Research Progress of Microchannel Liquid Cooling Technology in the Application of Thermal Management of Prismatic Lithium Batteries (Withdrawn)

Qinxiang Zeng

Abstract


Retraction

This article was originally submitted to Trends in Renewable Energy on 8/1/2024. Following peer review and author revision, the article was accepted for publication on 9/2/2024. After professional English editing and layout editing, the proof was sent to the author on 9/15/2024 and the proof was published online as the paper in press.

On 9/18/2024, the editorial office was noticed that due to the conflict of interest, the author would like to withdraw this article from the production process. The editorial office followed up on the author's request and conducted an investigation. It’s concluded that this article was not a simultaneous submission. Although Turnitin Similarity Report (http://dx.doi.org/10.17737/tre.2024.10.3.00183.s43) showed a 48% similarity index, the highest similarity from a single publication was less 4%. As a review article, it indicated that some paragraphs need further revisions, but overall the article was of good quality.  

Now this paper has been officially withdrawn. However, the abstract and the proof are still kept on the journal website as a record.

Editors of Trends in Renewable Energy

September 27, 2024

-------------------------------------------------------------------------------------------------------------------------------

Abstract

Lithium-ion batteries have significant advantages such as high energy density, long cycle life and low self-discharge rate. Therefore, they are ideal for energy storage in electric vehicles. However, lithium-ion batteries are very sensitive to temperature, which affects the battery's cycle life, efficiency, reliability and safety. During the charging and discharging process, a large amount of heat is generated inside the battery due to the electrochemical reaction and resistance, causing the battery temperature to rise. When the temperature gets too high, thermal runaway, electrolyte fire and explosions may occur. As battery energy density increases, the demand for efficient thermal management continues to increase, and a compact and efficient battery thermal management system is essential. This paper introduces the development status of different thermal management technologies, reviews the application of microchannel liquid-cooling technology in the thermal management of prismatic lithium batteries, discusses the current research direction and status of microchannel technology, and finally looks forward to the future research and development direction of microchannel technology.

Citation: Zeng, Q. (2024). Research progress of microchannel liquid cooling technology in the application of thermal management of prismatic lithium batteries (Withdrawn). Trends in Renewable Energy, 10(3), 335-355. doi:http://dx.doi.org/10.17737/tre.2024.10.3.00183


Full Text:

FULL TEXT (PDF)

References


Zhou, Y., Yu, Y., Wang, Y., He, B., & Yang, L. (2023). Mode substitution and carbon emission impacts of electric bike sharing systems. Sustainable Cities and Society, 89, 104312. doi:https://doi.org/10.1016/j.scs.2022.104312

Ali, Z. M., Al-Dhaifallah, M., Alkhalaf, S., Alaas, Z., & Jamali, F. (2023). Optimal planning and design of a microgrid with integration of energy storage and electric vehicles considering cost savings and emissions reduction. Journal of Energy Storage, 71, 108049. doi:https://doi.org/10.1016/j.est.2023.108049

Yilmaz, M., & Krein, P. T. (2012). Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces. IEEE Transactions on power electronics, 28(12), 5673-5689. doi:https://doi.org/10.1109/TPEL.2012.2227500

Li, C., Zhang, H., Ding, P., Yang, S., & Bai, Y. (2023). Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives. Renewable and Sustainable Energy Reviews, 184, 113576. doi:https://doi.org/10.1016/j.rser.2023.113576

Abdalla, A. M., Abdullah, M. F., Dawood, M. K., Wei, B., Subramanian, Y., Azad, A. T., Nourin, S., Afroze, S., Taweekun, J., & Azad, A. K. (2023). Innovative lithium-ion battery recycling: Sustainable process for recovery of critical materials from lithium-ion batteries. Journal of Energy Storage, 67, 107551. doi:https://doi.org/10.1016/j.est.2023.107551

