A Promising Path toward a Net-Zero Clean Energy Future in Africa and Southeast Asia
Abstract
This paper explores strategies for a rapid transition to net-zero energy in Africa and Southeast Asia through renewable energy sources. The study analyzes the current energy landscape and challenges faced by these regions, focusing on opportunities for economic development based on renewable energy generation, specifically solar PV and wind energy. The results show that an increase in renewable energy generation in Southeast Asia resulted in a comparable rise in renewable energy supply, electricity generation, and overall energy supply between 2021 and 2022. In Africa, an increase in renewable energy generation from 201-210 TWh demanded an increase in renewable energy supply, electricity generation, and overall energy supply between 2021 and 2022. Southeast Asia exceeded Africa in terms of solar PV generation in both years, with a share of 38-45 TWh, while Africa achieved a lesser proportion of 14-16 TWh in solar PV generation in the historical scenario. The same incremental trend was observed in both the stated policy scenario and the announced pledged scenario for both Africa and Southeast Asia in 2030 and 2050. According to the analysis, Africa produced a higher fraction of total wind energy production at 23–25 TWh, compared to Southeast Asia, which reported 9–14 TWh under the historical scenario between 2021 and 2022. However, according to the announced pledged scenario, Southeast Asia is predicted to outperform Africa in wind energy output between 2030 and 2050. However, by 2050, Southeast Asia is forecast to vastly outperform Africa in terms of wind energy output, with a staggering record of 1207 TWh compared to Africa's estimated 593 TWh. The authors propose five potential solutions to the challenges of renewable energy supply in Africa and Southeast Asia, based on the International Energy Agency's forecast between 2030 and 2050. These include exploring solar energy advancements, floating turbines, wave energy converters, ocean thermal energy conversion systems, energy storage and thermal energy solutions, and IoT integration for energy efficiency enhancement. The authors emphasize the need for long-term solutions and suggest policy implications for sustainable scenarios that encourage environmentally sound behaviors, drive economic growth, and promote social development. These scenarios include integrated resource planning, market liberalization, government incentives, and capacity-building.
Citation: Eyime, E., & Ben, U. (2024). A promising path toward net zero energy in Africa and Southeast Asia. Trends in Renewable Energy, 11(1), 52-83. doi:http://dx.doi.org/10.17737/tre.2025.11.1.00186
Keywords
Full Text:
FULL TEXT (PDF)References
Breyer, C., Oyewo, A. S., Gulagi, A., & Keiner, D. (2023). Renewable energy enabling pathways towards prosperity in Africa and South Asia. Solar Compass, 8, 100057. doi:https://doi.org/10.1016/j.solcom.2023.100057
Keiner, D., Gulagi, A., & Breyer, C. (2023). Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses. Energy, 272, 127199. doi:https://doi.org/10.1016/j.energy.2023.127199
Oyewo, A. S., Bogdanov, D., Aghahosseini, A., Mensah, T. N. O., & Breyer, C. (2022). Contextualizing the scope, scale, and speed of energy pathways toward sustainable development in Africa. iScience, 25(9). doi:https://doi.org/10.1016/j.isci.2022.104965
Intergovernmental Panel on Climate Change (IPCC). (2023). Synthesis Report of the IPCC Sixth Assessment Report (AR6). https://ntrs.nasa.gov/api/citations/20230009525/downloads/ARuaneIPCC6thAssessSynthesisAccepted.pdf (accessed on 11/05/2024)
Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Oyewo, A. S., Child, M., . . . Breyer, C. (2021). Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 227, 120467. doi:https://doi.org/10.1016/j.energy.2021.120467
