A Review of Low Temperature Combustion Mode of Engine

Qingyang Hao


Since the 21st century, people's increasing attention to fuel economy and environmental issues has prompted the engine research community to continuously develop new efficient and clean combustion theories and methods. In terms of combustion technology, many researchers have proposed different new engine combustion methods, such as homogeneous charge compression ignition combustion (HCCI), premixed charge compression combustion (PCCI), and reaction controlled compression ignition (RCCI), which are the three main low-temperature combustion methods. These combustion methods are different from the premixed combustion method of the spark ignition (SI) engine represented by the traditional gasoline engine and the diffusion combustion method of the compression ignition (CI) engine represented by the traditional diesel engine. The flame temperature affects the combustion and emission process of the engine, and realizes the efficient and clean combustion of the engine. This paper first briefly describes the conventional engine combustion method, and then briefly summarizes the comparison between these three low-temperature combustion methods and their respective combustion and emission characteristics as well as advantages and disadvantages, with respect to the conventional combustion method.

Citation: Hao, Q. (2023). A Review of Low Temperature Combustion Mode of Engine. Trends in Renewable Energy, 9(2), 180-191. doi:http://dx.doi.org/10.17737/tre.2023.9.2.00160


Internal combustion engine; Combustion method; Homogeneous charge compression ignition combustion (HCCI); Premixed charge compression combustion (PCCI); Reaction controlled compression ignition (RCCI)

Full Text:



Krishnasamy, A., Gupta, S. K., & Reitz, R. D. (2021). Prospective fuels for diesel low temperature combustion engine applications: A critical review. 22(7), 2071-2106. doi: https://doi.org/10.1177/1468087420960857

Gharehghani, A. (2019). Load limits of an HCCI engine fueled with natural gas, ethanol, and methanol. Fuel, 239, 1001-1014. doi: https://doi.org/10.1016/j.fuel.2018.11.066

Vasudev, A., Mikulski, M., Balakrishnan, P. R., Storm, X., & Hunicz, J. (2022). Thermo-kinetic multi-zone modelling of low temperature combustion engines. Progress in Energy and Combustion Science, 91, 100998. doi: https://doi.org/10.1016/j.pecs.2022.100998

Riyadi, T. W. B., Spraggon, M., Herawan, S. G., Idris, M., Paristiawan, P. A., Putra, N. R., R, M. F., Silambarasan, R., & Veza, I. (2023). Biodiesel for HCCI engine: Prospects and challenges of sustainability biodiesel for energy transition. Results in Engineering, 17, 100916. doi: https://doi.org/10.1016/j.rineng.2023.100916

Jain, A., Singh, A. P., & Agarwal, A. K. (2017). Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine. Energy, 122, 249-264. doi: https://doi.org/10.1016/j.energy.2017.01.050

Maurya, R. K., & Akhil, N. (2017). Comparative study of the simulation ability of various recent hydrogen combustion mechanisms in HCCI engines using stochastic reactor model. International Journal of Hydrogen Energy, 42(16), 11911-11925. doi: https://doi.org/10.1016/j.ijhydene.2017.02.155

Djermouni, M., & Ouadha, A. (2023). Thermodynamic analysis of methanol, ammonia, and hydrogen as alternative fuels in HCCI engines. International Journal of Thermofluids, 19, 100372. doi: https://doi.org/10.1016/j.ijft.2023.100372

Kakoee, A., Bakhshan, Y., Aval, S. M., & Gharehghani, A. (2018). An improvement of a lean burning condition of natural gas/diesel RCCI engine with a pre-chamber by using hydrogen. Energy Conversion and Management, 166, 489-499. doi: https://doi.org/10.1016/j.enconman.2018.04.063

Duan, X., Lai, M.-C., Jansons, M., Guo, G., & Liu, J. (2021). A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine. Fuel, 285, 119142. doi: https://doi.org/10.1016/j.fuel.2020.119142

