From Policy to Practice: Evaluating the Role of Private-Sector Champions Like Elon Musk in Shaping Trump's 2.0 Climate Agenda
Abstract
This paper explores the prospective influence of private-sector leaders, particularly Elon Musk, on the formulation of climate and energy policy in a possible second term of President Donald Trump. Historically, the goals of the Trump administration have been viewed as opposed to environmental advocacy; yet, this analysis explores the potential for public-private partnerships that reconcile economic objectives with climate-positive results. Musk's enterprises—Tesla, SpaceX, and SolarCity—are transforming clean energy, and his impact on federal climate policies may initiate a new phase of environmentally sustainable economic development within conservative administration. This study analyzes case studies where Musk has collaborated with public authorities to tackle environmental and energy issues, highlighting practical strategies for partnership. Potential synergies are seen in sectors including renewable energy, electric vehicle infrastructure, and sustainability-oriented manufacturing, underscoring their alignment with Trump's economic plan. Additionally, the article examines the policy mechanisms—tax incentives, regulatory reforms, and investments in clean technology—that may encourage private sector participation in a nationally endorsed climate agenda. This article advocates for a worldview in which leaders like Musk advance environmental progress by harmonizing innovation with conservative regulatory frameworks while preserving traditional economic objectives. Ultimately, it advocates for a revolutionary public-private partnership paradigm that utilizes private sector expertise to tackle climate challenges. This viewpoint enhances the current dialogue on sustainable development and the changing function of private enterprises in public policy, proposing a future where economic growth and environmental stewardship coexist within U.S. federal climate policy.
Citation: Nwokolo, S. (2024). From Policy to Practice: Evaluating the Role of Private-Sector Champions Like Elon Musk in Shaping Trump's 2.0 Climate Agenda. Trends in Renewable Energy, 11(1), 122-154. doi:http://dx.doi.org/10.17737/tre.2025.11.1.00190
Keywords
Full Text:
FULL TEXT (PDF)References
Nwokolo, S. C., Obiwulu, A. U., & Ogbulezie, J. C. (2023). Machine learning and analytical model hybridization to assess the impact of climate change on solar PV energy production. Physics and Chemistry of the Earth, Parts A/B/C, 130, 103389. doi:https://doi.org/10.1016/j.pce.2023.103389
Nwokolo, S. C., Proutsos, N., Meyer, E. L., & Ahia, C. C. (2023). Machine learning and physics-based hybridization models for evaluation of the effects of climate change and urban expansion on photosynthetically active radiation. Atmosphere, 14(4), 687. doi:https://doi.org/10.3390/atmos14040687
Nwokolo, S. C., Ogbulezie, J. C., & Ushie, O. J. (2023). A multi-model ensemble-based CMIP6 assessment of future solar radiation and PV potential under various climate warming scenarios. Optik, 285, 170956. doi:https://doi.org/10.1016/j.ijleo.2023.170956
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Impacts of Climate Change in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 237-262). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_7.