Ram, M., Gulagi, A., Aghahosseini, A., Bogdanov, D., & Breyer, C. (2022). Energy transition in megacities towards 100% renewable energy: A case for Delhi. Renewable Energy, 195, 578-589. doi:https://doi.org/10.1016/j.renene.2022.06.073
Jacobson, M. Z., Delucchi, M. A., Cameron, M. A., Coughlin, S. J., Hay, C. A., Manogaran, I. P., . . . von Krauland, A.-K. (2019). Impacts of Green New Deal Energy Plans on Grid Stability, Costs, Jobs, Health, and Climate in 143 Countries. One Earth, 1(4), 449-463. doi:https://doi.org/10.1016/j.oneear.2019.12.003
Galimova, T., Ram, M., & Breyer, C. (2022). Mitigation of air pollution and corresponding impacts during a global energy transition towards 100% renewable energy system by 2050. Energy Reports, 8, 14124-14143. doi:https://doi.org/10.1016/j.egyr.2022.10.343
Caldera, U., & Breyer, C. (2020). Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems. Energy, 200, 117507. doi:https://doi.org/10.1016/j.energy.2020.117507
Gulagi, A., Ram, M., Bogdanov, D., Sarin, S., Mensah, T. N. O., & Breyer, C. (2022). The role of renewables for rapid transitioning of the power sector across states in India. Nature Communications, 13(1), 5499. doi:https://doi.org/10.1038/s41467-022-33048-8
Vartiainen, E., Masson, G., Breyer, C., Moser, D., & Román Medina, E. (2020). Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity. Progress in Photovoltaics: Research and Applications, 28(6), 439-453. doi:https://doi.org/10.1002/pip.3189
Bolinger, M., & Bolinger, G. (2022). Land Requirements for Utility-Scale PV: An Empirical Update on Power and Energy Density. IEEE Journal of Photovoltaics, 12(2), 589-594. doi:https://doi.org/10.1109/jphotov.2021.3136805
Aghahosseini, A., Solomon, A. A., Breyer, C., Pregger, T., Simon, S., Strachan, P., & Jäger-Waldau, A. (2023). Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness. Applied Energy, 331, 120401. doi:https://doi.org/10.1016/j.apenergy.2022.120401
REN21. (2022). Renewables 2022 Global Status Report. https://www.ren21.net/gsr-2022/ (accessed on 10/28/2024)
International Energy Agency. (2022). Africa energy outlook 2022. In World Energy Outlook 2022. https://www.iea.org/reports/africa-energy-outlook-2022 (accessed on 10/28/2024)
International Energy Agency. (2022). World Energy Outlook 2022. https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 10/28/2024)
International Renewable Energy Agency (IRNEA). (2022). Renewable Power Generation Costs in 2021. https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021 (accessed on 10/28/2024)
Liang, Y., Kleijn, R., & van der Voet, E. (2023). Increase in demand for critical materials under IEA Net-Zero emission by 2050 scenario. Applied Energy, 346, 121400. doi:https://doi.org/10.1016/j.apenergy.2023.121400
Renné, D. S. (2022). Progress, opportunities and challenges of achieving net-zero emissions and 100% renewables. Solar Compass, 1, 100007. doi:https://doi.org/10.1016/j.solcom.2022.100007
Breyer, C., Khalili, S., Bogdanov, D., Ram, M., Oyewo, A. S., Aghahosseini, A., . . . Sovacool, B. K. (2022). On the History and Future of 100% Renewable Energy Systems Research. IEEE Access, 10, 78176-78218. doi:https://doi.org/10.1109/access.2022.3193402
Eyre, N. (2021). From using heat to using work: reconceptualising the zero carbon energy transition. Energy Efficiency, 14(7), 77. doi:https://doi.org/10.1007/s12053-021-09982-9
Brown, T. W., Bischof-Niemz, T., Blok, K., Breyer, C., Lund, H., & Mathiesen, B. V. (2018). Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’. Renewable and Sustainable Energy Reviews, 92, 834-847. doi:https://doi.org/10.1016/j.rser.2018.04.113
Ueckerdt, F., Bauer, C., Dirnaichner, A., Everall, J., Sacchi, R., & Luderer, G. (2021). Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change, 11(5), 384-393. doi:https://doi.org/10.1038/s41558-021-01032-7
Khalili, S., Rantanen, E., Bogdanov, D., & Breyer, C. (2019). Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World. Energies, 12(20), 3870. https://doi.org/10.3390/en12203870