Khan, F. M. N. U., Rasul, M. G., Sayem, A. S. M., & Mandal, N. K. (2023). Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review. Journal of Energy Storage, 71, 108033. doi:https://doi.org/10.1016/j.est.2023.108033

Waldmann, T., Wilka, M., Kasper, M., Fleischhammer, M., & Wohlfahrt-Mehrens, M. (2014). Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study. Journal of Power Sources, 262, 129-135. doi:https://doi.org/10.1016/j.jpowsour.2014.03.112

He, Z. Q., Wang B. Y., Shi, Q., & Xia, Y.R. (2024). Analysis of domestic new energy passenger vehicle fire. Automotive Digest (Chinese), 2024(5): 23-30.

Liu, H., Chika, E., & Zhao, J. (2018). Investigation into the effectiveness of nanofluids on the mini-channel thermal management for high power lithium ion battery. Applied Thermal Engineering, 142, 511-523. doi:https://doi.org/10.1016/j.applthermaleng.2018.07.037

Zhang, X., Yao, J., Zhu, L., Wu, J., Wei, D., Wang, Q., Chen, H., Li, K., Gao, Z., Xu, C., & Feng, X. (2024). Experimental and simulation investigation of thermal runaway propagation in lithium-ion battery pack systems. Journal of Energy Storage, 77, 109868. doi:https://doi.org/10.1016/j.est.2023.109868

Tang, Z., Li, J., Liu, Z., & Cheng, J. (2021). Thermal performance of a thermal management system with a thin plate and a slender tube for prismatic batteries. International Journal of Energy Research, 45(4), 5347-5358. doi:https://doi.org/10.1002/er.6157

Li, W., Peng, X., Xiao, M., Garg, A., & Gao, L. (2019). Li, W., Peng, X., Xiao, M., Garg, A., & Gao, L. (2019). Multi‐objective design optimization for mini‐channel cooling battery thermal management system in an electric vehicle. International Journal of Energy Research, 43(8), 3668-3680. doi:https://doi.org/10.1002/er.4518

Lu, Z., Yu, X., Fan, S., Zhang, L., Wei, L., Cui, X., & Jin, L. (2021). Thermal characteristics of stagger-arranged battery pack with holding plates cooled by longitudinal airflow. Journal of Energy Engineering, 147(1), 04020073. doi:https://doi.org/10.1061/(ASCE)EY.1943-7897.0000721

Dan, D., Yao, C., Zhang, Y., Zhang, H., Zeng, Z., & Xu, X. (2019). Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Applied Thermal Engineering, 162, 114183. doi:https://doi.org/10.1016/j.applthermaleng.2019.114183

Bao, Y., Fan, Y., Chu, Y., Ling, C., Tan, X., & Yang, S. (2019). Experimental and numerical study on thermal and energy management of a fast-charging lithium-ion battery pack with air cooling. Journal of Energy Engineering, 145(6), 04019030. doi:

Yang, Y., Li, W., Xu, X., & Tong, G. (2020). Heat dissipation analysis of different flow path for parallel liquid cooling battery thermal management system. International Journal of Energy Research, 44(7), 5165-5176. doi:https://doi.org/10.1002/er.5089

Chen, K., Li, Z., Chen, Y., Long, S., Hou, J., Song, M., & Wang, S. (2017). Design of parallel air-cooled battery thermal management system through numerical study. Energies, 10(10), 1677. doi:https://doi.org/10.3390/en10101677

Na, X., Kang, H., Wang, T., & Wang, Y. (2018). Reverse layered air flow for Li-ion battery thermal management. Applied Thermal Engineering, 143, 257-262. doi:https://doi.org/10.1016/j.applthermaleng.2018.07.080

Tran, N. T., Farrell, T., Vilathgamuwa, M., & Li, Y. (2019). A computationally efficient coupled electrochemical-thermal model for large format cylindrical lithium ion batteries. Journal of The Electrochemical Society, 166(13), A3059. doi:https://doi.org/10.1149/2.1241913jes

