Effect of Compression Ratio on the Performance of Direct-Injection Hydrogen Engines
Abstract
Direct injection of hydrogen into the cylinder can avoid abnormal combustion such as backfire, and the hydrogen engine can operate in a wider range of excess air coefficient. However, direct injection hydrogen engines still have problems such as high NOx emissions under high load conditions, reduced power output due to lean combustion, and low thermal efficiency. This paper adopts a variable compression ratio structural design to study the impact of compression ratio changes on the comprehensive performance of direct injection hydrogen engines. The results show that under the same working conditions, as the engine compression ratio increases, the turbulence in the engine cylinder becomes more intense, increasing the back pressure in the cylinder, inhibiting the diffusion of hydrogen, making the hydrogen distribution more concentrated and the combustion conditions in the cylinder better. The overall performance of the engine is significantly improved.
Citation: Xu, Z. (2024). Effect of compression ratio on the performance of direct-injection hydrogen engines. Trends in Renewable Energy, 10(3), 283-300. doi:http://dx.doi.org/10.17737/tre.2024.10.3.00178
Keywords
Full Text:
FULL TEXT (PDF)References
Luo, Y., Wu, B., Li, Q., Tang, X., Yang, Z., Wu, C., & Wu, T. (2024). Experimental and simulation research on the lean combustion characteristics of direct-injection hydrogen engine. International Journal of Hydrogen Energy, 68, 398-409. doi:https://doi.org/10.1016/j.ijhydene.2024.04.184
Huang, Z., Yuan, S., Wei, H., Zhong, L., Hu, Z., Liu, Z., . . . Zhou, L. (2024). Effects of hydrogen injection timing and injection pressure on mixture formation and combustion characteristics of a hydrogen direct injection engine. Fuel, 363, 130966. doi:https://doi.org/10.1016/j.fuel.2024.130966
Duan, Y.-h., Sun, B.-g., Li, Q., Wu, X.-s., Hu, T.-g., & Luo, Q.-h. (2023). Combustion characteristics of a turbocharged direct-injection hydrogen engine. Energy Conversion and Management, 291, 117267. doi:https://doi.org/10.1016/j.enconman.2023.117267
Fu, Z., Li, Y., Wu, W., Li, Y., & Gao, W. (2024). Experimental study on the combustion and emission performance of the hydrogen direct injection engine. International Journal of Hydrogen Energy, 61, 1047-1059. doi:https://doi.org/10.1016/j.ijhydene.2024.02.276
Azeem, N., Beatrice, C., Vassallo, A., Pesce, F., Gessaroli, D., Biet, C., & Guido, C. (2024). Experimental study of cycle-by-cycle variations in a spark ignition internal combustion engine fueled with hydrogen. International Journal of Hydrogen Energy, 60, 1224-1238. doi:https://doi.org/10.1016/j.ijhydene.2024.02.182
Shahpouri, S., Gordon, D., Hayduk, C., Rezaei, R., Koch, C. R., & Shahbakhti, M. (2023). Hybrid emission and combustion modeling of hydrogen fueled engines. International Journal of Hydrogen Energy, 48(62), 24037-24053. doi:https://doi.org/10.1016/j.ijhydene.2023.03.153
Zhang, K., Jin, Z., Liu, Q., & Liu, L. (2024). Novel Green Hydrogen – Fossil Fuel Dehydrogenation. Fundamental Research. doi:https://doi.org/10.1016/j.fmre.2024.06.007
Rosendal, M. B., Münster, M., & Bramstoft, R. (2024). Renewable fuel production and the impact of hydrogen infrastructure — A case study of the Nordics. Energy, 297, 131234. doi:https://doi.org/10.1016/j.energy.2024.131234
Singh, M., Singla, M. K., Beryozkina, S., Gupta, J., & Safaraliev, M. (2024). Hydrogen vehicles and hydrogen as a fuel for vehicles: A-State-of-the-Art review. International Journal of Hydrogen Energy, 64, 1001-1010. doi:https://doi.org/10.1016/j.ijhydene.2024.03.325
Abubakar, S., Muhamad Said, M. F., Abas, M. A., Ismail, N. A., Khalid, A. H., Roslan, M. F., & Kaisan, M. U. (2024). Hydrogen-fuelled internal combustion engines - Bibliometric analysis on research trends, hotspots, and challenges. International Journal of Hydrogen Energy, 61, 623-638. doi:https://doi.org/10.1016/j.ijhydene.2024.02.280