Lopez, G., Galimova, T., Fasihi, M., Bogdanov, D., & Breyer, C. (2023). Towards defossilised steel: Supply chain options for a green European steel industry. Energy, 273, 127236. doi:https://doi.org/10.1016/j.energy.2023.127236
Galán-Martín, Á., Tulus, V., Díaz, I., Pozo, C., Pérez-Ramírez, J., & Guillén-Gosálbez, G. (2021). Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. One Earth, 4(4), 565-583. doi:https://doi.org/10.1016/j.oneear.2021.04.001
Kätelhön, A., Meys, R., Deutz, S., Suh, S., & Bardow, A. (2019). Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proceedings of the National Academy of Sciences, 116(23), 11187-11194. doi:https://doi.org/10.1073/pnas.1821029116
Otto, A., Robinius, M., Grube, T., Schiebahn, S., Praktiknjo, A., & Stolten, D. (2017). Power-to-Steel: Reducing CO2 through the Integration of Renewable Energy and Hydrogen into the German Steel Industry. Energies, 10(4), 451. doi: https://doi.org/10.3390/en10040451
Bailera, M., Lisbona, P., Peña, B., & Romeo, L. M. (2021). A review on CO2 mitigation in the Iron and Steel industry through Power to X processes. Journal of CO2 Utilization, 46, 101456. doi:https://doi.org/10.1016/j.jcou.2021.101456
Lopez, G., Farfan, J., & Breyer, C. (2022). Trends in the global steel industry: Evolutionary projections and defossilisation pathways through power-to-steel. Journal of Cleaner Production, 375, 134182. doi:https://doi.org/10.1016/j.jclepro.2022.134182
Azzuni, A., & Breyer, C. (2020). Global Energy Security Index and Its Application on National Level. Energies, 13(10), 2502. doi:https://doi.org/10.3390/en13102502
Khalili, S., & Breyer, C. (2022). Review on 100% Renewable Energy System Analyses—A Bibliometric Perspective. IEEE Access, 10, 125792-125834. doi:https://doi.org/10.1109/access.2022.3221155
Oyewo, A. S., Sterl, S., Khalili, S., & Breyer, C. (2023). Highly renewable energy systems in Africa: Rationale, research, and recommendations. Joule, 7(7), 1437-1470. doi:https://doi.org/10.1016/j.joule.2023.06.004
United Nations Department for Economic and Social Affairs. (2019). World Population Prospects 2019: Highlights. 10 Key Findings. https://www.medbox.org/pdf/5e148832db60a2044c2d5b47 (accessed on 10/29/2024)
International Renewable Energy Agency (IRENA). (2019). Global Energy Transformation: A Roadmap to 2050. https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition (accessed on 10/29/2024)
Alova, G., Trotter, P. A., & Money, A. (2021). A machine-learning approach to predicting Africa’s electricity mix based on planned power plants and their chances of success. Nature Energy, 6(2), 158-166. doi:https://doi.org/10.1038/s41560-020-00755-9
Samuel Chukwujindu, N. (2017). A comprehensive review of empirical models for estimating global solar radiation in Africa. Renewable and Sustainable Energy Reviews, 78, 955-995. doi:https://doi.org/10.1016/j.rser.2017.04.101
Taliotis, C., Shivakumar, A., Ramos, E., Howells, M., Mentis, D., Sridharan, V., . . . Mofor, L. (2016). An indicative analysis of investment opportunities in the African electricity supply sector — Using TEMBA (The Electricity Model Base for Africa). Energy for Sustainable Development, 31, 50-66. doi:https://doi.org/10.1016/j.esd.2015.12.001
van der Zwaan, B., Kober, T., Longa, F. D., van der Laan, A., & Jan Kramer, G. (2018). An integrated assessment of pathways for low-carbon development in Africa. Energy Policy, 117, 387-395. doi:https://doi.org/10.1016/j.enpol.2018.03.017
Trotter, P. A., Maconachie, R., & McManus, M. C. (2018). Solar energy's potential to mitigate political risks: The case of an optimised Africa-wide network. Energy Policy, 117, 108-126. doi:https://doi.org/10.1016/j.enpol.2018.02.013
International Energy Agency. (2019). Africa Energy Outlook 2019. https://www.iea.org/reports/africa-energy-outlook-2019 (accessed on 10/29/2024)
Teske, S., Pregger, T., Simon, S., Naegler, T., Pagenkopf, J., Deniz, Ö., . . . Meinshausen, M. (2021). It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways. Energies, 14(8), 2103. doi:https://doi.org/10.3390/en14082103