Fan, Y., Bao, Y., Ling, C., Chu, Y., Tan, X., & Yang, S. (2019). Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Applied Thermal Engineering, 155, 96-109. doi:https://doi.org/10.1016/j.applthermaleng.2019.03.157

Sharma, D. K., & Prabhakar, A. (2021). A review on air cooled and air centric hybrid thermal management techniques for Li-ion battery packs in electric vehicles. Journal of Energy Storage, 41, 102885. doi:https://doi.org/10.1016/j.est.2021.102885

Park, H. (2013). A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. Journal of Power Sources, 239, 30-36. doi:https://doi.org/10.1016/j.jpowsour.2013.03.102

Hong, S., Zhang, X., Chen, K., & Wang, S. (2018). Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent. International Journal of Heat and Mass Transfer, 116, 1204-1212. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.092

Liu, Y., & Zhang, J. (2019). Design a J-type air-based battery thermal management system through surrogate-based optimization. Applied Energy, 252, 113426. doi:https://doi.org/10.1016/j.apenergy.2019.113426

Zhang, F., Yi, M., Wang, P., & Liu, C. (2021). Optimization design for improving thermal performance of T-type air-cooled lithium-ion battery pack. Journal of Energy Storage, 44, 103464. doi:https://doi.org/10.1016/j.est.2021.103464

Luo, L., Liu, Y., Liao, Z., & Zhong, J. (2023). Optimal structure design and heat transfer characteristic analysis of X-type air-cooled battery thermal management system. Journal of Energy Storage, 67, 107681. doi:https://doi.org/10.1016/j.est.2023.107681

Ling, Z., Chen, J., Fang, X., Zhang, Z., Xu, T., Gao, X., & Wang, S. (2014). Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Applied Energy, 121, 104-113. doi:https://doi.org/10.1016/j.apenergy.2014.01.075

Yan, J., Li, K., Chen, H., Wang, Q., & Sun, J. (2016). Experimental study on the application of phase change material in the dynamic cycling of battery pack system. Energy Conversion and Management, 128, 12-19. doi:https://doi.org/10.1016/j.enconman.2016.09.058

Lin, C., Xu, S., Chang, G., & Liu, J. (2015). Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets. Journal of Power Sources, 275, 742-749. doi:https://doi.org/10.1016/j.jpowsour.2014.11.068

Xin, Q., Xiao, J., Yang, T., Zhang, H., & Long, X. (2022). Thermal management of lithium-ion batteries under high ambient temperature and rapid discharging using composite PCM and liquid cooling. Applied Thermal Engineering, 210, 118230. doi:https://doi.org/10.1016/j.applthermaleng.2022.118230

Weragoda, D. M., Tian, G., Burkitbayev, A., Lo, K.-H., & Zhang, T. (2023). A comprehensive review on heat pipe based battery thermal management systems. Applied Thermal Engineering, 224, 120070. doi:https://doi.org/10.1016/j.applthermaleng.2023.120070

Gan, Y., He, L., Liang, J., Tan, M., Xiong, T., & Li, Y. (2020). A numerical study on the performance of a thermal management system for a battery pack with cylindrical cells based on heat pipes. Applied Thermal Engineering, 179, 115740. doi:https://doi.org/10.1016/j.applthermaleng.2020.115740

He, L., Tang, X., Luo, Q., Liao, Y., Luo, X., Liu, J., . . . Li, Y. (2022). Structure optimization of a heat pipe-cooling battery thermal management system based on fuzzy grey relational analysis. International Journal of Heat and Mass Transfer, 182, 121924. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2021.121924

Zhou, H., Dai, C., Liu, Y., Fu, X., & Du, Y. (2020). Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid. Journal of Power Sources, 473, 228545. doi:https://doi.org/10.1016/j.jpowsour.2020.228545

