Global Solar Radiation Characteristics at Calabar and Port Harcourt Cities in Nigeria

Solomon Okechukwu Amadi, Timothy Dike, Samuel Chukwujindu Nwokolo

Abstract


This study analyzed the inter-annual variability in solar radiation at Port Harcourt and Calabar, aiming at improving knowledge of solar resources. For the investigation, monthly mean global solar radiation data for fifteen years (2000 – 2014) was collected from Nigerian Meteorological Agency (NIMET), and the monthly mean extraterrestrial solar radiation was determined using globally recognized standard relation. The clearness index parameter was employed for characterizing the spatial variability of solar radiation for Calabar and Port Harcourt. The statistics of the monthly mean solar radiation deviations of Port Harcourt and Calabar was tested using the Kolmogorov–Smirnov method. The test results showed that they are normally distributed random variables. Furthermore, the analysis of sequential properties showed that the coefficients of the auto-correlation with lag 1 are significant for both stations. The auto-correlation coefficients with lag 1, though usually not significant, are negative for both stations. The auto regression lag 1 (AR-1) is the recommended procedure (model equation) for generating monthly solar radiation synthetic time series, with auto-correlation coefficients varying from 0.30 to 0.47 for both stations in the South-South of Nigeria.

Citation: Amadi, S. (2020). Global Solar Radiation Characteristics at Calabar and Port Harcourt Cities in Nigeria. Trends in Renewable Energy, 6, 101-120. DOI: 10.17737/tre.2020.6.2.00114


Keywords


Global solar radiation; Clearness index; Extraterrestrial solar radiation; Calabar; Nigeria

Full Text:

FULL TEXT (PDF)

References


Okogbue, E. C. and Adedokun, J. A. (2002). On the estimation of solar radiation in Ondo. Nigerian Journal of Physics, 14, 97-99.

Aklaque, A. M., Firoz, A. and Wasim, M. A. (2009). Estimation of global and diffuse solar radiation for Hyderabad, Sindh, Pakistan. Journal of Basic and Applied Science, 5(2), 73-77.

Augustine, C. and Nnabuchi, M. N. (2010). Analysis of some meteorological data for some selected cities in the eastern and southern zones of Nigeria. African Journal of Environmental Science and Technology, 4(2), 92-99.

Offiong, A. (2003). Assessing the economic and environmental prospects of stand-by solar powered systems. Nigeria. J. Applied Sci. and Env. Management, 7(1), 37-42.

Oti, M. I. (1995). Design, manufacture and installation of multi-bladed wind mill. NJSE, 13, 110-117.

Chegaar, M. and Chibani, A. (2000). A simple method for computing global solar radiation. Rev. Energ. Ren. Chem, 111-115.

Okogbue, E. C., Adedokun, J. A. and Holmgren, B. (2009). Hourly and daily clearness index and diffuse fraction at a tropical station, Ile-Ife, Nigeria. Int. J. Climatol. 29(8), 1035-1047.

Udo, S. O. and Aro, T. O. (2000). New empirical relationships for determining global PAR from measurements of global solar radiation, infrared radiation or sunshine duration. Int. J. Climatol., 20, 1265-1274.

Nwokolo, S.C. and Ogbulezie, J. C. (2017). A comprehensive review of empirical models for estimating global solar radiation in Africa. Renewable and Sustainable Energy Reviews, 78, 955-995. DOI: https://doi.org/10.1016/j.rser.2017.04.101

Nigeria Meteorological Agency (NiMet) http://www.nimet.gov.ng/.

Klein, S. A. (1977). Calculation of monthly average insolation on tilted surfaces. Solar Energy, 19(4), 325-329. DOI: https://doi.org/10.1016/0038-092X(77)90001-9

Amadi, S. O., Udo, S. O., and Ewona, I. O. (2014). The spatial and temporal variability of sunshine hours in Nigeria (1961–2012). IOSR J. Appl. Phys, 6(6), 1-10. DOI: 10.9790/4861-06630110

Babatunde, E. B. (2001). Solar radiation modeling for a tropical station, llorin, Nigeria. Ph.D. Thesis

Babatunde, E. B., and Aro, T. O. (2001). Characteristic variations of global (total) solar radiation at Ilorin, Nigeria. Nigeria Journal Solar Energy, 9, 157 - 173.