López, I., Gómez-Cornejo, J., Aranzabal, I., García, L. E., & Mazón, J. (2023). Photovoltaic Local Energy Communities—Design of New Energy Exchange Modalities—Case Study: Tolosa. Energies, 16(10), 4000. doi:https://doi.org/10.3390/en16104000
ElSayed, M., Aghahosseini, A., Caldera, U., & Breyer, C. (2023). Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt. Applied Energy, 343, 121216. doi:https://doi.org/10.1016/j.apenergy.2023.121216
Szabó, S., Pinedo Pascua, I., Puig, D., Moner-Girona, M., Negre, M., Huld, T., . . . Kammen, D. (2021). Mapping of affordability levels for photovoltaic-based electricity generation in the solar belt of sub-Saharan Africa, East Asia and South Asia. Scientific Reports, 11(1), 3226. doi:https://doi.org/10.1038/s41598-021-82638-x
Ituen, E. E., Esen, N. U., Nwokolo, S. C., & Udo, E. G. (2012). Prediction of global solar radiation using relative humidity, maximum temperature and sunshine hours in Uyo, in the Niger Delta Region, Nigeria. Advances in Applied Science Research, 3(4), 1923-1937.
Szabó, S., Pinedo Pascua, I., Puig, D., Moner-Girona, M., Negre, M., Huld, T., . . . Kammen, D. (2021). Mapping of affordability levels for photovoltaic-based electricity generation in the solar belt of sub-Saharan Africa, East Asia and South Asia. Scientific Reports, 11(1), 3226. doi:https://doi.org/10.1038/s41598-021-82638-x
Puig, D., Moner-Girona, M., Szabó, S., & Pinedo Pascua, I. (2021). Universal access to electricity: actions to avoid locking-in unsustainable technology choices. Environmental Research Letters, 16(12), 121003. doi:https://doi.org/10.1088/1748-9326/ac3ceb
Nwokolo, S., Eyime, E., Obiwulu, A., & Ogbulezie, J. (2024). Africa's Path to Sustainability: Harnessing Technology, Policy, and Collaboration. Trends in Renewable Energy, 10(1), 98-131. doi:http://dx.doi.org/10.17737/tre.2024.10.1.00166
Nwokolo, S. C., Obiwulu, A. U., & Okonkwo, P. C. (2024). Africa’s Propensity for a Net Zero Energy Transition. CRC Press.
Benatallah, M., Bailek, N., Bouchouicha, K., Sharifi, A., Abdel-Hadi, Y., Nwokolo, S. C., ... & M. El-kenawy, E. S. (2024). Solar Radiation Prediction in Adrar, Algeria: A Case Study of Hybrid Extreme Machine-Based Techniques. International Journal of Engineering Research in Africa, 68, 151-164. doi:https://doi.org/10.4028/p-VH0u4y
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Scenarios that Could Give Rise to an African Net-Zero Energy Transition. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 263-298). Cham: Springer Nature Switzerland. doi: https://doi.org/10.1007/978-3-031-44514-9_8
Amadi, S., Dike, T., & Nwokolo, S. (2020). Global Solar Radiation Characteristics at Calabar and Port Harcourt Cities in Nigeria. Trends in Renewable Energy, 6(2), 111-130. doi:http://dx.doi.org/10.17737/tre.2020.6.2.00114
Nwokolo, S., & Otse, C. (2019). Impact of Sunshine Duration and Clearness Index on Diffuse Solar Radiation Estimation in Mountainous Climate. Trends in Renewable Energy, 5(3), 307-332. doi:http://dx.doi.org/10.17737/tre.2019.5.3.00107
Nwokolo, S., & Amadi, S. (2018). A Global Review of Empirical Models for Estimating Photosynthetically Active Radiation. Trends in Renewable Energy, 4(2), 236-327. doi:http://dx.doi.org/10.17737/tre.2018.4.2.0079
Bertheau, P., Oyewo, A. S., Cader, C., Breyer, C., & Blechinger, P. (2017). Visualizing National Electrification Scenarios for Sub-Saharan African Countries. Energies, 10(11), 1899. doi:https://doi.org/10.3390/en10111899
Mambwe, C., Schröder, K.-W., Kügel, L., & Jain, P. (2022). Benchmarking and comparing effectiveness of mini-grid encroachment regulations of 24 African countries ✦ A guide for governments and energy regulators to develop effective grid encroachment regulations. Solar Compass, 1, 100008. doi:https://doi.org/10.1016/j.solcom.2022.100008
