Forecasting CO2 Emissions from Libya’s Transport Sector

Eyime E Eyime, Unoh Florence Ben

Abstract


This paper presents an innovative approach to forecast carbon dioxide (CO2) emissions from the transport sector in Libya. The method combines machine learning algorithms with historical data and future estimates. The research built a model that took into account factors such as population growth, rates of car ownership, patterns of fuel consumption and government regulations in order to provide an accurate forecast of carbon dioxide (CO2) emissions over the next decade based on the Global Change Assessment Model (GCAM). The authors used a variety of statistical time series models to forecast future CO2 emissions from Libya's transportation sector. These models included the exponential smoothing model (ESM) and the autoregressive integrated moving average (ARIMA). The ARIMA model outperformed the ESM model, achieving an R2 of 0.931 and a root mean square error (RMSE) of 1.040 Mt CO2. The results of the study found that CO2 emissions from Libya's transport sector could increase by 27.98% and 57.99% in 2030 and 2050, respectively. The study proposed six transportation theories to reduce CO2 emissions from Africa's and Libya's transport sectors. The identified factors encompass price systems, land use planning, eco-driving, electric automobiles, bicycle infrastructure, and telecommuting. The authors also examined the needs to reduce CO2 emissions from Libya’s transport sector in order to meet the International Energy Agency’s ambitious targets for reducing CO2 emissions from the global transport sector. These needs arise due to increasing urbanization, population growth, underinvestment in public transportation infrastructure, and the increasing incidence and severity of heat waves. Additionally, hypothetical scenarios are presented to demonstrate the importance of further reducing CO2 emissions from these sectors to match the projections of global change assessment models.

Citation: Eyime, E., & Ben, U. (2024). Forecasting CO2 emissions from Libya’s transport sector. Trends in Renewable Energy, 11(1), 1-23. doi:http://dx.doi.org/10.17737/tre.2025.11.1.00185


Keywords


Paris Agreement; CO2 emission reduction; Greenhouse gas emissions; Libya’s emission reduction; Climate change; ARIMA

Full Text:

FULL TEXT (PDF)

References


Beitelmal, W. H., Nwokolo, S. C., Meyer, E. L., & Ahia, C. C. (2024). Exploring Adaptation Strategies to Mitigate Climate Threats to Transportation Infrastructure in Nigeria: Lagos City, as a Case Study. Climate, 12(8), 117. doi:https://doi.org/10.3390/cli12080117

Benatallah, M., Bailek, N., Bouchouicha, K., Sharifi, A., Abdel-Hadi, Y., Nwokolo, S. C., ... & M. El-kenawy, E. S. (2024). Solar Radiation Prediction in Adrar, Algeria: A Case Study of Hybrid Extreme Machine-Based Techniques. International Journal of Engineering Research in Africa, 68, 151-164. doi:https://doi.org/10.4028/p-VH0u4y

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Introduction: Africa’s Net Zero Transition. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 1-13). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_1

Kwilinski, A., Lyulyov, O., & Pimonenko, T. (2024). Reducing transport sector CO2 emissions patterns: Environmental technologies and renewable energy. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100217. doi:https://doi.org/10.1016/j.joitmc.2024.100217

Solaymani, S. (2022). CO2 emissions and the transport sector in Malaysia. Frontiers in Environmental Science, 9, 774164. doi:https://doi.org/10.3389/fenvs.2021.774164

Ahmed, S., Ahmed, K., & Ismail, M. (2020). Predictive analysis of CO 2 emissions and the role of environmental technology, energy use and economic output: evidence from emerging economies. Air Quality, Atmosphere & Health, 13, 1035-1044. doi:https://doi.org/10.1007/s11869-020-00855-1.

Wang, L., Xue, X., Zhao, Z., Wang, Y., & Zeng, Z. (2020). Finding the de-carbonization potentials in the transport sector: application of scenario analysis with a hybrid prediction model. Environmental Science and Pollution Research, 27, 21762-21776. doi:https://doi.org/10.1007/s11356-020-08627-1.

