Mathematical Analysis of Solar Photovoltaic Array Configurations with Partial Shaded Modules
Abstract
Solar-based photovoltaic (SPV) cells produce power from sunlight through the photovoltaic effect. The yield voltage of a single PV cell is small, so the voltage is extended by interfacing PV cells in series arrangement known as PV module or panel. Solar PV array comprises of series and parallel connections of modules in the grid structure with a few columns and rows. The various kinds of SPV array configurations or topologies are shaped by changing the number of electrical connections between module to module in an array. This paper presents the mathematical examination of 6×6 size regular SPV array configurations, including Total-Cross-Tied, Parallel, Honey-Comb, Series-Parallel, Series, Bridge-Linked types beneath un-shading case, and different proposed shading cases (primarily short narrow, short wide, long narrow, and long wide shadings). The electrical proportionate circuit of the SPV array setups was analyzed by Kirchhoff’s laws at distinctive nodes and loops in a sun powered PV array. The location of global maximum power point (GMPP) was determined hypothetically and distinguished in Matlab/simulation software at various shading conditions.
Citation:Â Raju, V.B., and Chengaiah, C. (2020). Mathematical Analysis of Solar Photovoltaic Array Configurations with Partial Shaded Modules. Trends in Renewable Energy, 6, 121-143. DOI: 10.17737/tre.2020.6.2.00115
Keywords
Full Text:
FULL TEXT (PDF)References
Fahrenbruch, A., and Bube, R. (2012). Fundamentals of solar cells: photovoltaic solar energy conversion, Elsevier
Dirk, A., Assmann, D., Laumanns, U., and Uh, D. (2006). Renewable energy: a global review of technologies, policies and markets, Routledge
Kumar, A., Pachauri, R. K., and Chauhan, Y. K. Experimental analysis of SP/TCT PV array configurations under partial shading conditions. In: Proc., 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp: 1-6. DOI: 10.1109/icpeices.2016.7853403
Bingöl, O., and Özkaya, B. (2018). Analysis and comparison of different PV array configurations under partial shading conditions. Solar Energy, 160, 336-343. DOI: 10.1016/j.solener.2017.12.004
Pendem, S. R., and Mikkili, S. (2018). Modelling and performance assessment of PV array topologies under partial shading conditions to mitigate the mismatching power losses. Solar Energy, 160, 303-321. DOI: 10.1016/j.solener.2017.12.010
Nguyen, D., and Lehman, B. A reconfigurable solar photovoltaic array under shadow conditions. In: Proc., 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, IEEE, pp: 980-986
Parlak, K. Åž. (2014). PV array reconfiguration method under partial shading conditions. International Journal of Electrical Power & Energy Systems, 63, 713-721. DOI: 10.1016/j.ijepes.2014.06.042
Rani, B. I., Ilango, G. S., and Nagamani, C. (2013). Enhanced power generation from PV array under partial shading conditions by shade dispersion using Su Do Ku configuration. IEEE Transactions on sustainable energy, 4(3), 594-601
Wang, Y.-J., and Hsu, P.-C. (2011). An investigation on partial shading of PV modules with different connection configurations of PV cells. Energy, 36(5), 3069-3078. DOI: 10.1016/j.energy.2011.02.052
Tatabhatla, V. M. R., Agarwal, A., and Kanumuri, T. (2019). Improved power generation by dispersing the uniform and non-uniform partial shades in solar photovoltaic array. Energy Conversion and Management, 197, 111825. DOI: 10.1016/j.enconman.2019.111825
Krishna, G. S., and Moger, T. (2019). Enhancement of maximum power output through reconfiguration techniques under non-uniform irradiance conditions. Energy, 187, 115917. DOI: 10.1016/j.energy.2019.115917
Raju, V.B., and Chengaiah, Ch. (2019). Performance Analysis of Conventional, Hybrid and Optimal PV Array Configurations of Partially Shaded Modules. International Journal of Engineering and Advanced Technology, 9(1), 3061-3073. DOI: 10.35940/ijeat.A1661.109119
Chao, K.-H., Lai, P.-L., and Liao, B.-J. (2015). The optimal configuration of photovoltaic module arrays based on adaptive switching controls. Energy Conversion and Management, 100, 157-167. DOI: 10.1016/j.enconman.2015.04.080
Zhu, L., Li, Q., Chen, M., Cao, K., and Sun, Y. (2019). A simplified mathematical model for power output predicting of Building Integrated Photovoltaic under partial shading conditions. Energy Conversion and Management, 180, 831-843. DOI: https://doi.org/10.1016/j.enconman.2018.11.036
Belhachat, F., and Larbes, C. (2015). Modeling, analysis and comparison of solar photovoltaic array configurations under partial shading conditions. Solar Energy, 120, 399-418. DOI: https://doi.org/10.1016/j.solener.2015.07.039
DOI: http://dx.doi.org/10.17737/tre.2020.6.2.00115
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 V. Bala Raju, Dr. Ch. Chengaiah
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)