A Review of Nanofluid Boiling Heat Transfer and Its Applications in Heat Pipes

Xinyu Wang, Ya Li

Abstract


Nanofluid is a new type of heat transfer medium formed by adding metal or non-metal in liquid medium in a certain proportion and manner, which has many advantages over the traditional working fluid. Combining heat pipes with nanofluids and using nanofluids as the working material of heat pipes can reduce thermal resistance and effectively improve the heat transfer performance of heat pipes. This paper provides a relevant overview of heat pipes and nanofluids, and introduces the relevant classifications of heat pipes, the working principle and the relevant research on nanofluid-enhanced boiling heat transfer. It conducts a literature review on the application of nanofluids in heat pipes, and finally proposes possible future research directions.

Citation: Wang, X., & Li, Y. (2024). A Review of Nanofluid Boiling Heat Transfer and Its Applications in Heat Pipes. Trends in Renewable Energy, 10(2), 210-228. doi:http://dx.doi.org/10.17737/tre.2024.10.2.00174


Keywords


Boiling heat exchange; Heat pipe; Nanofluid; Classification; Working principle

Full Text:

FULL TEXT (PDF)

References


Gaugler, R.S. (1942). Heat transfer device. U.S. Patent 2350348.

Grover, G. M., Cotter, T. P., & Erickson, G. F. (1964). Structures of Very High Thermal Conductance. Journal of Applied Physics, 35(6), 1990-1991. doi:https://doi.org/10.1063/1.1713792

Cotter, T. P. (1965). THEORY OF HEAT PIPES. Retrieved from United States: https://www.osti.gov/biblio/4619147. doi:https://doi.org/10.2172/4619147

Tien, C. L., & Sun, K. H. (1971). Minimum meniscus radius of heat pipe wicking materials. International Journal of Heat and Mass Transfer, 14(11), 1853-1855. doi:https://doi.org/10.1016/0017-9310(71)90052-4

Akachi, H. (1990). Structure of a heat pipe. U.S. Patent 4921041.

Wang, C., Zhang, L., Liu, X., Tang, S., Qiu, S., & Su, G. H. (2020). Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application. Annals of Nuclear Energy, 136, 107051. doi:https://doi.org/10.1016/j.anucene.2019.107051

Li, Y., He, H.-f., & Zeng, Z.-x. (2013). Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick. Applied Thermal Engineering, 50(1), 342-351. doi:https://doi.org/10.1016/j.applthermaleng.2012.07.042

Tang, H., Tang, Y., Wan, Z., Li, J., Yuan, W., Lu, L., . . . Tang, K. (2018). Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Applied Energy, 223, 383-400. doi:https://doi.org/10.1016/j.apenergy.2018.04.072

Chen, J., Li, Z., Huang, W., Ma, Q., Li, A., Wang, B., . . . Jiang, F. (2024). Super-long gravity heat pipe geothermal space heating system: A practical case in Taiyuan, China. Energy, 299, 131521. doi:https://doi.org/10.1016/j.energy.2024.131521

Li, D., Zhang, G. Q., Pan, K., Ma, X., Liu, L., & Cao, J. (2009). Numerical simulation on heat pipe for high power LED multi-chip module packaging. Paper presented at the 2009 International Conference on Electronic Packaging Technology & High Density Packaging.

Alrowaili, Z. A., Ezzeldien, M., Shaaalan, N. M., Hussein, E., & Sharafeldin, M. A. (2022). Investigation of the effect of hybrid CuO-Cu/water nanofluid on the solar thermal energy storage system. Journal of Energy Storage, 50, 104675. doi:https://doi.org/10.1016/j.est.2022.104675

Kanti, P. K., & Maiya, M. P. (2022). Rheology and thermal conductivity of graphene oxide and coal fly ash hybrid nanofluids for various particle mixture ratios for heat transfer applications: Experimental study. International Communications in Heat and Mass Transfer, 138, 106408. doi:https://doi.org/10.1016/j.icheatmasstransfer.2022.106408

Zhou, L., Zhu, J., Zhao, Y., & Ma, H. (2022). A molecular dynamics study on thermal conductivity enhancement mechanism of nanofluids – Effect of nanoparticle aggregation. International Journal of Heat and Mass Transfer, 183, 122124. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2021.122124

Nazari, M. A., Ahmadi, M. H., Sadeghzadeh, M., Shafii, M. B., & Goodarzi, M. (2019). A review on application of nanofluid in various types of heat pipes. Journal of Central South University, 26(5), 1021-1041.