Nwokolo, S., Eyime, E., Obiwulu, A., & Ogbulezie, J. (2023). Africa's Path to Sustainability: Harnessing Technology, Policy, and Collaboration. Trends in Renewable Energy, 10(1), 98-131. doi:http://dx.doi.org/10.17737/tre.2024.10.1.00166

Nwokolo, S. C., Eyime, E. E., Obiwulu, A. U., Meyer, E. L., Ahia, C. C., Ogbulezie, J. C., & Proutsos, N. (2024). A multi-model approach based on CARIMA-SARIMA-GPM for assessing the impacts of climate change on concentrated photovoltaic (CPV) potential. Physics and Chemistry of the Earth, Parts A/B/C, 134, 103560. doi:https://doi.org/10.1016/j.pce.2024.103560

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Global Investment and Development in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 15-58). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_2

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Remedies to the Challenges of Renewable Energy Deployment in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 59-74). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_3

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Influencing the Scale of Africa’s Energy Transition. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 75-91). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_4

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Technological Pathways to Net-Zero Goals in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 93-210). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_5

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Decarbonizing Hard-to-Abate Sectors in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 211-236). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_6

Alataş, S. (2022). Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries. Research in Transportation Economics, 91, 101047. doi:https://doi.org/10.1016/j.retrec.2021.101047

Amin, A., Altinoz, B., & Dogan, E. (2020). Analyzing the determinants of carbon emissions from transportation in European countries: the role of renewable energy and urbanization. Clean Technologies and Environmental Policy, 22, 1725-1734. doi:https://doi.org/10.1007/s10098-020-01910-2

Awan, A., Alnour, M., Jahanger, A., & Onwe, J. C. (2022). Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector? Technology in Society, 71, 102128. doi:https://doi.org/10.1016/j.techsoc.2022.102128

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Impacts of Climate Change in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 237-262). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_7.

Wang, C., Wood, J., Wang, Y., Geng, X., & Long, X. (2020). CO2 emission in transportation sector across 51 countries along the Belt and Road from 2000 to 2014. Journal of Cleaner Production, 266, 122000. doi:https://doi.org/10.1016/j.jclepro.2020.122000

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Scenarios that Could Give Rise to an African Net-Zero Energy Transition. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 263-298). Cham: Springer Nature Switzerland. doi: https://doi.org/10.1007/978-3-031-44514-9_8

Nwokolo, S. C., & Ogbulezie, J. C. (2018). A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 367-396. doi:https://doi.org/10.1016/j.bjbas.2017.05.001

Nwokolo, S. C., & Ogbulezie, J. C. (2018). A qualitative review of empirical models for estimating diffuse solar radiation from experimental data in Africa. Renewable and Sustainable Energy Reviews, 92, 353-393. doi:https://doi.org/10.1016/j.rser.2018.04.118

Samuel Chukwujindu, N. (2017). A comprehensive review of empirical models for estimating global solar radiation in Africa. Renewable and Sustainable Energy Reviews, 78, 955-995. doi:https://doi.org/10.1016/j.rser.2017.04.101

Barman, P., Dutta, L., Bordoloi, S., Kalita, A., Buragohain, P., Bharali, S., & Azzopardi, B. (2023). Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches. Renewable and Sustainable Energy Reviews, 183, 113518. doi:https://doi.org/10.1016/j.rser.2023.113518

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Africa's Path to Net-Zero. Cham: Springer Nature Switzerland; 2023. doi:https://doi.org/10.1007/978-3-031-44514-9

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Africa’s Awakening to Climate Action. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 299-310). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_9

Nwokolo, S., Eyime, E., Obiwulu, A., & Ogbulezie, J. (2023). Exploring Cutting-Edge Approaches to Reduce Africa's Carbon Footprint through Innovative Technology Dissemination. Trends in Renewable Energy, 10(1), 1-29. doi:http://dx.doi.org/10.17737/tre.2024.10.1.00163

Borysova, T., Monastyrskyi, G., Zielinska, A., & Barczak, M. (2019). Innovation activity development of urban public transport service providers: multifactor economic and mathematical model. Marketing and Management of Innovations, 4, 98-109. doi:https://doi.org/10.21272/mmi.2019.4-08

Fontanot, T., Kishore, R., Van den Kerkhof, S., Blommaert, M., Peremans, B., Dupon, O., Kaaya, I., Tuomiranta, A., Duerinckx, F., & Meuret, Y. (2024). Multi-physics based energy yield modelling of a hybrid concentrated solar power/photovoltaic system with spectral beam splitting. Solar Energy, 278, 112753. doi:https://doi.org/10.1016/j.solener.2024.112753