Nasir, F. M., Abdullah, M. Z., Majid, M. F. M. A., & Ismail, M. A. (2019). Nanofluid-filled heat pipes in managing the temperature of EV lithium-ion batteries. In Journal of Physics: Conference Series (Vol. 1349, No. 1, p. 012123). IOP Publishing. doi:https://doi.org/10.1088/1742-6596/1349/1/012123

Zhu, F., Wang, Y., Xie, Y., Chen, H., & Zhang, Y. (2024). Analysis on battery thermal management system based on flat heat pipe at high discharging rate. Applied Thermal Engineering, 254, 123798. doi:https://doi.org/10.1016/j.applthermaleng.2024.123798

Qian, Z., Li, Y., & Rao, Z. (2016). Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 126, 622-631. doi:https://doi.org/10.1016/j.enconman.2016.08.063

Huang, Y., Mei, P., Lu, Y., Huang, R., Yu, X., Chen, Z., & Roskilly, A. P. (2019). A novel approach for Lithium-ion battery thermal management with streamline shape mini channel cooling plates. Applied Thermal Engineering, 157, 113623. doi:https://doi.org/10.1016/j.applthermaleng.2019.04.033

Pety, S. J., Tan, M. H. Y., Najafi, A. R., Barnett, P. R., Geubelle, P. H., & White, S. R. (2017). Carbon fiber composites with 2D microvascular networks for battery cooling. International Journal of Heat and Mass Transfer, 115, 513-522. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.047

Wu, M.-S. (2023). Multi-objective topology optimization of cold plates featuring branched and streamlined mini-channels for thermal management system of lithium-ion battery module. Journal of Energy Storage, 72, 108362. doi:https://doi.org/10.1016/j.est.2023.108362

Wu, Y., Li, Z., Zhi, C., Li, Z., Shi, C., Tan, G., & Ming, T. (2024). Pseudo three-dimensional topology optimization of cold plates for electric vehicle power packs. International Journal of Heat and Mass Transfer, 232, 125966. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2024.125966

Lin, S., & Zhou, L. (2023). Thermal performance of rectangular serpentine mini-channel cooling system on lithium battery. Journal of Cleaner Production, 418, 138125. doi:https://doi.org/10.1016/j.jclepro.2023.138125

Monika, K., Chakraborty, C., Roy, S., Sujith, R., & Datta, S. P. (2021). A numerical analysis on multi-stage Tesla valve based cold plate for cooling of pouch type Li-ion batteries. International Journal of Heat and Mass Transfer, 177, 121560. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2021.121560

Monika, K., Phani Vivek, U. V. V., Chakraborty, C., Roy, S., & Datta, S. P. (2023). Augmentation of multi-stage Tesla valve design cold plate with reverse flow to enhance thermal management of pouch batteries. International Journal of Heat and Mass Transfer, 214, 124439. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2023.124439

Zuo, S., Chen, S., & Yin, B. (2022). Performance analysis and improvement of lithium-ion battery thermal management system using mini-channel cold plate under vibration environment. International Journal of Heat and Mass Transfer, 193, 122956. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2022.122956

Murshed, S. M. S., Leong, K. C., & Yang, C. (2008). Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47(5), 560-568. doi:https://doi.org/10.1016/j.ijthermalsci.2007.05.004

Azmi, W. H., Sharma, K. V., Mamat, R., Najafi, G., & Mohamad, M. S. (2016). The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – A review. Renewable and Sustainable Energy Reviews, 53, 1046-1058. doi:https://doi.org/10.1016/j.rser.2015.09.081

Wang, Y., Yu, J., Qi, C., Zhang, W., & Liang, L. (2024). Secondary vortex drag reduction and heat transfer enhancement of nanofluids in hierarchical microchannels applied to thermal management of electronic components. Applied Thermal Engineering, 236, 121588. doi:https://doi.org/10.1016/j.applthermaleng.2023.121588

Yu, J., Chen, L., Qi, C., Zhang, W., & Liang, L. (2023). Effects of shark bionic V-groove structures and nanofluids on thermal management of electronic components. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 679, 132639. doi:https://doi.org/10.1016/j.colsurfa.2023.132639