Maduekwe, A. A. L., and Chendo, M. A. C. (1995). Predicting the components of the total hemispherical solar radiation from sunshine duration measurements in Lagos, Nigeria. Renewable Energy, 6(7), 807-812. DOI: https://doi.org/10.1016/0960-1481(95)91008-2

Fagbenle, R. O. (1993). Total solar radiation estimates in Nigeria using a maximum-likelihood quadratic fit. Renewable Energy, 3(6), 813-817. DOI: https://doi.org/10.1016/0960-1481(93)90089-Y

Falayi, E., Adepitan, J., and Rabiu, A. (2008). Empirical models for the correlation of global solar radiation with meteorological data for Iseyin, Nigeria. International journal of physical sciences, 3(9), 210-216.

Adaramola, M. S. (2012). Estimating global solar radiation using common meteorological data in Akure, Nigeria. Renewable Energy, 47, 38-44. DOI: https://doi.org/10.1016/j.renene.2012.04.005

Ohunakin, O. S., Adaramola, M. S., Oyewola, O. M., and Fagbenle, R. O. (2013). Correlations for estimating solar radiation using sunshine hours and temperature measurement in Osogbo, Osun State, Nigeria. Frontiers in Energy, 7(2), 214-222. DOI: 10.1007/s11708-013-0241-2

Okundamiya, M. S., Emagbetere, J. O., and Ogujor, E. A. (2016). Evaluation of various global solar radiation models for Nigeria. International Journal of Green Energy, 13(5), 505-512. DOI: 10.1080/15435075.2014.968921

Ayodele, T. R., and Ogunjuyigbe, A. S. O. (2016). Performance assessment of empirical models for prediction of daily and monthly average global solar radiation: the case study of Ibadan, Nigeria. International Journal of Ambient Energy, 38(8), 803-813. DOI: 10.1080/01430750.2016.1222961

Cornejo, L., Martín-Pomares, L., Alarcon, D., Blanco, J., and Polo, J. (2018). A through analysis of solar irradiation measurements in the region of Arica Parinacota, Chile. Renewable Energy, 112, 197-208. DOI: https://doi.org/10.1016/j.renene.2017.04.012

Polo, J., and Estalayo, G. (2015). Impact of atmospheric aerosol loads on Concentrating Solar Power production in arid-desert sites. Solar Energy, 115, 621-631. DOI: https://doi.org/10.1016/j.solener.2015.03.031

Ramanathan, V., Crutzen, P. J., Kiehl, J. T. and Rosenfeld, D. (2001). Aerosols, climate and the hydrological cycle. Science, 294, 2119-2124.

Spitters, C. J., and Musabilha, V. M. M. (1986). The Conservative Ratio of Photosynthetically Active to Total Radiation in the Tropics. Journal of Applied Ecology, 19(3), 853-858. DOI: 10.2307/2403287

Black, J. N. (1954). The distribution of solar radiation over the Earth's surface. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 7(2), 165-189. DOI: 10.1007/BF02243320

Cartledge, O. (1973). Solar Radiation Climate in a Subtropical Region. Nature Physical Science, 242(114), 11-12. DOI: 10.1038/physci242011a0

Iqbal, M. (1980). Prediction of hourly diffuse solar radiation from measured hourly global solar radiation on a horizontal surface. Solar Energy, 24(5), 491-503.

Tiba, C., and Fraidenraich, N. (2004). Analysis of monthly time series of solar radiation and sunshine hours in tropical climates. Renewable Energy, 29(7), 1147-1160. DOI: https://doi.org/10.1016/j.renene.2003.11.016

Aguiar, R., and Boland, J. (1999). Interannual variability of meteorological parameters in temperate climates. In: 1999 ISES Solar World Congress, G. Grossman, ed., Elsevier, pp: I-353.

Aguiar, R. J., Collares-Pereira, M., and Conde, J. P. (1988). Simple procedure for generating sequences of daily radiation values using a library of Markov transition matrices. Solar Energy, 40(3), 269-279. DOI: https://doi.org/10.1016/0038-092X(88)90049-7

Graham, V. A., Hollands, K. G. T., and Unny, T. E. (1988). A time series model for Kt with application to global synthetic weather generation. Solar Energy, 40(2), 83-92. DOI: https://doi.org/10.1016/0038-092X(88)90075-8




DOI: http://dx.doi.org/10.17737/tre.2020.6.2.00114

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Solomon Okechukwu Amadi, Timothy Dike, Samuel Chukwujindu Nwokolo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2020 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)