Godil, D. I., Yu, Z., Sharif, A., Usman, R., & Khan, S. A. R. (2021). Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: a path toward sustainable development. Sustainable Development, 29(4), 694-707. doi:https://doi.org/10.1002/sd.2167

Gulagi, A., Alcanzare, M., Bogdanov, D., Esparcia, E., Ocon, J., & Breyer, C. (2021). Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines. Renewable and Sustainable Energy Reviews, 144, 110934. doi:https://doi.org/10.1016/j.rser.2021.110934

Hens, L., Melnyk, L. H., Matsenko, O. M., Chygryn, O. Y., & Gonzales, C. C. (2019). Transport economics and sustainable development in Ukraine. Marketing and Management of Innovations, 3, 272-284. doi:https://doi.org/10.21272/mmi.2019.3-21

Hickman, R., Ashiru, O., & Banister, D. (2009). Achieving carbon-efficient transportation: backcasting from London. Transportation Research Record, 2139(1), 172-182. doi:https://doi.org/10.3141/2139-20

Nwokolo, S. C., Meyer, E. L., & Ahia, C. C. (2024). Exploring the Interactive Influences of Climate Change and Urban Development on the Fraction of Absorbed Photosynthetically Active Radiation. Atmosphere, 15(3), 253. doi:https://doi.org/10.3390/atmos15030253

Proutsos, N., Liakatas, A., Alexandris, S., Nwokolo, S. C., Solomou, A. D., & Amadi, S. O. (2024). Assessing the impact of atmospheric attributes on the effectiveness of solar irradiance for photosynthesis of urban vegetation in Attica, Greece. Theoretical and Applied Climatology, 155(2), 1415-1427. doi:https://doi.org/10.1007/s00704-023-04700-0

Nwokolo, S., Obiwulu, A., Amadi, S., & Ogbulezie, J. (2023). Assessing the Impact of Soiling, Tilt Angle, and Solar Radiation on the Performance of Solar PV Systems. Trends in Renewable Energy, 9(2), 120-136. doi:http://dx.doi.org/10.17737/tre.2023.9.2.00156

Nwokolo, S. C., Proutsos, N., Meyer, E. L., & Ahia, C. C. (2023). Machine learning and physics-based hybridization models for evaluation of the effects of climate change and urban expansion on photosynthetically active radiation. Atmosphere, 14(4), 687. doi:https://doi.org/10.3390/atmos14040687

Agbor, M., Udo, S., Ewona, I., Nwokolo, S., Ogbulezie, J., Amadi, S., & Billy, U. (2023). Effects of Angstrom-Prescott and Hargreaves-Samani Coefficients on Climate Forcing and Solar PV Technology Selection in West Africa. Trends in Renewable Energy, 9(1), 78-106. doi:http://dx.doi.org/10.17737/tre.2023.9.1.00150

Agbor, M. E., Udo, S. O., Ewona, I. O., Nwokolo, S. C., Ogbulezie, J. C., & Amadi, S. O. (2023). Potential impacts of climate change on global solar radiation and PV output using the CMIP6 model in West Africa. Cleaner Engineering and Technology, 13, 100630. doi:https://doi.org/10.1016/j.clet.2023.100630

Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Technological Pathways to Net-Zero Goals in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 93-210). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_5

Li, X., Ren, A., & Li, Q. (2022). Exploring patterns of transportation-related CO2 emissions using machine learning methods. Sustainability, 14(8), 4588. doi:https://doi.org/10.3390/su14084588

Ağbulut, Ü. (2022). Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustainable Production and Consumption, 29, 141-157. doi:https://doi.org/10.1016/j.spc.2021.10.001

Klemm, C., & Vennemann, P. (2021). Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches. Renewable and Sustainable Energy Reviews, 135, 110206. doi:https://doi.org/10.1016/j.rser.2020.110206

IPCC. (2021).Summary for Policymakers. In Climate Change 2021: The Physical Science Basis, https://www.ipcc.ch/report/ar6/wg1/chapter/summary-for-policymakers/ (Accessed on 9/22.2024).

