Designing Broadband over Power Lines Networks Using the Techno-Economic Pedagogical (TEP) Method – Part II: Overhead Low-Voltage and Medium-Voltage Channels and Their Modal Transmission Characteristics

Athanasios G Lazaropoulos

Abstract


Based on the techno-economic pedagogical (TEP) method proposed in [1] that is suitable for designing Broadband over Power Lines (BPL) networks in transmission and distribution power grids, this paper examines the broadband potential of overhead low-voltage/broadband over power lines (LV/BPL) and medium-voltage/broadband over power lines (MV/BPL) networks.

In this paper, on the basis of the set of linear simplifications and techno-economic metrics already presented in [1], TEP method demonstrates to undergraduate electrical and computer engineering (ECE) students the behavior of overhead LV/BPL and MV/BPL networks in terms of their modal transmission characteristics when different overhead LV/BPL and MV/BPL topologies occur.

The contribution of this paper is four-fold. First, the factors influencing modal transmission characteristics of overhead LV/BPL and MV/BPL networks are investigated with regard to their spectral behavior and
end-to-end channel attenuation. Second, the impact of the multiplicity of branches at the same junction is first examined. In the light of cascaded two-way power dividers, TEP method is extended so as to cope with more complex BPL topologies offering a new simplified and accurate circuital approximation. Third, apart from the broadband transmission characteristics of the entire overhead distribution power grid, a consequence of the application of TEP method is that it helps towards the intraoperability/interoperability of overhead LV/BPL and MV/BPL systems under a common PHY framework in the concept of a unified distribution smart grid (SG) power network. Fourth, TEP method can be demonstrated to undergraduate ECE students as case study in order to stimulate their interest for Microwave Engineering and Circuit/System Engineering courses.

 

Citation: Lazaropoulos, A. (2015). Designing Broadband over Power Lines Networks Using the Techno-Economic Pedagogical (TEP) Method – Part II: Overhead Low-Voltage and Medium-Voltage Channels and Their Modal Transmission Characteristics. Trends In Renewable Energy, 1(2), 59-86. doi:10.17737/tre.2015.1.2.006


Keywords


Education; Educational Policy; Comparative Education; Electrical and Computer Engineering; Microwave Engineering; Engineering Economics; Broadband over Power Lines (BPL) modeling; eigenvalue decomposition (EVD) modal analysis; Power Line Communications

Full Text:

FULL TEXT (PDF)

References


A. G. Lazaropoulos, “Designing Broadband over Power Lines Networks Using the Techno-Economic Pedagogical (TEP) Method – Part I: Overhead High Voltage Networks and Their Capacity Characteristics,” Trends in Renewable Energy, vol. 1, no. 1, pp. 16-42, Mar. 2015. DOI: 10.17737/tre.2015.1.1.002

A. G. Lazaropoulos and P. G. Cottis, “Transmission characteristics of overhead medium voltage power line communication channels,” IEEE Trans. Power Del., vol. 24, no. 3, pp. 1164–1173, Jul. 2009. DOI: 10.1109/tpwrd.2008.2008467

A. G. Lazaropoulos, “Towards Modal Integration of Overhead and Underground Low-Voltage and Medium-Voltage Power Line Communication Channels in the Smart Grid Landscape: Model Expansion, Broadband Signal Transmission Characteristics, and Statistical Performance Metrics (Invited Paper),” ISRN Signal Processing, vol. 2012, Article ID 121628, pp. 1-17, 2012. DOI: 10.5402/2012/121628

A. G. Lazaropoulos and P. G. Cottis, “Capacity of overhead medium voltage power line communication channels,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 723–733, Apr. 2010. DOI: 10.1109/tpwrd.2009.2034907

A. G. Lazaropoulos, “Review and Progress towards the Common Broadband Management of High-Voltage Transmission Grids: Model Expansion and Comparative Modal Analysis,” ISRN Electronics, vol. 2012, Article ID 935286, pp. 1-18, 2012. DOI: 10.5402/2012/935286

A. G. Lazaropoulos, “Broadband Transmission Characteristics of Overhead High-Voltage Power Line Communication Channels,” Progress in Electromagnetics Research B, vol. 36, pp. 373-398, 2012. DOI: 10.2528/PIERB11091408