Asadi, M., Asadi, A., & Aberoumand, S. (2018). An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid. International Journal of Refrigeration, 89, 83-92. doi:https://doi.org/10.1016/j.ijrefrig.2018.03.014

Asadi, A., Asadi, M., Rezaniakolaei, A., Rosendahl, L. A., Afrand, M., & Wongwises, S. (2018). Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation. International Journal of Heat and Mass Transfer, 117, 474-486. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.036

Maghrabie, H. M., Attalla, M., & A. A. Mohsen, A. (2021). Performance assessment of a shell and helically coiled tube heat exchanger with variable orientations utilizing different nanofluids. Applied Thermal Engineering, 182, 116013. doi:https://doi.org/10.1016/j.applthermaleng.2020.116013

Abdelkareem, M. A., Maghrabie, H. M., Abo-Khalil, A. G., Adhari, O. H. K., Sayed, E. T., Radwan, A., Elsaid, K., Wilberforce, T., & Olabi, A. G. (2022). Battery thermal management systems based on nanofluids for electric vehicles. Journal of Energy Storage, 50, 104385. doi:https://doi.org/10.1016/j.est.2022.104385

Liu, H., Chika, E., & Zhao, J. (2018). Investigation into the effectiveness of nanofluids on the mini-channel thermal management for high power lithium ion battery. Applied Thermal Engineering, 142, 511-523. doi:https://doi.org/10.1016/j.applthermaleng.2018.07.037

Kiani, M., Omiddezyani, S., Nejad, A. M., Ashjaee, M., & Houshfar, E. (2021). Novel hybrid thermal management for Li-ion batteries with nanofluid cooling in the presence of alternating magnetic field: An experimental study. Case Studies in Thermal Engineering, 28, 101539. doi:https://doi.org/10.1016/j.csite.2021.101539

Anqi, A. E. (2023). Numerical investigation of heat transfer and entropy generation in serpentine microchannel on the battery cooling plate using hydrophobic wall and nanofluid. Journal of Energy Storage, 66, 106548. doi:https://doi.org/10.1016/j.est.2022.106548

Mazaheri, N., Bahiraei, M., Abdi Chaghakaboodi, H., & Moayedi, H. (2019). Analyzing performance of a ribbed triple-tube heat exchanger operated with graphene nanoplatelets nanofluid based on entropy generation and exergy destruction. International Communications in Heat and Mass Transfer, 107, 55-67. doi:https://doi.org/10.1016/j.icheatmasstransfer.2019.05.015

Li, H., Xiao, X., Wang, Y., Lian, C., Li, Q., & Wang, Z. (2020). Performance investigation of a battery thermal management system with microencapsulated phase change material suspension. Applied Thermal Engineering, 180, 115795. doi:https://doi.org/10.1016/j.applthermaleng.2020.115795

Ran, F., Chen, Y., Cong, R., & Fang, G. (2020). Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review. Renewable and Sustainable Energy Reviews, 134, 110101. doi:https://doi.org/10.1016/j.rser.2020.110101

Chen, R., Ge, X., Zhong, Y., Jiang, L., Zhang, G., Zhang, J., & Ke, X. (2023). Experimental study of phase change microcapsule-based liquid cooling for battery thermal management. International Communications in Heat and Mass Transfer, 146, 106912. doi:https://doi.org/10.1016/j.icheatmasstransfer.2023.106912

Yang, R., Xie, Y., Li, K., Li, W., Hu, X., Fan, Y., & Zhang, Y. (2024). Thermal characteristics of solid-state battery and its thermal management system based on flat heat pipe. Applied Thermal Engineering, 252, 123575. doi:https://doi.org/10.1016/j.applthermaleng.2024.123575




DOI: http://dx.doi.org/10.17737/tre.2024.10.3.00183

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Qinxiang Zeng

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)