Proutsos, N., Tigkas, D., Tsevreni, I., Alexandris, S. G., Solomou, A. D., Bourletsikas, A., ... & Nwokolo, S. C. (2023). A thorough evaluation of 127 potential evapotranspiration models in two mediterranean urban green sites. Remote Sensing, 15(14), 3680. doi:https://doi.org/10.3390/rs15143680

Schmidt Rivera, X. C., Topriska, E., Kolokotroni, M., & Azapagic, A. (2018). Environmental sustainability of renewable hydrogen in comparison with conventional cooking fuels. Journal of Cleaner Production, 196, 863-879. doi:https://doi.org/10.1016/j.jclepro.2018.06.033.

Agyekum, E. B., Nutakor, C., Khan, T., Adegboye, O. R., Odoi-Yorke, F., & Okonkwo, P. C. (2024). Analyzing the research trends in the direction of hydrogen storage – A look into the past, present and future for the various technologies. International Journal of Hydrogen Energy, 74, 259-275. doi:https://doi.org/10.1016/j.ijhydene.2024.05.399

Okonkwo, P. C., Islam, M. S., Taura, U. H., Barhoumi, E. M., Mansir, I. B., Das, B. K., Ali Sulaiman, M. M. B., Agyekum, E. B., & Bahadur, I. (2024). A techno-economic analysis of renewable hybrid energy systems for hydrogen production at refueling stations. International Journal of Hydrogen Energy, 78, 68-82. doi:https://doi.org/10.1016/j.ijhydene.2024.06.294

Chukwujindu Nwokolo, S., Ogbulezie, J. C., & Umunnakwe Obiwulu, A. (2022). Impacts of climate change and meteo-solar parameters on photosynthetically active radiation prediction using hybrid machine learning with Physics-based models. Advances in Space Research, 70(11), 3614-3637. doi:https://doi.org/10.1016/j.asr.2022.08.010

Nwokolo, S. C., Obiwulu, A. U., Ogbulezie, J. C., & Amadi, S. O. (2022). Hybridization of statistical machine learning and numerical models for improving beam, diffuse and global solar radiation prediction. Cleaner Engineering and Technology, 9, 100529. doi:https://doi.org/10.1016/j.clet.2022.100529

Nwokolo, S. C., Amadi, S. O., Obiwulu, A. U., Ogbulezie, J. C., & Eyibio, E. E. (2022). Prediction of global solar radiation potential for sustainable and cleaner energy generation using improved Angstrom-Prescott and Gumbel probabilistic models. Cleaner Engineering and Technology, 6, 100416. doi:https://doi.org/10.1016/j.clet.2022.100416

Yang, B., Xie, R., Duan, J., & Wang, J. (2023). State-of-the-art review of MPPT techniques for hybrid PV-TEG systems: Modeling, methodologies, and perspectives. Global Energy Interconnection, 6(5), 567-591. doi:https://doi.org/10.1016/j.gloei.2023.10.005

Shah, K. J., Pan, S.-Y., Lee, I., Kim, H., You, Z., Zheng, J.-M., & Chiang, P.-C. (2021). Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. Journal of Cleaner Production, 326, 129392. doi:https://doi.org/10.1016/j.jclepro.2021.129392

Georgopoulou, E., Mirasgedis, S., Sarafidis, Y., Giannakopoulos, C., Varotsos, K. V., & Gakis, N. (2024). Climate Change Impacts on the Energy System of a Climate-Vulnerable Mediterranean Country (Greece). Atmosphere, 15(3), 286. doi:https://doi.org/10.3390/atmos15030286.

Gaetani, M., Huld, T., Vignati, E., Monforti-Ferrario, F., Dosio, A., & Raes, F. (2014). The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modeling experiments. Renewable and Sustainable Energy Reviews, 38, 706-716. doi:https://doi.org/10.1016/j.rser.2014.07.041

Mango, M., Casey, J. A., & Hernández, D. (2021). Resilient Power: A home-based electricity generation and storage solution for the medically vulnerable during climate-induced power outages. Futures, 128, 102707. doi:https://doi.org/10.1016/j.futures.2021.102707

Kany, M. S., Mathiesen, B. V., Skov, I. R., Korberg, A. D., Thellufsen, J. Z., Lund, H., Sorknæs, P., & Chang, M. (2022). Energy efficient decarbonisation strategy for the Danish transport sector by 2045. Smart Energy, 5, 100063. doi:https://doi.org/10.1016/j.segy.2022.100063

