Clavulanic Acid Production by Streptomyces clavuligerus using Solid State Fermentation on Polyurethane Foam
Abstract
Clavulanic acid (CA), a metabolite of Streptomyces clavuligerus, is a potent β-lactamase inhibitor. In this study, polyurethane foam (PUF) was used as inert solid support to produce clavulanic acid by solid state fermentation (SSF). Maximal CA yield of 263 µg/ml was obtained at pH 6.5, incubation temperature 29°C, 10 ml medium per 3 g PUF, 0.015% added glycerol, 2% added lithium chloride (LiCl), and 2 g/L added ornithine. Under the same conditions, the yield of CA produced by SSF on PUF is apparently higher than that by submerged fermentation (SMF). In addition, CA produced by using this method is of higher purity and easier to be extracted.Â
Citation: Wang, H. and Chen, H. (2016). Clavulanic Acid Production by Streptomyces clavuligerus using Solid State Fermentation on Polyurethane Foam. Trends in Renewable Energy, 2(1), 2-12. DOI: 10.17737/tre.2016.2.1.0018
Keywords
Full Text:
FULL TEXT (PDF)References
Brown, A.G., Butterworth, D., Cole, M., Hanscomb, G., Hood, J.D., Reading, C. and Rolinson, G.N. (1976). Naturally-occurring β-lactamase inhibitors with antibacterial activity. The Journal of Antibiotics 29, 668-669. DOI: 10.7164/antibiotics.29.668
Liras, P., and Rodriguez-Garcia, A. (2000) Clavulanic acid, a β-lactamase inhibitor: biosynthesis and molecular genetics. Applied Microbiology and Biotechnology 54, 467-475. DOI: 10.1007/s002530000420
Pandey, A. (1992). Production of starch saccharifying enzyme in solid cultures. Starch 44, 75-77. DOI: 10.1002/star.19920440211
Pandey, A., Soccol, C. R., and Mitchell, D. (2000). New Developments in solid-state fermentation: I-bioprocesses and products. Process Biochemistry 35, 1153-1169. DOI: 10.1016/S0032-9592(00)00152-7
Pandey, A., Szakacs, G., Soccol, C. R., Rodriguez, A,and Soccol, V. T. (2001). Production, Purification and properties of microbial phytases. Bioresource Technology 77, 203-214. DOI: 10.1016/S0960-8524(00)00139-5
Qi, Y. Z. (1995). Factors influencing the velocity of solid state fermentation and kinetic during the process. Chemical Reaction Engineering and Technology 11, 18-24.
Barrios, G. J., and Mejia, A. (1996). Production of secondary metabolites by solid-state fermentation. Biotechnology Annual Review 2, 85-121. DOI: 10.1016/S1387-2656(08)70007-3
Zhu, Y., Smits, J. O., Knol, W., and Bol. J. (1994). A novel solid-state fermentation system using polyurethane foam as inert carrier. Biotechnology Letter 16, 643-648. DOI: 10.1007/BF00128615
Aidoo, K. E., Hendry, R., and Wood, B. J. B. (1982). Solid state fermentations. Advances in Applied Microbiology 28, 201-237.
Prabhu, G. N., and Chandrasekaran, M. (1995). Polystyrene-an inert carrier for glutaminase production by marine Vibrio costicola under solid-state fermentation. World Journal of Microbiology and Biotechnology 11, 683-684. DOI: 10.1007/BF00361017
Auria, R., Hernandez S., Raimbault, M., and Revah, S. (1990). Ion exchange resin: A model support for solid state growth fermentation of Aspergillus niger. Biotechnology Techniques 4 (6): 391-396. DOI: 10.1007/BF00159384
Fujishima, T., Uchida, K., and Yoshino, H. (1972) Enzyme production by moulds in PUF culture. Journal of Fermentation Technology 50, 724-730.
Chen, H. Z., Wang. H., Zhang, A. J., and Li, Z. H. (2006). Alkaline Protease Production by Solid State Fermentation on Polyurethane Foam. Chemical and Biochemical Engineering Quarterly 20, 93-97.
Meyrath, J. (1966). Reduction of incubation time in citric acid fermentation by vermiculite. Experientia 22, 806-808. DOI: 10.1007/BF01897428
Meyrath, J. (1967) Citric acid production. Process Biochemistry 2, 25-27.
Mayer, A. F., and Decker, W. D. (1996). Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations. Applied Microbiology and Biotechnology 45, 41-46. DOI: 10.1007/s002530050646
Foulstone, M., and Reading, C. (1982). Assay of amoxicillin and clavulanic acid, the components of augmentin, in biological fluids with high performance liquid chromatography. Antimicrob Agents Chemother 22, 753-762. DOI: 10.1128/AAC.22.5.753
Baggaley, K. H., and Brown, A. G., and Schofield, C. J. (1997). Chemistryand biosynthesis of clavulanic acid and other clavams. Natural Products Reports 14, 309-333. DOI: 10.1039/NP9971400309
Haginaka, J., Nakagawa, T., and Uno, T. (1981) Stability of clavulanic acid in aqueous solutions. Chemical and Pharmaceutical Bulletin 29, 3334-3341. DOI: 10.1248/cpb.29.3334
Gouveia, E., Baptista-Neto, A., Azevedo, A., Badino, A., and Hokka, C. (1999). Improvement of clavulanic acid production by Streptomyces clavuligerus in medium containing soybean derivatives. World Journal of Microbiology & Biotechnology 15, 623-627. DOI: 10.1023/a:1008942405378
Romero, J., and Liras, P. (1984) Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Applied Microbiology and Biotechnology 20, 318-325. DOI: 10.1007/BF00270593
Miñambres, B., Reglero, A., and Luengo, J. M. (1992) Characterization of an inducible transport system for glycerol in Streptomyces clavuligerus. Journal of Antibiotics 45, 269-277. DOI: 10.7164/antibiotics.45.269
Xu, T. N. (1993). Progress in the development of β-lactamase inhibitor and the compound. Herald of Medicine 12, 16-20.
Elson, S. W., and Oliver, R. S.(1982). Studies on the biosynthesis of clavulanic acid III. Incorporation of glutamic acid. Journal of Antibiotics 35, 81-86. DOI: 10.7164/antibiotics.35.81
Townsend, C. A. and Ho, M. F. (1985) Biosynthesis of clavulanic acid: origin of the C5 unit. Journal of the American Chemical Society 107, 1065-1066. DOI: 10.1021/ja00290a056
Romero J., Liras P., and Martin J. F. (1986). Utilization of ornithine and arginine as specific precursors of clavulanic acid. Applied Environmental Microbiology 52, 892-897.
DOI: http://dx.doi.org/10.17737/tre.2016.2.1.0018
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Hui Wang and Hongzhang Chen
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)