Zhao, T. (2019). What the United States can do to stabilize its nuclear relationship with China. Bulletin of the Atomic Scientists, 75(1), 19–24. doi:https://doi.org/10.1080/00963402.2019.1555992
Hegazy, I. M. (2021). The effect of political neuromarketing 2.0 on election outcomes. Review of Economics and Political Science, 6(3), 235-251. doi:https://doi.org/10.1108/REPS-06-2019-0090
Chen, L. J. (2024). What Would a Trump Administration 2.0 Mean for Health Care Policy? JAMA Health Forum, 5(10), e244057. doi:https://doi.org/10.1001/jamahealthforum.2024.4057
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 11 - Potential technological pathways for Africa's net-zero economy. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 283-447): Elsevier. doi: https://doi.org/10.1016/B978-0-443-31486-5.00011-2
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 10 - Harnessing industry 4.0 for Africa’s net zero economy through technological pathways. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 249-282): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00010-0
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 9 - Net zero technology and circular economy. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 237-247): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00009-4
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 8 - Key components of net zero technology. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 217-235): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00008-2
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 7 - Key players in net zero technology. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 193-215): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00007-0
Nwokolo, S., Eyime, E., Obiwulu, A., & Ogbulezie, J. (2023). Exploring Cutting-Edge Approaches to Reduce Africa's Carbon Footprint through Innovative Technology Dissemination. Trends in Renewable Energy, 10(1), 1-29. doi:http://dx.doi.org/10.17737/tre.2024.10.1.00163
Nwokolo, S., Eyime, E., Obiwulu, A., & Ogbulezie, J. (2024). Africa's Path to Sustainability: Harnessing Technology, Policy, and Collaboration. Trends in Renewable Energy, 10(1), 98-131. doi:http://dx.doi.org/10.17737/tre.2024.10.1.00166
Su, C.-W., Khan, K., Umar, M., & Zhang, W. (2021). Does renewable energy redefine geopolitical risks? Energy policy, 158, 112566. doi:https://doi.org/10.1016/j.enpol.2021.112566
Saberi-Beglar, K., Zare, K., Seyedi, H., Marzband, M., & Nojavan, S. (2023). Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads. Applied Energy, 329, 120265. doi:https://doi.org/10.1016/j.apenergy.2022.120265
Jiao, J.-W., Yin, J.-P., Xu, P.-F., Zhang, J., & Liu, Y. (2023). Transmission mechanisms of geopolitical risks to the crude oil market——A pioneering two-stage geopolitical risk analysis approach. Energy, 283, 128449. doi:https://doi.org/10.1016/j.energy.2023.128449
Sweerts, B., Longa, F. D., & van der Zwaan, B. (2019). Financial de-risking to unlock Africa's renewable energy potential. Renewable and Sustainable Energy Reviews, 102, 75-82. doi:https://doi.org/10.1016/j.rser.2018.11.039
Nwokolo, S. C. (2017). A comprehensive review of empirical models for estimating global solar radiation in Africa. Renewable and Sustainable Energy Reviews, 78, 955-995. doi:https://doi.org/10.1016/j.rser.2017.04.101
Nwokolo, S. C., & Ogbulezie, J. C. (2018). A qualitative review of empirical models for estimating diffuse solar radiation from experimental data in Africa. Renewable and Sustainable Energy Reviews, 92, 353-393. doi:https://doi.org/10.1016/j.rser.2018.04.118
Nwokolo, S. C., & Ogbulezie, J. C. (2018). A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 367-396. doi:https://doi.org/10.1016/j.bjbas.2017.05.001
Hartman, S. (2011). Reality 2.0: When Loss Is Lost. Psychoanalytic Dialogues, 21(4), 468–482. doi:https://doi.org/10.1080/10481885.2011.595339