A. G. Lazaropoulos, “Broadband Transmission and Statistical Performance Properties of Overhead High-Voltage Transmission Networks (Invited Paper),” Hindawi Journal of Computer Networks and Commun., vol. 2012, Article ID 875632, pp. 1-16, 2012. DOI: 10.1155/2012/875632

A. G. Lazaropoulos, “Green Overhead and Underground Multiple-Input Multiple-Output Medium Voltage Broadband over Power Lines Networks: Energy-Efficient Power Control,” Springer Journal of Global Optimization, 57(3), 997-1024, 2013. DOI: 10.1007/s10898-012-9988-y

M. U. Rehman, S. Wang, Y. Liu, S. Chen, X. Chen, and C. G. Parini, “Achieving High Data Rate in Multiband-OFDM UWB Over Power-Line Communication System,” IEEE Trans. on Power Del., vol. 27, no. 3, pp. 1172–1177, Jul. 2012. DOI: 10.1109/TPWRD.2012.2193902

A. M. Sarafi, G. I. Tsiropoulos, and P. G. Cottis, “Hybrid Wireless-Broadband over Power Lines: A Promising Broadband Solution in Rural Areas,” IEEE Comm. Mag., pp. 140–147, Nov. 2009. DOI: 10.1109/MCOM.2009.5307478

G. N. S. Prasanna, A. Lakshmi, S. Sumanth, V. Simha, J. Bapat, and G. Koomullil, “Data Communication over the Smart Grid,” in Proc. IEEE Int. Symp. Power Line Communications and Its Applications, Dresden, Germany, Mar./Apr. 2009, pp. 273–279. DOI: 10.1109/ISPLC.2009.4913442

S. Galli, A. Scaglione, and Z. Wang, “For the grid and through the grid: the role of power line communications in the smart grid,” in Proc. IEEE, vol. 99, no. 6, pp. 998–1027, Jun. 2011.

S. Liu and L. J. Greenstein, “Emission characteristics and interference constraint of overhead medium-voltage broadband power line (BPL) systems,” in Proc. IEEE Global Telecommunications Conf., New Orleans, LA, USA, Nov./Dec. 2008, pp. 1-5. DOI: 10.1109/GLOCOM.2008.ECP.560

P. Amirshahi and M. Kavehrad, “High-frequency characteristics of overhead multiconductor power lines for broadband communications,” IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1292–1303, Jul. 2006. DOI: 10.1109/jsac.2006.874399

A. G. Lazaropoulos, “Review and Progress towards the Capacity Boost of Overhead and Underground Medium-Voltage and Low-Voltage Broadband over Power Lines Networks: Cooperative Communications through

Two- and Three-Hop Repeater Systems,” ISRN Electronics, vol. 2013, Article ID 472190, pp. 1-19, 2013. DOI: 10.1155/2013/472190

S. Galli, and Oleg Logvinov, “Recent developments in the standardization of power line communications within the IEEE,” IEEE Communications Magazine, vol. 46, no. 7, pp. 64-71, 2008. DOI: 10.1109/MCOM.2008.4557044

P. S. Henry, “Interference characteristics of broadband power line communication systems using aerial medium voltage wires,” IEEE Commun. Mag., vol. 43, no. 4, pp. 92–98, Apr. 2005. DOI: 10.1109/MCOM.2005.1421910

J. Anatory, N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, “The effects of load impedance, line length, and branches in typical low-voltage channels of the BPLC systems of developing countries: transmission-line analyses,” IEEE Trans. Power Del., vol. 24, no. 2, pp. 621–629, Apr. 2009. DOI: 10.1109/TPWRD.2008.923395

T. Sartenaer, “Multiuser communications over frequency selective wired channels and applications to the powerline access network” Ph.D. dissertation, Univ. Catholique Louvain, Louvain-la-Neuve, Belgium, Sep. 2004.

T. Calliacoudas and F. Issa, ““Multiconductor transmission lines and cables solver,” An efficient simulation tool for plc channel networks development,” presented at the IEEE Int. Conf. Power Line Communications and Its Applications, Athens, Greece, Mar. 2002.

