Effect of Compression Ratio on the Performance of Direct-Injection Hydrogen Engines

Zhe Xu

Abstract


Direct injection of hydrogen into the cylinder can avoid abnormal combustion such as backfire, and the hydrogen engine can operate in a wider range of excess air coefficient. However, direct injection hydrogen engines still have problems such as high NOx emissions under high load conditions, reduced power output due to lean combustion, and low thermal efficiency. This paper adopts a variable compression ratio structural design to study the impact of compression ratio changes on the comprehensive performance of direct injection hydrogen engines. The results show that under the same working conditions, as the engine compression ratio increases, the turbulence in the engine cylinder becomes more intense, increasing the back pressure in the cylinder, inhibiting the diffusion of hydrogen, making the hydrogen distribution more concentrated and the combustion conditions in the cylinder better. The overall performance of the engine is significantly improved. 

Citation: Xu, Z. (2024). Effect of compression ratio on the performance of direct-injection hydrogen engines. Trends in Renewable Energy, 10(3), 283-300. doi:http://dx.doi.org/10.17737/tre.2024.10.3.00178


Keywords


Direct injection; Compression ratio; Hydrogen; Indicated power; Indicated thermal efficiency; Turbulent kinetic energy

Full Text:

FULL TEXT (PDF)

References


Luo, Y., Wu, B., Li, Q., Tang, X., Yang, Z., Wu, C., & Wu, T. (2024). Experimental and simulation research on the lean combustion characteristics of direct-injection hydrogen engine. International Journal of Hydrogen Energy, 68, 398-409. doi:https://doi.org/10.1016/j.ijhydene.2024.04.184

Huang, Z., Yuan, S., Wei, H., Zhong, L., Hu, Z., Liu, Z., . . . Zhou, L. (2024). Effects of hydrogen injection timing and injection pressure on mixture formation and combustion characteristics of a hydrogen direct injection engine. Fuel, 363, 130966. doi:https://doi.org/10.1016/j.fuel.2024.130966

Duan, Y.-h., Sun, B.-g., Li, Q., Wu, X.-s., Hu, T.-g., & Luo, Q.-h. (2023). Combustion characteristics of a turbocharged direct-injection hydrogen engine. Energy Conversion and Management, 291, 117267. doi:https://doi.org/10.1016/j.enconman.2023.117267

Fu, Z., Li, Y., Wu, W., Li, Y., & Gao, W. (2024). Experimental study on the combustion and emission performance of the hydrogen direct injection engine. International Journal of Hydrogen Energy, 61, 1047-1059. doi:https://doi.org/10.1016/j.ijhydene.2024.02.276

Azeem, N., Beatrice, C., Vassallo, A., Pesce, F., Gessaroli, D., Biet, C., & Guido, C. (2024). Experimental study of cycle-by-cycle variations in a spark ignition internal combustion engine fueled with hydrogen. International Journal of Hydrogen Energy, 60, 1224-1238. doi:https://doi.org/10.1016/j.ijhydene.2024.02.182

Shahpouri, S., Gordon, D., Hayduk, C., Rezaei, R., Koch, C. R., & Shahbakhti, M. (2023). Hybrid emission and combustion modeling of hydrogen fueled engines. International Journal of Hydrogen Energy, 48(62), 24037-24053. doi:https://doi.org/10.1016/j.ijhydene.2023.03.153

Zhang, K., Jin, Z., Liu, Q., & Liu, L. (2024). Novel Green Hydrogen – Fossil Fuel Dehydrogenation. Fundamental Research. doi:https://doi.org/10.1016/j.fmre.2024.06.007

Rosendal, M. B., Münster, M., & Bramstoft, R. (2024). Renewable fuel production and the impact of hydrogen infrastructure — A case study of the Nordics. Energy, 297, 131234. doi:https://doi.org/10.1016/j.energy.2024.131234

Singh, M., Singla, M. K., Beryozkina, S., Gupta, J., & Safaraliev, M. (2024). Hydrogen vehicles and hydrogen as a fuel for vehicles: A-State-of-the-Art review. International Journal of Hydrogen Energy, 64, 1001-1010. doi:https://doi.org/10.1016/j.ijhydene.2024.03.325

Abubakar, S., Muhamad Said, M. F., Abas, M. A., Ismail, N. A., Khalid, A. H., Roslan, M. F., & Kaisan, M. U. (2024). Hydrogen-fuelled internal combustion engines - Bibliometric analysis on research trends, hotspots, and challenges. International Journal of Hydrogen Energy, 61, 623-638. doi:https://doi.org/10.1016/j.ijhydene.2024.02.280