Ghorabaee, H., Emami, M. R. S., Moosakazemi, F., Karimi, N., Cheraghian, G., & Afrand, M. (2021). The use of nanofluids in thermosyphon heat pipe: A comprehensive review. Powder Technology, 394, 250-269. doi:https://doi.org/10.1016/j.powtec.2021.08.045

Chu, H., Yu, X., Jiang, H., Wang, D., & Xu, N. (2023). Progress in enhanced pool boiling heat transfer on macro- and micro-structured surfaces. International Journal of Heat and Mass Transfer, 200, 123530. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2022.123530

Xu, N., Jiang, H., Peng, L., Wang, D., & Chu, H. (2021). Dynamic Analysis of Bubble Attachment and Sweeping on Microwire in Subcooled Nucleate Pool Boiling. Journal of Thermal Science, 30(5), 1842-1858. doi:https://doi.org/10.1007/s11630-021-1512-6

Zhang, P., Wang, T., Jiang, Y., & Guo, C. (2023). Measurement of transient liquid film and its effect on flow boiling heat transfer in non-circular microchannels. International Journal of Thermal Sciences, 184, 108004. doi:https://doi.org/10.1016/j.ijthermalsci.2022.108004

Jamialahmadi, M., Müller-Steinhagen, H., Abdollahi, H., & Shariati, A. (2008). Experimental and theoretical studies on subcooled flow boiling of pure liquids and multicomponent mixtures. International Journal of Heat and Mass Transfer, 51(9), 2482-2493. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.052

Pare, A., & Kumar Ghosh, S. (2022). The chronological study on parametric evolution of pool boiling with nanofluids: An experimental review. Thermal Science and Engineering Progress, 34, 101420. doi:https://doi.org/10.1016/j.tsep.2022.101420

He, Y., Li, H., Hu, Y., Wang, X., & Zhu, J. (2016). Boiling heat transfer characteristics of ethylene glycol and water mixture based ZnO nanofluids in a cylindrical vessel. International Journal of Heat and Mass Transfer, 98, 611-615. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.052

Sharma, P. O., & Unune, D. R. (2022). Augmentation of pool boiling performance using Ag/ZnO hybrid nanofluid over EDM assisted robust heater surface modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 655, 130150. doi:https://doi.org/10.1016/j.colsurfa.2022.130150

Hegde, R. N., Rao, S. S., & Reddy, R. P. (2012). Investigations on heat transfer enhancement in pool boiling with water-CuO nano-fluids. Journal of Thermal Science, 21(2), 179-183. doi:https://doi.org/10.1007/s11630-012-0533-6

Karimzadehkhouei, M., Shojaeian, M., Şendur, K., Mengüç, M. P., & Koşar, A. (2017). The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling. International Journal of Heat and Mass Transfer, 109, 157-166. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.116

Xing, M., Yu, J., & Wang, R. (2016). Effects of surface modification on the pool boiling heat transfer of MWNTs/water nanofluids. International Journal of Heat and Mass Transfer, 103, 914-919. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.053

Manetti, L. L., Stephen, M. T., Beck, P. A., & Cardoso, E. M. (2017). Evaluation of the heat transfer enhancement during pool boiling using low concentrations of Al2O3-water based nanofluid. Experimental Thermal and Fluid Science, 87, 191-200. doi:https://doi.org/10.1016/j.expthermflusci.2017.04.018

Suriyawong, A., & Wongwises, S. (2010). Nucleate pool boiling heat transfer characteristics of TiO2–water nanofluids at very low concentrations. Experimental Thermal and Fluid Science, 34(8), 992-999. doi:https://doi.org/10.1016/j.expthermflusci.2010.03.002.