Noguchi, M., Tanaka, Y., Tanaka, T., & Takeuchi, Y. (1979). A study on gasoline engine combustion by observation of intermediate reactive products during combustion. SAE Transactions, 2816-2828. https://doi.org/10.4271/790840

Najt, P. M., & Foster, D. E. (1983). Compression-ignited homogeneous charge combustion. SAE Transactions, 964-979. https://doi.org/10.4271/830264

An, Y., Jaasim, M., Raman, V., Hernández Pérez, F. E., Sim, J., Chang, J., Im, H. G., & Johansson, B. (2018). Homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) in compression ignition engine with low octane gasoline. Energy, 158, 181-191. doi: https://doi.org/10.1016/j.energy.2018.06.057

Mohammed Elbanna, A., Xiaobei, C., Can, Y., Elkelawy, M., Alm-Eldin Bastawissi, H., & Panchal, H. (2022). Fuel reactivity controlled compression ignition engine and potential strategies to extend the engine operating range: A comprehensive review. Energy Conversion and Management: X, 13, 100133. doi: https://doi.org/10.1016/j.ecmx.2021.100133

Turkcan, A., Altinkurt, M. D., Coskun, G., & Canakci, M. (2018). Numerical and experimental investigations of the effects of the second injection timing and alcohol-gasoline fuel blends on combustion and emissions of an HCCI-DI engine. Fuel, 219, 50-61. doi: https://doi.org/10.1016/j.fuel.2018.01.061

Bobi, S., Kashif, M., & Laoonual, Y. (2022). Combustion and emission control strategies for partially-premixed charge compression ignition engines: A review. Fuel, 310, 122272. doi: https://doi.org/10.1016/j.fuel.2021.122272

Taghavifar, H., Nemati, A., & Walther, J. H. (2019). Combustion and exergy analysis of multi-component diesel-DME-methanol blends in HCCI engine. Energy, 187, 115951. doi: https://doi.org/10.1016/j.energy.2019.115951

Sakthivel, R., Ramesh, K., Mohamed Shameer, P., & Purnachandran, R. (2019). Experimental investigation on improvement of storage stability of bio-oil derived from intermediate pyrolysis of Calophyllum inophyllum seed cake. Journal of the Energy Institute, 92(3), 768-782. doi: https://doi.org/10.1016/j.joei.2018.02.006

Agarwal, A. K., Singh, A. P., García, A., & Monsalve-Serrano, J. (2022). Challenges and Opportunities for Application of Reactivity-Controlled Compression Ignition Combustion in Commercially Viable Transport Engines. Progress in Energy and Combustion Science, 93, 101028. doi: https://doi.org/10.1016/j.pecs.2022.101028

Charitha, V., Thirumalini, S., Prasad, M., & Srihari, S. (2019). Investigation on performance and emissions of RCCI dual fuel combustion on diesel - bio diesel in a light duty engine. Renewable Energy, 134, 1081-1088. doi: https://doi.org/10.1016/j.renene.2018.09.048

Geo Varuvel, E. (2023). Effect of premixed hydrogen on the performance and emission of a diesel engine fuelled with prunus amygdalus dulcis oil. Fuel, 341, 127576. doi: https://doi.org/10.1016/j.fuel.2023.127576

Vallinayagam, R., An, Y., S.Vedharaj, Sim, J., Chang, J., & Johansson, B. (2018). Naphtha vs. dieseline – The effect of fuel properties on combustion homogeneity in transition from CI combustion towards HCCI. Fuel, 224, 451-460. doi: https://doi.org/10.1016/j.fuel.2018.03.123

Khandal, S. V., Banapurmath, N. R., & Gaitonde, V. N. (2019). Performance studies on homogeneous charge compression ignition (HCCI) engine powered with alternative fuels. Renewable Energy, 132, 683-693. doi: https://doi.org/10.1016/j.renene.2018.08.035