Nwokolo, S. C., Meyer, E. L., & Ahia, C. C. (2024). Exploring the Interactive Influences of Climate Change and Urban Development on the Fraction of Absorbed Photosynthetically Active Radiation. Atmosphere, 15(3), 253. doi:https://doi.org/10.3390/atmos15030253
Nwokolo, S. C., Proutsos, N., Meyer, E. L., & Ahia, C. C. (2023). Machine learning and physics-based hybridization models for evaluation of the effects of climate change and urban expansion on photosynthetically active radiation. Atmosphere, 14(4), 687. doi:https://doi.org/10.3390/atmos14040687
IEA. (2021), The Role of Critical Minerals in Clean Energy Transitions, IEA, Paris https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 10/30/2024)
IEA. (2021). World Energy Outlook 2021, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 10/30/2024)
Friedlingstein, P., O'sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., ... & Zheng, B. (2022). Global carbon budget 2022. Earth System Science Data, 14(11), 4811-4900. doi:https://doi.org/10.5194/essd-14-4811-2022
Sunday, E., Agbasi, O., & Samuel, N. (2016). Modelling and estimating photosynthetically active radiation from measured global solar radiation at Calabar, Nigeria. Physical Science International Journal, 12, 1-12. doi:https://doi.org/10.9734/PSIJ/2016/28446
IEA (2021), Net Zero by 2050, IEA, Paris https://www.iea.org/reports/net-zero-by-2050 (accessed on 10/30/2024)
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Global Investment and Development in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 15-58). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_2
Nwokolo, S. C., Obiwulu, A. U., Ogbulezie, J. C., & Amadi, S. O. (2022). Hybridization of statistical machine learning and numerical models for improving beam, diffuse and global solar radiation prediction. Cleaner Engineering and Technology, 9, 100529. doi:https://doi.org/10.1016/j.clet.2022.100529
Nwokolo, S. C., Amadi, S. O., Obiwulu, A. U., Ogbulezie, J. C., & Eyibio, E. E. (2022). Prediction of global solar radiation potential for sustainable and cleaner energy generation using improved Angstrom-Prescott and Gumbel probabilistic models. Cleaner Engineering and Technology, 6, 100416. doi:https://doi.org/10.1016/j.clet.2022.100416
Nwokolo, S. C., & Ogbulezie, J. C. (2018). A qualitative review of empirical models for estimating diffuse solar radiation from experimental data in Africa. Renewable and Sustainable Energy Reviews, 92, 353-393. doi:https://doi.org/10.1016/j.rser.2018.04.118
Hassan, M. A., Bailek, N., Bouchouicha, K., & Nwokolo, S. C. (2021). Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renewable Energy, 171, 191-209. doi:https://doi.org/10.1016/j.renene.2021.02.103
Hassan, M. A., Bailek, N., Bouchouicha, K., Ibrahim, A., Jamil, B., Kuriqi, A., ... & El-kenawy, E. S. M. (2022). Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions. Theoretical and Applied Climatology, 150(1), 715-729. doi:https://doi.org/10.1007/s00704-022-04166-6
Nwokolo, S. C., & Ogbulezie, J. C. (2018). A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 367-396. doi:https://doi.org/10.1016/j.bjbas.2017.05.001
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Africa's Path to Net-Zero. Cham: Springer Nature Switzerland; 2023. doi:https://doi.org/10.1007/978-3-031-44514-9
Agbor, M., Udo, S., Ewona, I., Nwokolo, S., Ogbulezie, J., Amadi, S., & Billy, U. (2023). Effects of Angstrom-Prescott and Hargreaves-Samani Coefficients on Climate Forcing and Solar PV Technology Selection in West Africa. Trends in Renewable Energy, 9(1), 78-106. doi:http://dx.doi.org/10.17737/tre.2023.9.1.00150
Agbor, M. E., Udo, S. O., Ewona, I. O., Nwokolo, S. C., Ogbulezie, J. C., & Amadi, S. O. (2023). Potential impacts of climate change on global solar radiation and PV output using the CMIP6 model in West Africa. Cleaner Engineering and Technology, 13, 100630. doi:https://doi.org/10.1016/j.clet.2023.100630
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Introduction: Africa’s Net Zero Transition. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 1-13). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_1