Yang, Z., Guo, P., Wang, L., & Hao, Q. (2024). Multi-objective optimization analysis of hydrogen internal combustion engine performance based on game theory. Applied Energy, 374, 123946. doi:https://doi.org/10.1016/j.apenergy.2024.123946
Sebastian, S., Wijewardane, S., & Srinivasan, S. (2023). Recent advances in hydrogen production, storage, and fuel cell Technologies with an emphasis on inventions, innovations, and commercialization. Solar Compass, 8, 100065. doi:https://doi.org/10.1016/j.solcom.2023.100065
Jafari, H., Safarzadeh, S., & Azad-Farsani, E. (2022). Effects of governmental policies on energy-efficiency improvement of hydrogen fuel cell cars: A game-theoretic approach. Energy, 254, 124394. doi:https://doi.org/10.1016/j.energy.2022.124394
Stockford, C., Brandon, N., Irvine, J., Mays, T., Metcalfe, I., Book, D., . . . Thompson, C. (2015). H2FC SUPERGEN: An overview of the Hydrogen and Fuel Cell research across the UK. International Journal of Hydrogen Energy, 40(15), 5534-5543. doi:https://doi.org/10.1016/j.ijhydene.2015.01.180
Richardson, I. A., Fisher, J. T., Frome, P. E., Smith, B. O., Guo, S., Chanda, S., . . . Leachman, J. W. (2015). Low-cost, transportable hydrogen fueling station for early market adoption of fuel cell electric vehicles. International Journal of Hydrogen Energy, 40(25), 8122-8127. doi:https://doi.org/10.1016/j.ijhydene.2015.04.066
Alazemi, J., & Andrews, J. (2015). Automotive hydrogen fuelling stations: An international review. Renewable and Sustainable Energy Reviews, 48, 483-499. doi:https://doi.org/10.1016/j.rser.2015.03.085
Sun, Z.-y., Liu, F.-S., Liu, X.-h., Sun, B.-g., & Sun, D.-W. (2012). Research and development of hydrogen fuelled engines in China. International Journal of Hydrogen Energy, 37(1), 664-681. doi:https://doi.org/10.1016/j.ijhydene.2011.09.114
Park, C., Kim, C., & Choi, Y. (2012). Power output characteristics of hydrogen-natural gas blend fuel engine at different compression ratios. International Journal of Hydrogen Energy, 37(10), 8681-8687. doi:https://doi.org/10.1016/j.ijhydene.2012.02.052
Park, C., Kim, C., Choi, Y., Won, S., & Moriyoshi, Y. (2011). The influences of hydrogen on the performance and emission characteristics of a heavy duty natural gas engine. International Journal of Hydrogen Energy, 36(5), 3739-3745. doi:https://doi.org/10.1016/j.ijhydene.2010.12.021
Shivaprasad, K. V., Raviteja, S., Chitragar, P., & Kumar, G. N. (2014). Experimental Investigation of the Effect of Hydrogen Addition on Combustion Performance and Emissions Characteristics of a Spark Ignition High Speed Gasoline Engine. Procedia Technology, 14, 141-148. doi:https://doi.org/10.1016/j.protcy.2014.08.019
Sukumaran, S., & Kong, S.-C. (2010). Numerical study on mixture formation characteristics in a direct-injection hydrogen engine. International Journal of Hydrogen Energy, 35(15), 7991-8007. doi:https://doi.org/10.1016/j.ijhydene.2010.05.090
Ma, H. (2024). Effect of hydrogen injection flow rate on the performance of in-cylinder direct injection hydrogen engines. Trends in Renewable Energy, 10(3), 266-282. doi:http://dx.doi.org/10.17737/tre.2024.10.3.00177
Wang, T., Wang, Y., Zhang, L., Zheng, Y., Liu, R., Wang, C., & Gong, W. (2024). Influence of In-Cylinder Turbulence Kinetic Energy on the Mixing Uniformity within Gaseous-Fuel Engines under Various Intake Pressure Conditions. Energies, 17(13), 3321. doi:https://doi.org/10.3390/en17133321
Fu, X. (2022). Research on the interaction mechanism between turbulence and combustion in natural gas engine. Jilin University, Thesis
DOI: http://dx.doi.org/10.17737/tre.2024.10.3.00178
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Zhe Xu
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)