1623/hysj.49.1.7.53993
Sonali, P., & Nagesh Kumar, D. (2013). Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology, 476, 212-227. doi:https://doi.org/10.1016/j.jhydrol.2012.10.034
Rossi, R. E., Mulla, D. J., Journel, A. G., & Franz, E. H. (1992). Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs, 62(2), 277-314. doi:https://doi.org/10.2307/2937096
Turkes, M. (1999). Vulnerability of Turkey to desertification with respect to precipitation and aridity conditions. Turkish Journal of Engineering and Environmental Science, 23(5), 363-80.
Helsel, D. R., Hirsch, R. M., Ryberg, K. R., Archfield, S. A., & Gilroy, E. J. (2020). Statistical methods in water resources techniques and methods 4 -A3. USGS Techniques and Methods, 1(13), 15-25.
Houghton, R. A. (2003). Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus, Series B: Chemical and Physical Meteorology, 55(2), 378-390.
Yue, S., & Wang, C. (2004). The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resources Management, 18(3), 201-218. doi:https://doi.org/10.1023/B:WARM.0000043140.61082.60
Wang, H., Zhang, M., Zhu, H., Dang, X., Yang, Z., & Yin, L. (2012). Hydro-climatic trends in the last 50years in the lower reach of the Shiyang River Basin, NW China. CATENA, 95, 33-41. doi:https://doi.org/10.1016/j.catena.2012.03.003
Rai, R. K., Upadhhyay, A., & Ojha, C. S. P. (2010). Temporal variability of climatic parameters of Yumuna River Basin: Spatial analysis of persistence, trend and periodicity. The Open Hydrology Journal, 4, 184-210. doi:http://dx.doi.org/10.2174/1874378101004010184
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistic Association, 63, 1379-1389. doi:https://doi.org/10.1080/01621459.1968.10480934
Durdu, O. F. (2009): Effects of Climate Change on Water Resources of the Buyuk Menderes River Basin; WesternTurkey. Turkish Journal of Agriculture. 34, 319-332.
Aiyelabagan, A. T. (2014). Latitudinal dependence of some meteorological parameters in Nigeria. International Journal of Technical Research and Application, 2(6), 7-10.
DOI: http://dx.doi.org/10.17737/tre.2024.10.2.00172
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Lewis Effiong King, Sunday Okon Udo, Igwe Otaba Ewona, Solomon Okechukwu Amadi, Ebong Dickson Ebong, Chimezie Ndunagum Emeka
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)