Gulagi, A., Ram, M., & Breyer, C. (2020). Role of the transmission grid and solar wind complementarity in mitigating the monsoon effect in a fully sustainable electricity system for India. IET Renewable Power Generation, 14(2), 254-262. doi:https://doi.org/10.1049/iet-rpg.2019.0603
Gulagi, A., Ram, M., Solomon, A. A., Khan, M., & Breyer, C. (2020). Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh. Renewable Energy, 155, 899-920. doi:https://doi.org/10.1016/j.renene.2020.03.119
Sadiqa, A., Gulagi, A., & Breyer, C. (2018). Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050. Energy, 147, 518-533. doi:https://doi.org/10.1016/j.energy.2018.01.027
Gulagi, A., Bogdanov, D., & Breyer, C. (2017). The Demand For Storage Technologies In Energy Transition Pathways Towards 100% Renewable Energy For India. Energy Procedia, 135, 37-50. doi:https://doi.org/10.1016/j.egypro.2017.09.485
Gulagi, A., Pathak, S., Bogdanov, D., & Breyer, C. (2021). Renewable Energy Transition for the Himalayan Countries Nepal and Bhutan: Pathways Towards Reliable, Affordable and Sustainable Energy for All. IEEE Access, 9, 84520-84544. doi:https://doi.org/10.1109/access.2021.3087204
Gulagi, A., Choudhary, P., Bogdanov, D., & Breyer, C. (2017). Electricity system based on 100% renewable energy for India and SAARC. PLOS ONE, 12(7), e0180611. doi:https://doi.org/10.1371/journal.pone.0180611
Sadiqa, A., Gulagi, A., Bogdanov, D., Caldera, U., & Breyer, C. (2022). Renewable energy in Pakistan: Paving the way towards a fully renewables-based energy system across the power, heat, transport and desalination sectors by 2050. IET Renewable Power Generation, 16(1), 177-197. doi:https://doi.org/10.1049/rpg2.12278
Obiwulu, A. U., Chendo, M. A. C., Erusiafe, N., & Nwokolo, S. C. (2020). Implicit meteorological parameter-based empirical models for estimating back temperature solar modules under varying tilt-angles in Lagos, Nigeria. Renewable Energy, 145, 442-457. doi:https://doi.org/10.1016/j.renene.2019.05.136
Obiwulu, A. U., Erusiafe, N., Olopade, M. A., & Nwokolo, S. C. (2020). Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance. Renewable Energy, 154, 404-431. doi:https://doi.org/10.1016/j.renene.2020.02.103
Obiwulu, A. U., Erusiafe, N., Olopade, M. A., & Nwokolo, S. C. (2022). Modeling and estimation of the optimal tilt angle, maximum incident solar radiation, and global radiation index of the photovoltaic system. Heliyon, 8(6). doi:https://doi.org/10.1016/j.heliyon.2022.e09598
Etuk, S. E., Nwokolo, S. C., Okechukwu, E. A., & John-Jaja, S. A. (2016). Analysis of photosynthetically active radiation over six tropical ecological zones in Nigeria. Journal of Geography, Environment and Earth Science International, 7(4), 1-15. doi:https://doi.org/10.9734/JGEESI/2016/27945
Nwokolo, S. C., Meyer, E. L., & Ahia, C. C. (2023). Credible pathways to catching up with climate goals in Nigeria. Climate, 11(9), 196. doi:https://doi.org/10.3390/cli11090196
Nwokolo, S., Obiwulu, A., Amadi, S., & Ogbulezie, J. (2023). Assessing the Impact of Soiling, Tilt Angle, and Solar Radiation on the Performance of Solar PV Systems. Trends in Renewable Energy, 9(2), 120-136. doi:http://dx.doi.org/10.17737/tre.2023.9.2.00156
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Technological Pathways to Net-Zero Goals in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 93-210). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_5
Nwokolo, S. C., Obiwulu, A. U., & Ogbulezie, J. C. (2023). Machine learning and analytical model hybridization to assess the impact of climate change on solar PV energy production. Physics and Chemistry of the Earth, Parts A/B/C, 130, 103389. doi:https://doi.org/10.1016/j.pce.2023.103389
Nwokolo, S. C., Ogbulezie, J. C., & Ushie, O. J. (2023). A multi-model ensemble-based CMIP6 assessment of future solar radiation and PV potential under various climate warming scenarios. Optik, 285, 170956. doi:https://doi.org/10.1016/j.ijleo.2023.170956