Hancock, L., Ralph, N., & Ali, S. H. (2018). Bolivia's lithium frontier: Can public private partnerships deliver a minerals boom for sustainable development? Journal of Cleaner Production, 178, 551-560. doi:https://doi.org/10.1016/j.jclepro.2017.12.264
Reddy, V. J., Hariram, N. P., Ghazali, M. F., & Kumarasamy, S. (2024). Pathway to sustainability: An overview of renewable energy integration in building systems. Sustainability, 16(2), 638. doi:https://doi.org/10.3390/su16020638
Bashir, M. F., Pan, Y., Shahbaz, M., & Ghosh, S. (2023). How energy transition and environmental innovation ensure environmental sustainability? Contextual evidence from Top-10 manufacturing countries. Renewable Energy, 204, 697-709. doi:https://doi.org/10.1016/j.renene.2023.01.049
Shah, K. J., Pan, S.-Y., Lee, I., Kim, H., You, Z., Zheng, J.-M., & Chiang, P.-C. (2021). Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. Journal of Cleaner Production, 326, 129392. doi:https://doi.org/10.1016/j.jclepro.2021.129392
Liao, J., Liu, X., Zhou, X., & Tursunova, N. R. (2023). Analyzing the role of renewable energy transition and industrialization on ecological sustainability: Can green innovation matter in OECD countries. Renewable Energy, 204, 141-151. doi:https://doi.org/10.1016/j.renene.2022.12.089
Jin, G., & Huang, Z. (2023). Asymmetric impact of renewable electricity consumption and industrialization on environmental sustainability: Evidence through the lens of load capacity factor. Renewable Energy, 212, 514-522. doi:https://doi.org/10.1016/j.renene.2023.05.045
Maraveas, C. (2019). Environmental sustainability of greenhouse covering materials. Sustainability, 11(21), 6129. doi:https://doi.org/10.3390/su11216129
Mäkitie, T., Hanson, J., Damman, S., & Wardeberg, M. (2023). Digital innovation's contribution to sustainability transitions. Technology in Society, 73, 102255. doi:https://doi.org/10.1016/j.techsoc.2023.102255
Karnowski, V., & Kümpel, A. S. (2016). Diffusion of Innovations. In M. Potthoff (Ed.), Schlüsselwerke der Medienwirkungsforschung (pp. 97-107). Wiesbaden: Springer Fachmedien Wiesbaden. doi:https://doi.org/10.1007/978-3-658-09923-7_9
Jia, S., Yang, L., & Zhou, F. (2022). Geopolitical risk and corporate innovation: Evidence from China. Journal of Multinational Financial Management, 66, 100772. doi:https://doi.org/10.1016/j.mulfin.2022.100772
Li, X., Chin, J. Y. T., Wang, X., & Yuen, K. F. (2024). Building maritime organisational competitiveness through resource, innovation, and resilience: A resource orchestration approach. Ocean & Coastal Management, 252, 107092. doi:https://doi.org/10.1016/j.ocecoaman.2024.107092
Khurshid, A., Khan, K., Saleem, S. F., Cifuentes-Faura, J., & Cantemir Calin, A. (2023). Driving towards a sustainable future: Transport sector innovation, climate change and social welfare. Journal of Cleaner Production, 427, 139250. doi:https://doi.org/10.1016/j.jclepro.2023.139250
Wei, J., Wen, J., Wang, X.-Y., Ma, J., & Chang, C.-P. (2023). Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies. Energy Economics, 121, 106638. doi:https://doi.org/10.1016/j.eneco.2023.106638
Chen, W., Zou, W., Zhong, K., & Aliyeva, A. (2023). Machine learning assessment under the development of green technology innovation: A perspective of energy transition. Renewable Energy, 214, 65-73. doi:https://doi.org/10.1016/j.renene.2023.05.108
Nederveen, A. A. J., Konings, J. W., & Stoop, J. A. (2003). Globalization, international transport and the global environment: Technological innovation, policy making and the reduction of transportation emissions. Transportation Planning and Technology, 26(1), 41–67. doi:https://doi.org/10.1080/03081060309908
Sun, H., Edziah, B. K., Sun, C., & Kporsu, A. K. (2019). Institutional quality, green innovation and energy efficiency. Energy policy, 135, 111002. doi:https://doi.org/10.1016/j.enpol.2019.111002