Abbas, S., Saqib, N., & Shahzad, U. (2024). Global export flow of Chilean copper: The role of environmental innovation and renewable energy transition. Geoscience Frontiers, 15(3), 101697. doi:https://doi.org/10.1016/j.gsf.2023.101697

International Energy Agency. (2022). World Energy Outlook 2022. https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf (Accessed on 9/22/2024)

Khurshid, A., Khan, K., & Cifuentes-Faura, J. (2023). 2030 Agenda of sustainable transport: Can current progress lead towards carbon neutrality? Transportation Research Part D: Transport and Environment, 122, 103869. doi:https://doi.org/10.1016/j.trd.2023.103869

Xia, X., Li, P., Xia, Z., Wu, R., & Cheng, Y. (2022). Life cycle carbon footprint of electric vehicles in different countries: A review. Separation and Purification Technology, 301, 122063. doi:https://doi.org/10.1016/j.seppur.2022.122063

Khurshid, A., Khan, K., Chen, Y., & Cifuentes-Faura, J. (2023). Do green transport and mitigation technologies drive OECD countries to sustainable path? Transportation Research Part D: Transport and Environment, 118, 103669. doi:https://doi.org/10.1016/j.trd.2023.103669

Khurshid, A., Rauf, A., Qayyum, S., Calin, A. C., & Duan, W. (2023). Green innovation and carbon emissions: the role of carbon pricing and environmental policies in attaining sustainable development targets of carbon mitigation—evidence from Central-Eastern Europe. Environment, Development and Sustainability, 25(8), 8777-8798. doi:https://doi.org/10.1007/s10668-022-02422-3

Liu, M., Chen, Z., Sowah, J. K., Ahmed, Z., & Kirikkaleli, D. (2023). The dynamic impact of energy productivity and economic growth on environmental sustainability in South European countries. Gondwana Research, 115, 116-127. doi:https://doi.org/10.1016/j.gr.2022.11.012

Hassan, M. A., Bailek, N., Bouchouicha, K., & Nwokolo, S. C. (2021). Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renewable Energy, 171, 191-209. doi:https://doi.org/10.1016/j.renene.2021.02.103

Obiwulu, A. U., Erusiafe, N., Olopade, M. A., & Nwokolo, S. C. (2020). Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance. Renewable Energy, 154, 404-431. doi:https://doi.org/10.1016/j.renene.2020.02.103

Obiwulu, A. U., Chendo, M. A. C., Erusiafe, N., & Nwokolo, S. C. (2020). Implicit meteorological parameter-based empirical models for estimating back temperature solar modules under varying tilt-angles in Lagos, Nigeria. Renewable Energy, 145, 442-457. doi:https://doi.org/10.1016/j.renene.2019.05.136

Hassan, M. A., Bailek, N., Bouchouicha, K., Ibrahim, A., Jamil, B., Kuriqi, A., ... & El-kenawy, E. S. M. (2022). Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions. Theoretical and Applied Climatology, 150(1), 715-729. doi:https://doi.org/10.1007/s00704-022-04166-6

Obiwulu, A. U., Erusiafe, N., Olopade, M. A., & Nwokolo, S. C. (2022). Modeling and estimation of the optimal tilt angle, maximum incident solar radiation, and global radiation index of the photovoltaic system. Heliyon, 8(6). doi:https://doi.org/10.1016/j.heliyon.2022.e09598

Nwokolo, S. C., Meyer, E. L., & Ahia, C. C. (2023). Credible pathways to catching up with climate goals in Nigeria. Climate, 11(9), 196. doi:https://doi.org/10.3390/cli11090196

Sylvia John-Jaja, A., Abdullah, A. R., & Samuel Nwokolo, C. (2017). Genetic Analysis of Egg Quality Traits in Bovan Nera Black Laying Hen under Sparse Egg Production Periods. Iranian Journal of Applied Animal Science, 7(1), 155-162.