Peng, H., Ding, G., Jiang, W., Hu, H., & Gao, Y. (2009). Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. International Journal of Refrigeration, 32(6), 1259-1270. doi:https://doi.org/10.1016/j.ijrefrig.2009.01.025

Kim, J. H., Kim, J. M., Jerng, D. W., Kim, E. Y., & Ahn, H. S. (2018). Effect of aluminum oxide and reduced graphene oxide mixtures on critical heat flux enhancement. International Journal of Heat and Mass Transfer, 116, 858-870. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.063

Wang, Y., & Su, G. H. (2016). Experimental investigation on nanofluid flow boiling heat transfer in a vertical tube under different pressure conditions. Experimental Thermal and Fluid Science, 77, 116-123. doi:https://doi.org/10.1016/j.expthermflusci.2016.04.014

Anand, R. S., Jawahar, C. P., Solomon, A. B., & Bellos, E. (2020). A review of experimental studies on cylindrical two-phase closed thermosyphon using refrigerant for low-temperature applications. International Journal of Refrigeration, 120, 296-313. doi:https://doi.org/10.1016/j.ijrefrig.2020.08.011

Riehl, R. R., & Murshed, S. M. S. (2022). Performance evaluation of nanofluids in loop heat pipes and oscillating heat pipes. International Journal of Thermofluids, 14, 100147. doi:https://doi.org/10.1016/j.ijft.2022.100147

Tharayil, T., Asirvatham, L. G., Dau, M. J., & Wongwises, S. (2017). Entropy generation analysis of a miniature loop heat pipe with graphene–water nanofluid: Thermodynamics model and experimental study. International Journal of Heat and Mass Transfer, 106, 407-421. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.035

Veeramachaneni, S., Pisipaty, S. K., Vedula, D. R., Solomon, A. B., & Harsha, V. S. (2022). Effect of copper–graphene hybrid nanoplatelets in a miniature loop heat pipe. Journal of Thermal Analysis and Calorimetry, 147(10), 5985-5999. doi:https://doi.org/10.1007/s10973-021-10873-5

Çiftçi, E. (2021). Distilled Water-Based AlN + ZnO Binary Hybrid Nanofluid Utilization in a Heat Pipe and Investigation of Its Effects on Performance. International Journal of Thermophysics, 42(3), 38. doi:https://doi.org/10.1007/s10765-021-02792-2

Herrera, B., Gallego, A., & Cacua, K. (2021). Experimental evaluation of a thermosyphon-based heat exchanger working with a graphene oxide (GO) nanofluid in a cogeneration system. Thermal Science and Engineering Progress, 24, 100949. doi:https://doi.org/10.1016/j.tsep.2021.100949

Pandya, N. S., Desai, A. N., Kumar Tiwari, A., & Said, Z. (2021). Influence of the geometrical parameters and particle concentration levels of hybrid nanofluid on the thermal performance of axial grooved heat pipe. Thermal Science and Engineering Progress, 21, 100762. doi:https://doi.org/10.1016/j.tsep.2020.100762

Liu, Z.-H., Li, Y.-Y., & Bao, R. (2011). Compositive effect of nanoparticle parameter on thermal performance of cylindrical micro-grooved heat pipe using nanofluids. International Journal of Thermal Sciences, 50(4), 558-568. doi:https://doi.org/10.1016/j.ijthermalsci.2010.11.013

Han, X., Wang, X., Zheng, H., Xu, X., & Chen, G. (2016). Review of the development of pulsating heat pipe for heat dissipation. Renewable and Sustainable Energy Reviews, 59, 692-709. doi:https://doi.org/10.1016/j.rser.2015.12.350

Zhang, D., He, Z., Guan, J., Tang, S., & Shen, C. (2022). Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. International Journal of Heat and Mass Transfer, 183, 122100. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2021.122100

Zhou, Z., Lv, Y., Qu, J., Sun, Q., & Grachev, D. (2021). Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling. Applied Thermal Engineering, 196, 117300. doi:https://doi.org/10.1016/j.applthermaleng.2021.117300




DOI: http://dx.doi.org/10.17737/tre.2024.10.2.00174

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Xinyu Wang, Ya Li

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)