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Decarbonizing Hard-to-Abate Sectors in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 211-236). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_6
International Renewable Energy Agency (IRENA). (2023). World energy transitions outlook 2023: 1.5°C Pathway. https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023 (accessed on 10/30/2024)
Chukwujindu Nwokolo, S., Ogbulezie, J. C., & Umunnakwe Obiwulu, A. (2022). Impacts of climate change and meteo-solar parameters on photosynthetically active radiation prediction using hybrid machine learning with Physics-based models. Advances in Space Research, 70(11), 3614-3637. doi:https://doi.org/10.1016/j.asr.2022.08.010
International Renewable Energy Agency (IRENA). (2021). Renewable capacity statistics 2021. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Apr/IRENA_RE_Capacity_Statistics_2021.pdf (accessed on 11/6/2024)
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Impacts of Climate Change in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 237-262). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_7.
Proutsos, N., Tigkas, D., Tsevreni, I., Alexandris, S. G., Solomou, A. D., Bourletsikas, A., ... & Nwokolo, S. C. (2023). A thorough evaluation of 127 potential evapotranspiration models in two mediterranean urban green sites. Remote Sensing, 15(14), 3680. doi:https://doi.org/10.3390/rs15143680
Nwokolo, S., Eyime, E., Obiwulu, A., & Ogbulezie, J. (2023). Exploring Cutting-Edge Approaches to Reduce Africa's Carbon Footprint through Innovative Technology Dissemination. Trends in Renewable Energy, 10(1), 1-29. doi:http://dx.doi.org/10.17737/tre.2024.10.1.00163
Proutsos, N., Liakatas, A., Alexandris, S., Nwokolo, S. C., Solomou, A. D., & Amadi, S. O. (2024). Assessing the impact of atmospheric attributes on the effectiveness of solar irradiance for photosynthesis of urban vegetation in Attica, Greece. Theoretical and Applied Climatology, 155(2), 1415-1427. doi:https://doi.org/10.1007/s00704-023-04700-0
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Influencing the Scale of Africa’s Energy Transition. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 75-91). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_4
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Remedies to the Challenges of Renewable Energy Deployment in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 59-74). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_3
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Influencing the Scale of Africa’s Energy Transition. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 75-91). Cham: Springer
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Decarbonizing Hard-to-Abate Sectors in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 211-236). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_6
Nwokolo, S. C., Eyime, E. E., Obiwulu, A. U., Meyer, E. L., Ahia, C. C., Ogbulezie, J. C., & Proutsos, N. (2024). A multi-model approach based on CARIMA-SARIMA-GPM for assessing the impacts of climate change on concentrated photovoltaic (CPV) potential. Physics and Chemistry of the Earth, Parts A/B/C, 134, 103560. doi:https://doi.org/10.1016/j.pce.2024.103560
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2024). Technological Pathways for Africa' s Net-Zero Economy: Technology Solutions to Unlock Africa’s Sustainable Future. Elsevier Science. doi:https://doi.org/10.1016/C2023-0-52499-1
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Africa’s Awakening to Climate Action. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 299-310). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_9
DOI: http://dx.doi.org/10.17737/tre.2025.11.1.00186
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Eyime E Eyime, Unoh Florence Ben
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)