Singh, A. P., Kumar, V., & Agarwal, A. K. (2020). Evaluation of comparative engine combustion, performance and emission characteristics of low temperature combustion (PCCI and RCCI) modes. Applied Energy, 278, 115644. doi: https://doi.org/10.1016/j.apenergy.2020.115644

Calam, A., Solmaz, H., Yılmaz, E., & İçingür, Y. (2019). Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy, 168, 1208-1216. doi: https://doi.org/10.1016/j.energy.2018.12.023

Park, H., Shim, E., & Bae, C. (2019). Injection Strategy in Natural Gas–Diesel Dual-Fuel Premixed Charge Compression Ignition Combustion under Low Load Conditions. Engineering, 5(3), 548-557. doi: https://doi.org/10.1016/j.eng.2019.03.005

Elkelawy, M., El Shenawy, E. A., Mohamed, S. A., Elarabi, M. M., & Bastawissi, H. A.-E. (2022). Impacts of using EGR and different DI-fuels on RCCI engine emissions, performance, and combustion characteristics. Energy Conversion and Management: X, 15, 100236. doi: https://doi.org/10.1016/j.ecmx.2022.100236

Shim, E., Park, H., & Bae, C. (2020). Comparisons of advanced combustion technologies (HCCI, PCCI, and dual-fuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel, 262, 116436. doi: https://doi.org/10.1016/j.fuel.2019.116436

Pan, S., Liu, X., Cai, K., Li, X., Han, W., & Li, B. (2020). Experimental study on combustion and emission characteristics of iso-butanol/diesel and gasoline/diesel RCCI in a heavy-duty engine under low loads. Fuel, 261, 116434. doi: https://doi.org/10.1016/j.fuel.2019.116434

Xu, G., Jia, M., Li, Y., Chang, Y., & Wang, T. (2018). Potential of reactivity controlled compression ignition (RCCI) combustion coupled with variable valve timing (VVT) strategy for meeting Euro 6 emission regulations and high fuel efficiency in a heavy-duty diesel engine. Energy Conversion and Management, 171, 683-698. doi: https://doi.org/10.1016/j.enconman.2018.06.034

Li, X. (2019). An Experimental Investigation on Combustion Process and Emission of RCCI Combustion Mode. Xihua University, Master's Theses.

Salahi, M. M., Esfahanian, V., Gharehghani, A., & Mirsalim, M. (2017). Investigating the reactivity controlled compression ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber. Energy Conversion and Management, 132, 40-53. doi: https://doi.org/10.1016/j.enconman.2016.11.019

Li, J., Yang, W., & Zhou, D. (2017). Review on the management of RCCI engines. Renewable and Sustainable Energy Reviews, 69, 65-79. doi: https://doi.org/10.1016/j.rser.2016.11.159

Sattarzadeh, M., Ebrahimi, M., & Jazayeri, S. A. (2022). A detail study of a RCCI engine performance fueled with diesel fuel and natural gas blended with syngas with different compositions. International Journal of Hydrogen Energy, 47(36), 16283-16296. doi: https://doi.org/10.1016/j.ijhydene.2022.03.088

Xu, G., Jia, M., Li, Y., Chang, Y., Liu, H., & Wang, T. (2019). Evaluation of variable compression ratio (VCR) and variable valve timing (VVT) strategies in a heavy-duty diesel engine with reactivity controlled compression ignition (RCCI) combustion under a wide load range. Fuel, 253, 114-128. doi: https://doi.org/10.1016/j.fuel.2019.05.020

Zheng, Z., Xia, M., Liu, H., Shang, R., Ma, G., & Yao, M. (2018). Experimental study on combustion and emissions of n-butanol/biodiesel under both blended fuel mode and dual fuel RCCI mode. Fuel, 226, 240-251. doi: https://doi.org/10.1016/j.fuel.2018.03.151

DOI: http://dx.doi.org/10.17737/tre.2023.9.2.00160


  • There are currently no refbacks.

Copyright (c) 2023 Qingyang Hao

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2024 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)