Cover Image

Bioelectricity Generation using Carbon Felt Electrode in Microbial Fuel Cell (MFC) Inoculated with Mixed Cultures

Shishir Kanti Pramanik, Md Mohosin Rana

Abstract


Microbial fuel cell (MFC) that was configured with the carbon felt electrode and the cation exchange membrane, and inoculated with mixed culture was demonstrated to yield bioelectricity. The cell was operated under four external loads with pHs ranging from 4 to 10 and the total cell operation was monitored up to 25 days. The presented results revealed that the potentiality of maximum current and power production was achieved while hexacyanoferrate(III) used as a cathodic reaction and at neutral pH condition of media. The maximum current density 2.5 Am-2 and power density 1410 mWm-2 were observed on the 25th day at an anode potential of -378 mV. Stable and steady power was produced by MFC on the day 22nd to 25th when cell operated at 250 Ω external load. The internal resistance of the fuel cell was decreased with the increase of the operation time. Coulombic efficiency (CE %) was found 22.70 % at the stable phase of fuel cell operation.

Citation: Pramanik, S. K., and Rana, M. M. (2017). Bioelectricity Generation using Carbon Felt Electrode in Microbial Fuel Cell (MFC) Inoculated with Mixed Cultures. Trends in Renewable Energy, 3, 129-140. DOI: 10.17737/tre.2017.3.2.0039


Keywords


MFC; Bioelectricity; Carbon felt; Mixed culture microorganisms; Power density

Full Text:

FULL TEXT (PDF)

References


Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R., 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 295(5554): 483-485. DOI: 10.1126/science.1066771

Rodrigo, M. A., Canizares, P., Lobato, J., Paz, R., Sáez, C., and Linares, J. J., 2007. Production of electricity from the treatment of urban waste water using a microbial fuel cell. J. Power Sources, 169(1): 198-204. DOI:10.1016/j.jpowsour.2007.01.054

Lovley, D. R., 2006. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol., 4(7): 497-508. DOI:10.1038/nrmicro1442

Davis, F., and Higson, S. P., 2007. Biofuel cells—recent advances and applications. Biosens. Bioelectron., 22(7): 1224-1235. DOI:10.1016/j.bios.2006.04.029

Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., and Rabaey, K., 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol., 40(17): 5181-5192. DOI: 10.1021/es0605016

Lovley, D. R., 2006. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol., 17(3): 327-332. DOI: 10.1016/j.copbio.2006.04.006

Schröder, U., 2007. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys., 9(21): 2619-2629. DOI: 10.1039/b703627m

Freguia S, Rabaey K, Yuan Z, and Keller J., 2008. Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res., 42(6):1387-96. DOI:10.1016/j.watres.2007.10.007

Logan, B. E., 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol., 7(5): 375-381. DOI:10.1038/nrmicro2113

Logan, B. E., and Regan, J. M., 2006. Electricity-producing bacterial communities in microbial fuel cells. TRENDS Microbiol., 14(12): 512-518. DOI: 10.1016/j.tim.2006.10.003

Venkata Mohan S, Saravanan R, Veera Raghuvulu S, Mohanakrishna G, Sarma PN.,2008.Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora. Eff. Catholyte Biores. Technol., 99: 596–603. DOI:10.1016/j.biortech.2006.12.026

Maness, P. C., Huang, J., Smolinski, S., Tek, V., and Vanzin, G., 2005. Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus. Appl. Environ. Microbiol., 71(6): 2870-2874. DOI: 10.1128/AEM.71.6.2870-2874.2005

Venkata Mohan S, Veer Raghuvulu S, Sarma PN.,2008. Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane. Biosens Bioelectron., 23:1326–32. DOI:10.1016/j.bios.2007.11.016

Rezaei, F., Xing, D., Wagner, R., Regan, J. M., Richard, T. L., and Logan, B. E., 2009. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol., 75(11): 3673-3678. DOI:10.1128/AEM.02600-08

Zuo, Y., Xing, D., Regan, J. M., and Logan, B. E., 2008. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol., 74(10): 3130-3137. DOI: 10.1128/AEM.02732-07

He, Z., Minteer, S. D., & Angenent, L. T., 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol., 39(14): 5262-5267. DOI: 10.1021/es0502876

Min, B., and Logan, B. E., 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 38(21): 5809-5814. DOI: 10.1021/es0491026

Ter Heijne, A., Hamelers, H. V., De Wilde, V., Rozendal, R. A., and Buisman, C. J., 2006. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ. Sci. Technol., 40(17): 5200-5205. DOI: 10.1021/es0608545

Kim, J. R., Min, B., and Logan, B. E., 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol., 68(1): 23-30. DOI: 10.1007/s00253-004-1845-6

Park, D. H., & Zeikus, J. G., 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng., 81(3): 348-355. DOI: 10.1002/bit.10501

Lowy, D. A., Tender, L. M., Zeikus, J. G., Park, D. H., and Lovley, D. R., 2006. Harvesting energy from the marine sediment–water interface II: kinetic activity of anode materials. Biosens. Bioelectron., 21(11): 2058-2063. DOI: 10.1016/j.bios.2006.01.033

Cheng, S., and Logan, B. E., 2007. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 9(3): 492-496. DOI:10.1016/j.elecom.2006.10.023

Ter Heijne, A., Hamelers, H. V., Saakes, M., and Buisman, C. J., 2008. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim. Acta, 53(18): 5697-5703. DOI:10.1016/j.electacta.2008.03.032

Helder, M., Strik, D. P., Hamelers, H. V., and Buisman, C. J., 2012. The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances. Biotechnol. Biofuels, 5(1): 70. DOI: 10.1186/1754-6834-5-70

Harnisch, F., and Schröder, U., 2010. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem.l Soc. Rev., 39(11): 4433-4448. DOI: 10.1039/c003068f

He, Z., Huang, Y., Manohar, A. K., and Mansfeld, F., 2008. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry, 74(1): 78-82. doi:10.1016/j.bioelechem.2008.07.007

Franks, A. E., Nevin, K. P., Jia, H., Izallalen, M., Woodard, T. L., and Lovley, D. R., 2009. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ. Sci., 2(1): 113-119. DOI: 10.1039/B816445B

Fan, Y., Hu, H., & Liu, H., 2007. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol., 41(23): 8154-8158. DOI: 10.1021/es071739c




DOI: http://dx.doi.org/10.17737/tre.2017.3.2.0039

Refbacks



Copyright (c) 2017 Shishir Kanti Pramanik and Md. Mohosin Rana

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)