C. R. Paul, Analysis of Multiconductor Transmission Lines. New York: Wiley, 1994.

T. Sartenaer and P. Delogne, “Deterministic modelling of the (Shielded) outdoor powerline channel based on the multiconductor transmission line equations,” IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1277–1291, Jul. 2006. DOI: 10.1109/jsac.2006.874423

S. Galli and T. Banwell, “A deterministic frequency-domain model for the indoor power line transfer function,” IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1304–1316, Jul. 2006. DOI: 10.1109/jsac.2006.874428

A. G. Lazaropoulos and P. G. Cottis, “Broadband transmission via underground medium-voltage power lines-Part II: capacity,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2425-2434, Oct. 2010. DOI: 10.1109/tpwrd.2010.2052113

P. Amirshahi, “Broadband access and home networking through powerline networks” Ph.D. dissertation, Pennsylvania State Univ., University Park, PA, May 2006.

H. Meng, S. Chen, Y. L. Guan, C. L. Law, P. L. So, E. Gunawan, and T. T. Lie, “Modeling of transfer characteristics for the broadband power line communication channel,” IEEE Trans. Power Del., vol. 19, no. 3, pp. 1057–1064, Jul. 2004. DOI: 10.1109/tpwrd.2010.2048929

OPERA1, D44: Report presenting the architecture of plc system, the electricity network topologies, the operating modes and the equipment over which PLC access system will be installed, IST Integr. Project No 507667, Dec. 2005.

DLC+VIT4IP, D1.2: Overall system architecture design DLC system architecture. FP7 Integrated Project No 247750, Jun. 2010.

K. Dostert, Powerline Communications. Upper Saddle River, NJ: Prentice-Hall, 2001.

A. G. Lazaropoulos and P. G. Cottis, “Broadband transmission via underground medium-voltage power lines—Part I: transmission characteristics,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2414–2424, Oct. 2010. DOI: 10.1109/tpwrd.2010.2048929

A. G. Lazaropoulos, “Towards Broadband over Power Lines Systems Integration: Transmission Characteristics of Underground Low-Voltage Distribution Power Lines,” Progress in Electromagnetics Research B, vol. 39, pp. 89-114, 2012. DOI: 10.2528/PIERB12012409

A. G. Lazaropoulos, “Factors Influencing Broadband Transmission Characteristics of Underground Low-Voltage Distribution Networks,” IET Commun., vol. 6, no. 17, pp. 2886-2893, Nov. 2012. DOI: 10.1049/iet-com.2011.0661

A. G. Lazaropoulos, “Deployment Concepts for Overhead High Voltage Broadband over Power Lines Connections with Two-Hop Repeater System: Capacity Countermeasures against Aggravated Topologies and High Noise Environments,” Progress in Electromagnetics Research B, vol. 44, pp. 283-307, 2012. DOI: 10.2528/PIERB12081104

A. G. Lazaropoulos, “Underground Distribution BPL Connections with

(N + 1)-hop Repeater Systems: A Novel Capacity Mitigation Technique,” Elsevier Computers and Electrical Engineering, vol. 40, pp. 1813-1826, 2014. DOI: 10.1016/j.compeleceng.2014.06.001

M. Gebhardt, F. Weinmann, and K. Dostert, “Physical and regulatory constraints for communication over the power supply grid,” IEEE Commun. Mag., vol. 41, no. 5, pp. 84–90, May 2003. DOI: 10.1109/mcom.2003.1200106

A. G. Lazaropoulos, “Broadband over Power Lines Systems Convergence: Multiple-Input Multiple-Output Communications Analysis of Overhead and Underground Low-Voltage and Medium-Voltage BPL Networks,” ISRN Power Engineering, vol. 2013, Article ID 517940, 30 pages, 2013. DOI: 10.1155/2013/517940

P. Amirshahi and M. Kavehrad, “Medium voltage overhead power-line broadband communications; Transmission capacity and electromagnetic interference,” in Proc. IEEE Int. Symp. Power Line Commun. Appl., Vancouver, BC, Canada, Apr. 2005, pp. 2–6. DOI:

1109/ISPLC.2005.1430454

M. Götz, M. Rapp, and K. Dostert, “Power line channel characteristics and their effect on communication system design,” IEEE Commun. Mag., vol. 42, no. 4, pp. 78–86, Apr. 2004. DOI: 10.1109/mcom.2004.1284933

T. A. Papadopoulos, G.K. Papagiannis, and D.P. Labridis, "A generalized model for the calculation of the impedances and admittances of overhead power lines above stratified earth." Electric Power Systems Research, 80(9), 1160-1170. DOI: 10.1016/j.epsr.2010.03.009

T. A. Papadopoulos, C. G. Kaloudas, and G. K. Papagiannis, “A multipath channel model for PLC systems based on nodal method and modal analysis,” in Proc. 2007 IEEE Int. Symp. Power Line Communications and Its Applications (ISPLC’07), Pisa, Italy, Mar. 2007, pp. 278–283. DOI: 10.1109/ISPLC.2007.371137

T. A. Papadopoulos, B. D. Batalas, A. Radis, and G. K. Papagiannis, “Medium voltage network PLC modeling and signal propagation analysis,” in Proc. 2007 IEEE Int. Symp. Power Line Communications and its Applications (ISPLC’07), Pisa, Italy, Mar. 2007, pp. 284–289. DOI: 10.1109/ISPLC.2007.371138

F. Issa, D. Chaffanjon, E. P. de la Bâthie, and A. Pacaud, “An efficient tool for modal analysis transmission lines for PLC networks development,” presented at the IEEE Int. Conf. Power Line Communications and Its Applications, Athens, Greece, Mar. 2002.

J. Anatory and N. Theethayi, “On the efficacy of using ground return in the broadband power-line communications—A transmission-line analysis,” IEEE Trans. Power Del., vol. 23, no. 1, pp. 132–139, Jan. 2008. DOI: 10.1109/TPWRD.2007.910987

A. I. Chrysochos, T. A. Papadopoulos, and G. K. Papagiannis, “Enhancing the frequency-domain calculation of transients in multiconductor power transmission lines,” Electric Power Systems Research, vol. 122, pp. 56-64, 2015. DOI: 10.1016/j.epsr.2014.12.024

M. D’Amore and M. S. Sarto, “A new formulation of lossy ground return parameters for transient analysis of multiconductor dissipative lines,” IEEE Trans. Power Del., vol. 12, no. 1, pp. 303–314, Jan. 1997. DOI: 10.1109/61.568254

M. D’Amore and M. S. Sarto, “Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range—Part I: Single conductor configuration,” IEEE Trans. Electromagn. Compat., vol. 38, no. 2, pp. 127–138, May 1996. DOI: 10.1109/15.494615

M. D’Amore and M. S. Sarto, “Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range—Part II: Multi-conductor configuration,” IEEE Trans. Electromagn. Compat., vol. 38, no. 2, pp. 139–149, May 1996. DOI: 10.1109/15.494616

W. H. Wise, “Propagation of High Frequency Currents in Ground Return Circuits,” Proc. Inst. Radio Eng., vol. 22, pp. 522-527, Apr., 1934. DOI: 10.1109/JRPROC.1934.225868

W. H. Wise, “Potential coefficients for ground return circuits,” Bell Syst. Tech. J., vol. 27, pp. 365-371, Apr., 1948. DOI: 10.1002/j.1538-7305.1948.tb00913.x

S. Barmada, A. Musolino, and M. Raugi, “Innovative model for time-varying power line communication channel response evaluation,” IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1317–1326, Jul. 2006. DOI: 10.1109/JSAC.2006.874426

M. Zimmermann and K. Dostert, “A multipath model for the powerline channel,” IEEE Trans. Commun., vol. 50, no. 4, pp. 553–559, Apr. 2002. DOI: 10.1109/26.996069

D. Sabolić, R. Malarić, and A. Bažant, “A Practical Method for Extraction of High-Frequency Parameters of Distribution Cables,” IEEE Trans. on Power Del., vol. 27, no. 4, pp. 1877–1884, Oct. 2012. DOI: 10.1109/TPWRD.2012.2211899

J. Anatory, N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, “The influence of load impedance, line length, and branches on underground cable Power-Line Communications (PLC) systems,” IEEE Trans. Power Del., vol. 23, no. 1, pp. 180–187, Jan. 2008. DOI: 10.1109/TPWRD.2007.911020

OPERA1, D5: Pathloss as a function of frequency, distance and network topology for various LV and MV European powerline networks. IST Integrated Project No 507667, Apr. 2005.