Yang, Z., Guo, P., Wang, L., & Hao, Q. (2024). Multi-objective optimization analysis of hydrogen internal combustion engine performance based on game theory. Applied Energy, 374, 123946. doi:https://doi.org/10.1016/j.apenergy.2024.123946

Sebastian, S., Wijewardane, S., & Srinivasan, S. (2023). Recent advances in hydrogen production, storage, and fuel cell Technologies with an emphasis on inventions, innovations, and commercialization. Solar Compass, 8, 100065. doi:https://doi.org/10.1016/j.solcom.2023.100065

Jafari, H., Safarzadeh, S., & Azad-Farsani, E. (2022). Effects of governmental policies on energy-efficiency improvement of hydrogen fuel cell cars: A game-theoretic approach. Energy, 254, 124394. doi:https://doi.org/10.1016/j.energy.2022.124394

Stockford, C., Brandon, N., Irvine, J., Mays, T., Metcalfe, I., Book, D., . . . Thompson, C. (2015). H2FC SUPERGEN: An overview of the Hydrogen and Fuel Cell research across the UK. International Journal of Hydrogen Energy, 40(15), 5534-5543. doi:https://doi.org/10.1016/j.ijhydene.2015.01.180

Richardson, I. A., Fisher, J. T., Frome, P. E., Smith, B. O., Guo, S., Chanda, S., . . . Leachman, J. W. (2015). Low-cost, transportable hydrogen fueling station for early market adoption of fuel cell electric vehicles. International Journal of Hydrogen Energy, 40(25), 8122-8127. doi:https://doi.org/10.1016/j.ijhydene.2015.04.066

Alazemi, J., & Andrews, J. (2015). Automotive hydrogen fuelling stations: An international review. Renewable and Sustainable Energy Reviews, 48, 483-499. doi:https://doi.org/10.1016/j.rser.2015.03.085

Sun, Z.-y., Liu, F.-S., Liu, X.-h., Sun, B.-g., & Sun, D.-W. (2012). Research and development of hydrogen fuelled engines in China. International Journal of Hydrogen Energy, 37(1), 664-681. doi:https://doi.org/10.1016/j.ijhydene.2011.09.114

Park, C., Kim, C., & Choi, Y. (2012). Power output characteristics of hydrogen-natural gas blend fuel engine at different compression ratios. International Journal of Hydrogen Energy, 37(10), 8681-8687. doi:https://doi.org/10.1016/j.ijhydene.2012.02.052

Park, C., Kim, C., Choi, Y., Won, S., & Moriyoshi, Y. (2011). The influences of hydrogen on the performance and emission characteristics of a heavy duty natural gas engine. International Journal of Hydrogen Energy, 36(5), 3739-3745. doi:https://doi.org/10.1016/j.ijhydene.2010.12.021

Shivaprasad, K. V., Raviteja, S., Chitragar, P., & Kumar, G. N. (2014). Experimental Investigation of the Effect of Hydrogen Addition on Combustion Performance and Emissions Characteristics of a Spark Ignition High Speed Gasoline Engine. Procedia Technology, 14, 141-148. doi:https://doi.org/10.1016/j.protcy.2014.08.019

Sukumaran, S., & Kong, S.-C. (2010). Numerical study on mixture formation characteristics in a direct-injection hydrogen engine. International Journal of Hydrogen Energy, 35(15), 7991-8007. doi:https://doi.org/10.1016/j.ijhydene.2010.05.090

Ma, H. (2024). Effect of hydrogen injection flow rate on the performance of in-cylinder direct injection hydrogen engines. Trends in Renewable Energy, 10(3), 266-282. doi:http://dx.doi.org/10.17737/tre.2024.10.3.00177

Wang, T., Wang, Y., Zhang, L., Zheng, Y., Liu, R., Wang, C., & Gong, W. (2024). Influence of In-Cylinder Turbulence Kinetic Energy on the Mixing Uniformity within Gaseous-Fuel Engines under Various Intake Pressure Conditions. Energies, 17(13), 3321. doi:https://doi.org/10.3390/en17133321

Fu, X. (2022). Research on the interaction mechanism between turbulence and combustion in natural gas engine. Jilin University, Thesis




DOI: http://dx.doi.org/10.17737/tre.2024.10.3.00178

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Zhe Xu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)