John-Jaja, S. A., Abdullah, A.-R., & Nwokolo, S. C. (2016). Effects of age variance on repeatability estimates of egg dimensions of Bovan Nera Black laying chickens. Journal of Genetic Engineering and Biotechnology, 14(1), 219-226. doi:https://doi.org/10.1016/j.jgeb.2016.06.003

John-Jaja, S. A., Udoh, U. H., & Nwokolo, S. C. (2016). Repeatability estimates of egg weight and egg-shell weight under various production periods for Bovan Nera Black laying chicken. Beni-Suef University Journal of Basic and Applied Sciences, 5(4), 389-394. doi:https://doi.org/10.1016/j.bjbas.2016.11.001

Ituen, E. E., Esen, N. U., Nwokolo, S. C., & Udo, E. G. (2012). Prediction of global solar radiation using relative humidity, maximum temperature and sunshine hours in Uyo, in the Niger Delta Region, Nigeria. Advances in Applied Science Research, 3(4), 1923-1937.

Sunday, E., Agbasi, O., & Samuel, N. (2016). Modelling and estimating photosynthetically active radiation from measured global solar radiation at Calabar, Nigeria. Physical Science International Journal, 12, 1-12. doi:https://doi.org/10.9734/PSIJ/2016/28446

Etuk, S. E., Nwokolo, S. C., Okechukwu, E. A., & John-Jaja, S. A. (2016). Analysis of photosynthetically active radiation over six tropical ecological zones in Nigeria. Journal of Geography, Environment and Earth Science International, 7(4), 1-15. doi:https://doi.org/10.9734/JGEESI/2016/27945

Nwokolo, S., & Otse, C. (2019). Impact of Sunshine Duration and Clearness Index on Diffuse Solar Radiation Estimation in Mountainous Climate. Trends in Renewable Energy, 5(3), 307-332. doi:http://dx.doi.org/10.17737/tre.2019.5.3.00107

Amadi, S., Dike, T., & Nwokolo, S. (2020). Global Solar Radiation Characteristics at Calabar and Port Harcourt Cities in Nigeria. Trends in Renewable Energy, 6(2), 111-130. doi:http://dx.doi.org/10.17737/tre.2020.6.2.00114

Nwokolo, S. C., Obiwulu, A. U., & Ogbulezie, J. C. (2023). Machine learning and analytical model hybridization to assess the impact of climate change on solar PV energy production. Physics and Chemistry of the Earth, Parts A/B/C, 130, 103389. doi:https://doi.org/10.1016/j.pce.2023.103389

Nwokolo, S. C., Ogbulezie, J. C., & Ushie, O. J. (2023). A multi-model ensemble-based CMIP6 assessment of future solar radiation and PV potential under various climate warming scenarios. Optik, 285, 170956. doi:https://doi.org/10.1016/j.ijleo.2023.170956

Qiao, Q., Eskandari, H., Saadatmand, H., & Sahraei, M. A. (2024). An interpretable multi-stage forecasting framework for energy consumption and CO2 emissions for the transportation sector. Energy, 286, 129499. doi:https://doi.org/10.1016/j.energy.2023.129499

Emami Javanmard, M., Tang, Y., Wang, Z., & Tontiwachwuthikul, P. (2023). Forecast energy demand, CO2 emissions and energy resource impacts for the transportation sector. Applied Energy, 338, 120830. doi:https://doi.org/10.1016/j.apenergy.2023.120830

Giannakis, E., Serghides, D., Dimitriou, S., & Zittis, G. (2020). Land transport CO2 emissions and climate change: evidence from Cyprus. International Journal of Sustainable Energy, 39(7), 634-647. doi:https://doi.org/10.1080/14786451.2020.1743704

Yasin Çodur, M., & Ünal, A. (2019). An estimation of transport energy demand in Turkey via artificial neural networks. Promet-Traffic&Transportation, 31(2), 151-161. doi:https://doi.org/10.7307/ptt.v31i2.3041

Galeazzi, C., Steinbuks, J., & Cust, J. (2020). Africa’s Resource Export Opportunities and the Global Energy Transition (English). Live wire knowledge note series,no. 2020/111 Washington, D.C. : World Bank Group. http://documents.worldbank.org/curated/en/431621608028194772/Africa-s-Resource-Export-Opportunities-and-the-Global-Energy-Transition (Accessed on 9/22/2024)




DOI: http://dx.doi.org/10.17737/tre.2025.11.1.00185

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Eyime E Eyime, Unoh Florence Ben

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)