J. Anatory, N. Theethayi, and R. Thottappillil, “Power-line communication channel model for interconnected networks—Part II: Multiconductor system,” IEEE Trans. Power Del., vol. 24, no. 1, pp. 124–128, Jan. 2009. DOI: 10.1109/TPWRD.2008.2005681

P. A. A. F. Wouters, P. C. J. M. van der Wielen, J. Veen, P. Wagenaars, and E. F. Steennis, “Effect of cable load impedance on coupling schemes for MV power line communication,” IEEE Trans. Power Del., vol. 20, no. 2, pt. 1, pp. 638–645, Apr. 2005. DOI: 10.1109/TPWRD.2005.844334

L. M. Kuhn, S. Berger, I. Hammerström, and A. Wittneben, “Power line enhanced cooperative wireless communications,” IEEE J. Sel. Areas Commun., vol. 24, no. 7, pp. 1401–1410, Jul. 2006. DOI: 10.1109/JSAC.2006.874407

Y. Xiaoxian, Z. Tao, Z. Baohui, Y. Fengchun, D. Jiandong, and S. Minghui, “Research of impedance characteristics for medium-voltage power networks,” IEEE Trans. Power Del., vol. 22, no. 2, pp. 870-878, Apr. 2007. DOI: 10.1109/TPWRD.2006.881573

Y. Xiaoxian, Z. Tao, Z. Baohui, N. Xu, W. Guojun, and D. Jiandong, “Investigation of transmission properties on 10-kV medium voltage power lines—part I: general properties,” IEEE Trans. on Power Del., vol. 22, no. 3, pp. 1446–1454, 2007. DOI: 10.1109/TPWRD.2007.900290

Z. Tao, Y. Xiaoxian, Z. Baohui, C. Jian, Y. Zhi, and T. Zhihong, “Research of noise characteristics for 10-kV medium-voltage power lines,” IEEE Trans. on Power Del., vol. 22, no. 1, pp. 142–150, 2007. DOI: 10.1109/TPWRD.2006.881414

J. Anatory, N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, “An experimental validation for Broadband Power-Line Communication (BPLC) model,” IEEE Trans. Power Del., vol. 23, no. 3, pp. 1380–1383, Jul. 2008. DOI: 10.1109/TPWRD.2008.916739

J. Anatory, N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, “Broadband power-line communication channel model: Comparison between theory and experiments,” in Proc. IEEE Int. Symp. Power Line Communications and Its Applications, Jeju Island, Korea, Apr. 2008, pp. 322–324. DOI: 10.1109/ISPLC.2008.4510447

A. G. Lazaropoulos, “Numerical Evaluation of Broadband Transmission Characteristics of Underground Low-Voltage Networks – Introducing Techno-Pedagogical (TP) Method,” Elsevier Int. Journal of Electrical Power & Energy Systems, vol. 55, pp. 253-260, 2014. DOI: 10.1016/j.ijepes.2013.09.009

T. A. Papadopoulos, A. I. Chrysochos, A. I. Nousdilis, and G. K. Papagiannis, “Simplified measurement-based black-box modeling of distribution transformers using transfer functions,” Electric Power Systems Research, vol. 121, pp. 77-88, 2015. DOI: 10.1016/j.epsr.2014.12.003

I. C. Demetriou, “Algorithm 742: L2CXFT: a Fortran subroutine for least-squares data fitting with nonnegative second divided differences,” ACM Transactions on Mathematical Software (TOMS), vol. 21, no. 1, pp. 98-110, 1995. DOI: 10.1145/200979.201039

S. S. Papakonstantinou and I. C. Demetriou, “Data Engineering by the Best l1 Convex Data Fitting Method,” in Proceedings of the World Congress on Engineering, vol. 1, 2014.




DOI: http://dx.doi.org/10.17737/tre.2015.1.2.006

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Athanasios G. Lazaropoulos

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2019 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)