Ogunrinde, O., Shittu, E., & Dhanda, K. K. (2018). Investing in Renewable Energy: Reconciling Regional Policy With Renewable Energy Growth. IEEE Engineering Management Review, 46(4), 103-111. doi:https://doi.org/10.1109/EMR.2018.2880445
Msimango, N., Orffer, C., & Inglesi-Lotz, R. (2023). South Africa's energy policy: Prioritizing competition and climate change for decarbonisation. Energy policy, 183, 113815. doi:https://doi.org/10.1016/j.enpol.2023.113815
IPCC. (2021). Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg1/ (accessed on 11/17/2024)
Totschnig, G., Hirner, R., Müller, A., Kranzl, L., Hummel, M., Nachtnebel, H. P., Stanzel, P., Schicker, I., & Formayer, H. (2017). Climate change impact and resilience in the electricity sector: The example of Austria and Germany. Energy policy, 103, 238-248. doi:https://doi.org/10.1016/j.enpol.2017.01.019
Gunderson, I., Goyette, S., Gago-Silva, A., Quiquerez, L., & Lehmann, A. (2015). Climate and land-use change impacts on potential solar photovoltaic power generation in the Black Sea region. Environmental Science & Policy, 46, 70-81. doi:https://doi.org/10.1016/j.envsci.2014.04.013
Baker, E., Chon, H., & Keisler, J. (2009). Advanced solar R&D: Combining economic analysis with expert elicitations to inform climate policy. Energy Economics, 31, S37-S49. doi:https://doi.org/10.1016/j.eneco.2007.10.008
Griffith, K. N. (2020). Changes in Insurance Coverage and Access to Care for Young Adults in 2017. Journal of Adolescent Health, 66(1), 86-91. doi:https://doi.org/10.1016/j.jadohealth.2019.05.020
Lilly, M. B. (2020). Hewers of wood and drawers of water 2.0: how American and Chinese economic nationalism influence Canadian trade policy in the twenty-first century. Canadian Foreign Policy Journal, 26(2), 167–181. doi:https://doi.org/10.1080/11926422.2020.1750444
Clist, E., Fulton, S., Gilloch, G., Holden, S., Mergea, T., Redman, W., Rüegg, L., Simpson, O., Wójtowicz, M., Zhang, L., Simpson, O., & Gilloch, G. (2022). Cool premonitions: Jean Baudrillard’s America version 2.0. The Sociological Review, 70(4), 832-855. doi:https://doi.org/10.1177/00380261221109043
Hahm, S. D. (2020). South Korea in 2019: Little Progress in Denuclearization of North Korea and Poor Macroeconomic Performance. Asian Survey, 60(1), 61-68. doi:https://doi.org/10.1525/as.2020.60.1.61
LAURENS, N., DOVE, Z., MORIN, J. F., & JINNAH, S. (2019). NAFTA 2.0: The Greenest Trade Agreement Ever? World Trade Review, 18(4), 659–677. doi:https://doi.org/10.1017/S1474745619000351
Fournier, S., & Avery, J. (2011). The uninvited brand. Business Horizons, 54(3), 193-207. doi:https://doi.org/10.1016/j.bushor.2011.01.001
Rasmus, J. (2019). Crisis and Restoration of Neoliberal Policy in the USA: 2008–2018. International Critical Thought, 9(1), 31–63. doi:https://doi.org/10.1080/21598282.2019.1585277
Sadeq Alaghbary, G. (2022). Ideological Manipulation in Twitter Communication: A Critical Stylistic Analysis of Donald Trump’s Tweets . International Journal of Arabic-English Studies, 22(1), 291–312. doi:https://doi.org/10.33806/ijaes2000.22.1.16
Beeson, M. (2018). Asia’s competing multilateral initiatives: quality versus quantity. The Pacific Review, 32(2), 245–255. doi:https://doi.org/10.1080/09512748.2018.1470556
Milner, J., Melcher, M. L., Lee, B., Veale, J., Ronin, M., D'Alessandro, T., ... & Shannon, P. W. (2016). HLA matching trumps donor age: donor-recipient pairing characteristics that impact long-term success in living donor kidney transplantation in the era of paired kidney exchange. Transplantation Direct, 2(7), e85. doi:https://doi.org/10.1097/TXD.0000000000000597
Pires, M. C., & Nascimento, L. G. D. (2020). The Monroe Doctrine 2.0 and US-China-Latin America Trilateral Relations. International Organisations Research Journal, 15(3), 202-222. doi:https://doi.org/10.17323/1996-7845-2020-03-08
DOI: http://dx.doi.org/10.17737/tre.2025.11.1.00190
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Samuel Chukwujindu Nwokolo
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)